Statistics

Below is a table of all used operators, their descriptions and coverage of sequences.
Operation Aliases Description #sequences #oeis
0zero280017
1one1357581589
2two2494962125
3three1861371311
4four62740641
5five71739604
6six69368411
7seven72663426
8eight62655337
9nine67322347
10ten68636368
11eleven298483
12twelve268977
13thirteen300870
14fourteen276462
15fifteen279474
16sixteen240762
17seventeen302662
18eighteen266159
19nineteen302160
20twenty126047
21twentyone134823
22twentytwo129620
23twentythree151523
24twentyfour126223
25twentyfive126819
26twentysix131015
27twentyseven130718
28twentyeight128517
29twentynine151616
30thirty119615
31thirtyone150717
32thirtytwo126920
33thirtythree131413
34thirtyfour130812
35thirtyfive133115
36thirtysix110910
37thirtyseven139917
38thirtyeight128512
39thirtynine131312
40forty117413
41fortyone140612
42fortytwo118110
43fortythree144710
44fortyfour12269
45fortyfive125610
46fortysix127511
47fortyseven144913
48fortyeight119514
49fortynine12859
50fifty116711
51fiftyone133510
52fiftytwo12128
53fiftythree14439
54fiftyfour11819
55fiftyfive12738
56fiftysix12058
57fiftyseven13319
58fiftyeight12769
59fiftynine14419
60sixty111211
61sixtyone144611
62sixtytwo126111
63sixtythree128712
64sixtyfour110215
65sixtyfive12789
66sixtysix11598
67sixtyseven144210
68sixtyeight125411
69sixtynine13189
70seventy11398
71seventyone143810
72seventytwo11708
73seventythree14159
74seventyfour12128
75seventyfive122011
76seventysix126411
77seventyseven13499
78seventyeight11568
79seventynine143610
80eighty113911
81eightyone11899
82eightytwo12178
83eightythree14469
84eightyfour11508
85eightyfive135410
86eightysix12609
87eightyseven13199
88eightyeight12088
89eightynine144411
90ninety10948
91ninetyone136810
92ninetytwo12549
93ninetythree13189
94ninetyfour125510
95ninetyfive13619
96ninetysix11668
97ninetyseven143811
98ninetyeight12439
99ninetynine126819
n9465785892
StieltjesStieltjes=0.0728... (Stieltjes gamma(1))27963
CopelandErdősCopelandErdős=0.2357... (Copeland-Erdős)29903
MertensMertens=0.2614... (Mertens)29964
Pólya_D3Pólya_D3=0.3405... (Pólya random walk 3D)30062
ArtinsArtins=0.3739... (Artins)30163
W1W1=0.5671... (Lambert W)30216
γEulerGammaγ=0.5772... (Euler Gamma)7404275
TwinPrimeTwinPrime=0.6601... (Twin Prime)31154
GCatalansConstantG=0.9159... (Catalans)31596
GlaisherKinkelinGlaisherKinkelin=1.2824... (Glaisher-Kinkelin)30943
B3B3=1.3325... (Mertens B3)30953
BackhouseBackhouse=1.456... (Backhouse)30683
ϕGoldenRatioϕ=1.618... (Golden Ratio)69393161
QRQR=1.6616... (Quadratic Recurrence)30004
TribonacciTribonacci=1.8392... (Tribonacci)29617
KhintchineKhintchine=2.6854... (Khintchine)29325
ee=2.7182... (Euler e)63243245
πPiπ=3.1415... (Pi)69777403
+add3750522927
-neg49996181
-sub4567711810
*mul2852282843
/div3603941374
xorxor(a,b)=bitwise exclusive or53333425
andand(a,b)=bitwise and14971212
oror(a,b)=bitwise or49686349
abs823052
floor70802874
ceil21845237
round18110199
charcharacteristicchar(a)=characteristic function of a (in range)13532188
compcomplementcomp(a)=complement function of a (in range)18053195
sum∑(a)=partial sums of a1576321655
Δdiff, deltaΔ(a)=differences of a48452496
prod, product∏(a)=partial products of a54367471
dedecimalexpansionde(a)=decimal expansion of a928871817
contfraccontinuedfractioncontfrac(a)=continued fraction of a24916279
%mod, modulo46232579
gcdgcd(a,b)=greatest common divisor17623292
lcmlcm(a,b)=least common multiple34413295
²sqr4099771800
sqrt91106751
^pow1933791474
rootroot(n,a)=the n-th root of a133357855
exp90500230
logln99383516
log271304227
sternstern(n)=Stern-Brocot sequence57811206
a(n-1)r17509773609
a(n-2)r21874111118
a(n-3)r346293190
cos2330128
sin2334634
tan2002123
asin44877
acos495018
atan2211164
sinh1783215
cosh1830211
tanh2125017
cot186414
acot2348852
!factorial51331456
CbinomialC(n,k)=binomial coefficient37971368
PpartitionP(n)=partition numbers159982446
catalancatalan(n)=the catalan numbers40205253
ptpt(n)=Pascals triangle by rows83158285
pprimep(n)=nth prime219854992
compositenonprimecomposite(n)=nth composite number73975165
τsigma_0, sigma, tau, divisornumτ(n)=number of divisors of n142660624
σsigma_1, divisorsumσ(n)=divisor sum of n108474453
φphi, eulerphi, numrelprimesϕ(n)=number of relative primes (Euler's totient)163956593
Ωomega, bigomega, maxdistinctfactorsΩ(n)=max distinct factors of n108271460
μmu, mobiusmuμ(n)=Möbius function23947158
λliouvilleλ(n)=Liouville's function1456374
Λmangoldt, lambdaΛ(n)=Von Mangoldt's function1103757
gpfgpfgpf(n)=greatest prime factor of n109658382
lpflpflpf(n)=least prime factor of n34364185
agcagc(n)=number of factorizations into prime powers (abelian group count)44599179
ζzetaζ(n)=Riemann zeta34836
zetazerozetazero(n)=non trivial zeros of Riemann zeta4134742