Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 157632. [0] [1] [2] [3] [4] ... [1576]

Sequence 5ey1pvojvkhlg

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, more...

integer, strictly-monotonic, +, A000217

a(n)=∑[n]
∑(a)=partial sums of a
n≥0
2 operations
Variable
a(n)=n+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=-∑[-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=∑[and(n, -1)]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
5 operations
Bitwise

Sequence 3narje4d4nqjh

0, -1, -3, -6, -10, -15, -21, -28, -36, -45, -55, -66, -78, -91, -105, -120, -136, -153, -171, -190, -210, -231, -253, -276, -300, -325, -351, -378, -406, -435, -465, -496, -528, -561, -595, -630, -666, -703, -741, -780, -820, -861, -903, -946, -990, -1035, -1081, -1128, -1176, -1225, more...

integer, strictly-monotonic, -

a(n)=∑[-n]
∑(a)=partial sums of a
n≥0
3 operations
Arithmetic
a(n)=a(n-1)-n
a(0)=0
n≥0
3 operations
Recursive
a(n)=-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
5 operations
Combinatoric
a(n)=∑[floor(log(2)-n)]
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[λ(n²)-n]
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime

Sequence 2jectam3hmgeh

1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, -1224, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=1
n≥0
3 operations
Recursive
a(n)=1-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=floor(sqrt(2)-∑[n])
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=pt(∑[n])-∑[n]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=1-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence sjki1skoqrnno

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, more...

integer, strictly-monotonic, +, A000124

a(n)=n+a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=1+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=∑[∑[or(a(n-1), a(n-2))]]
a(0)=1
a(1)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[∑[gcd(a(n-1), a(n-2))]]
a(0)=1
a(1)=0
gcd(a,b)=greatest common divisor
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence gzrrvqqvhxjtb

2, 1, -1, -4, -8, -13, -19, -26, -34, -43, -53, -64, -76, -89, -103, -118, -134, -151, -169, -188, -208, -229, -251, -274, -298, -323, -349, -376, -404, -433, -463, -494, -526, -559, -593, -628, -664, -701, -739, -778, -818, -859, -901, -944, -988, -1033, -1079, -1126, -1174, -1223, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=2
n≥0
3 operations
Recursive
a(n)=2-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=2-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=∑[λ(a(n-1)²)-n]
a(0)=2
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime
a(n)=2-(n+n²)/2
n≥0
8 operations
Power

Sequence wx2vrj0qv4zui

2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, more...

integer, strictly-monotonic, +

a(n)=n+a(n-1)
a(0)=2
n≥0
3 operations
Recursive
a(n)=2+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=∑[∑[μ(abs(a(n-1)))]]
a(0)=2
μ(n)=Möbius function
∑(a)=partial sums of a
n≥0
5 operations
Prime
a(n)=∑[∑[λ(abs(a(n-1)))]]
a(0)=2
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥0
5 operations
Prime

Sequence avekgus2dlv1m

3, 2, 0, -3, -7, -12, -18, -25, -33, -42, -52, -63, -75, -88, -102, -117, -133, -150, -168, -187, -207, -228, -250, -273, -297, -322, -348, -375, -403, -432, -462, -493, -525, -558, -592, -627, -663, -700, -738, -777, -817, -858, -900, -943, -987, -1032, -1078, -1125, -1173, -1222, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=3
n≥0
3 operations
Recursive
a(n)=3-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=3-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=∑[λ(a(n-1)²)-n]
a(0)=3
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime

Sequence zoz40timqns5j

3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, more...

integer, strictly-monotonic, +, A152950

a(n)=n+a(n-1)
a(0)=3
n≥0
3 operations
Recursive
a(n)=3+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=3
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=∑[n-λ(a(n-1)²)]
a(0)=3
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime
a(n)=n%p(a(n-1))+a(n-1)
a(0)=3
p(n)=nth prime
n≥0
6 operations
Prime

Sequence mfdcg1xeqfowo

4, 3, 1, -2, -6, -11, -17, -24, -32, -41, -51, -62, -74, -87, -101, -116, -132, -149, -167, -186, -206, -227, -249, -272, -296, -321, -347, -374, -402, -431, -461, -492, -524, -557, -591, -626, -662, -699, -737, -776, -816, -857, -899, -942, -986, -1031, -1077, -1124, -1172, -1221, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=4
n≥0
3 operations
Recursive
a(n)=4-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 4xhymono5rujl

4, 5, 7, 10, 14, 19, 25, 32, 40, 49, 59, 70, 82, 95, 109, 124, 140, 157, 175, 194, 214, 235, 257, 280, 304, 329, 355, 382, 410, 439, 469, 500, 532, 565, 599, 634, 670, 707, 745, 784, 824, 865, 907, 950, 994, 1039, 1085, 1132, 1180, 1229, more...

integer, strictly-monotonic, +, A145018

a(n)=n+a(n-1)
a(0)=4
n≥0
3 operations
Recursive
a(n)=4+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=4
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=(n+floor(a(n-1)))%p(a(n-1))
a(0)=4
p(n)=nth prime
n≥0
7 operations
Prime

Sequence xkqqvucjkfsub

5, 4, 2, -1, -5, -10, -16, -23, -31, -40, -50, -61, -73, -86, -100, -115, -131, -148, -166, -185, -205, -226, -248, -271, -295, -320, -346, -373, -401, -430, -460, -491, -523, -556, -590, -625, -661, -698, -736, -775, -815, -856, -898, -941, -985, -1030, -1076, -1123, -1171, -1220, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=5
n≥0
3 operations
Recursive
a(n)=5-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence ub205e2nmzfwi

5, 6, 8, 11, 15, 20, 26, 33, 41, 50, 60, 71, 83, 96, 110, 125, 141, 158, 176, 195, 215, 236, 258, 281, 305, 330, 356, 383, 411, 440, 470, 501, 533, 566, 600, 635, 671, 708, 746, 785, 825, 866, 908, 951, 995, 1040, 1086, 1133, 1181, 1230, more...

integer, strictly-monotonic, +

a(n)=n+a(n-1)
a(0)=5
n≥0
3 operations
Recursive
a(n)=5+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=5
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric

Sequence kcd2noudlbnqi

-10, -19, -27, -34, -40, -45, -49, -52, -54, -55, -55, -54, -52, -49, -45, -40, -34, -27, -19, -10, 0, 11, 23, 36, 50, 65, 81, 98, 116, 135, 155, 176, 198, 221, 245, 270, 296, 323, 351, 380, 410, 441, 473, 506, 540, 575, 611, 648, 686, 725, more...

integer, non-monotonic, +-

a(n)=∑[n-10]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence sp3gsw55oa3tf

-10, -9, -7, -4, 0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-10
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 2rhicbhp1kq2e

-9, -17, -24, -30, -35, -39, -42, -44, -45, -45, -44, -42, -39, -35, -30, -24, -17, -9, 0, 10, 21, 33, 46, 60, 75, 91, 108, 126, 145, 165, 186, 208, 231, 255, 280, 306, 333, 361, 390, 420, 451, 483, 516, 550, 585, 621, 658, 696, 735, 775, more...

integer, non-monotonic, +-

a(n)=∑[n-9]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 0hz4ud5amrzme

-9, -8, -6, -3, 1, 6, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-9
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 5noj4tzoofbkc

-8, -15, -21, -26, -30, -33, -35, -36, -36, -35, -33, -30, -26, -21, -15, -8, 0, 9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, more...

integer, non-monotonic, +-

a(n)=∑[n-8]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 2q3pl2bsax34c

-8, -7, -5, -2, 2, 7, 13, 20, 28, 37, 47, 58, 70, 83, 97, 112, 128, 145, 163, 182, 202, 223, 245, 268, 292, 317, 343, 370, 398, 427, 457, 488, 520, 553, 587, 622, 658, 695, 733, 772, 812, 853, 895, 938, 982, 1027, 1073, 1120, 1168, 1217, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-8
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence l3mdbxbkeyi3d

-7, -13, -18, -22, -25, -27, -28, -28, -27, -25, -22, -18, -13, -7, 0, 8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, more...

integer, non-monotonic, +-

a(n)=∑[n-7]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence jekqjceak5cbn

-7, -6, -4, -1, 3, 8, 14, 21, 29, 38, 48, 59, 71, 84, 98, 113, 129, 146, 164, 183, 203, 224, 246, 269, 293, 318, 344, 371, 399, 428, 458, 489, 521, 554, 588, 623, 659, 696, 734, 773, 813, 854, 896, 939, 983, 1028, 1074, 1121, 1169, 1218, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-7
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence gljyfbqgkftz

-6, -11, -15, -18, -20, -21, -21, -20, -18, -15, -11, -6, 0, 7, 15, 24, 34, 45, 57, 70, 84, 99, 115, 132, 150, 169, 189, 210, 232, 255, 279, 304, 330, 357, 385, 414, 444, 475, 507, 540, 574, 609, 645, 682, 720, 759, 799, 840, 882, 925, more...

integer, non-monotonic, +-

a(n)=∑[n-6]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 3lnh0wqj0jpzb

-6, -5, -3, 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-6
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence xoeghxahivj4c

-5, -9, -12, -14, -15, -15, -14, -12, -9, -5, 0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, more...

integer, non-monotonic, +-

a(n)=∑[n-5]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=5
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence dqi4rxlaoiasm

-5, -4, -2, 1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-5
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence pxw3dsqtkf1al

-4, -7, -9, -10, -10, -9, -7, -4, 0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, more...

integer, non-monotonic, +-

a(n)=∑[n-4]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=4
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence mhz0wikmg1jp

-4, -3, -1, 2, 6, 11, 17, 24, 32, 41, 51, 62, 74, 87, 101, 116, 132, 149, 167, 186, 206, 227, 249, 272, 296, 321, 347, 374, 402, 431, 461, 492, 524, 557, 591, 626, 662, 699, 737, 776, 816, 857, 899, 942, 986, 1031, 1077, 1124, 1172, 1221, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-4
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence xxglm33o154kk

-3, -5, -6, -6, -5, -3, 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, more...

integer, non-monotonic, +-

a(n)=∑[n-3]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=3
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence epzredwtgfuno

-3, -2, 0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-3
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-3
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=∑[C(n, a(n-1))]-3
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence sc2rwu1ws2jhn

-2, -3, -3, -2, 0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, more...

integer, non-monotonic, +-, A167544

a(n)=∑[n-2]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=2
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[floor(n-sqrt(2))]
∑(a)=partial sums of a
n≥0
6 operations
Power

Sequence bo3r5oam1hfpj

-2, -1, 1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-2
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-2
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(∑[n]-sqrt(2))
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[C(n, a(n-1))]-2
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence rlqbffn254dgc

-1, -1, 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, more...

integer, monotonic, +-

a(n)=∑[n-1]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=1
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[floor(n-log(2))]
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[n-pt(∑[n])]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric

Sequence bq1aqsaxvaxx

-1, 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-1
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-1
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(∑[n]-log(2))
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[n]-pt(∑[n])
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=∑[C(n, a(n-1))]-1
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence griipxddx1q0p

0, 0.1, 0.30000000000000004, 0.6000000000000001, 1, 1.5, 2.1, 2.8, 3.5999999999999996, 4.5, 5.5, 6.6, 7.8, 9.1, 10.5, 12, 13.6, 15.299999999999999, 17.099999999999998, 19, 21, 23.099999999999998, 25.299999999999997, 27.599999999999998, 30, more...

decimal, strictly-monotonic, +

a(n)=∑[n/10]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/10+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence xaavoqwmbswgk

0, 0.1111111111111111, 0.3333333333333333, 0.6666666666666666, 1.1111111111111112, 1.6666666666666667, 2.3333333333333335, 3.111111111111111, 4, 5, 6.111111111111111, 7.333333333333333, 8.666666666666666, 10.11111111111111, 11.666666666666666, 13.333333333333332, 15.11111111111111, 17, 19, 21.11111111111111, 23.333333333333332, 25.666666666666664, 28.111111111111107, 30.666666666666664, 33.33333333333333, more...

decimal, strictly-monotonic, +

a(n)=∑[n/9]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/9+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=∑[n*(1/3)²]
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence dvhq4sfq54glc

0, 0.125, 0.375, 0.75, 1.25, 1.875, 2.625, 3.5, 4.5, 5.625, 6.875, 8.25, 9.75, 11.375, 13.125, 15, 17, 19.125, 21.375, 23.75, 26.25, 28.875, 31.625, 34.5, 37.5, more...

decimal, strictly-monotonic, +

a(n)=∑[n/8]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/8+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence w1bit44wcmmfd

0, 0.14285714285714285, 0.42857142857142855, 0.8571428571428571, 1.4285714285714284, 2.142857142857143, 3, 4, 5.142857142857142, 6.428571428571428, 7.857142857142857, 9.428571428571429, 11.142857142857142, 13, 15, 17.142857142857142, 19.428571428571427, 21.857142857142854, 24.428571428571427, 27.142857142857142, 30, 33, 36.142857142857146, 39.42857142857143, 42.85714285714286, more...

decimal, strictly-monotonic, +

a(n)=∑[n/7]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/7+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence bpxdbtn3b3e5b

0, 0.16666666666666666, 0.5, 1, 1.6666666666666665, 2.5, 3.5, 4.666666666666667, 6, 7.5, 9.166666666666666, 11, 13, 15.166666666666666, 17.5, 20, 22.666666666666668, 25.5, 28.5, 31.666666666666668, 35, 38.5, 42.166666666666664, 46, 50, more...

decimal, strictly-monotonic, +

a(n)=∑[n/6]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/6+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence 5ea502f3o3i1h

0, 0.2, 0.6000000000000001, 1.2000000000000002, 2, 3, 4.2, 5.6, 7.199999999999999, 9, 11, 13.2, 15.6, 18.2, 21, 24, 27.2, 30.599999999999998, 34.199999999999996, 38, 42, 46.199999999999996, 50.599999999999994, 55.199999999999996, 60, more...

decimal, strictly-monotonic, +

a(n)=∑[n/5]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/5+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence nrvkhyzt1vdjg

0, 0.25, 0.75, 1.5, 2.5, 3.75, 5.25, 7, 9, 11.25, 13.75, 16.5, 19.5, 22.75, 26.25, 30, 34, 38.25, 42.75, 47.5, 52.5, 57.75, 63.25, 69, 75, more...

decimal, strictly-monotonic, +

a(n)=∑[n/4]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/4+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=∑[n*(1/2)²]
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence f0oxsk55zzzwo

0, 0.3333333333333333, 1, 2, 3.333333333333333, 5, 7, 9.333333333333334, 12, 15, 18.333333333333332, 22, 26, 30.333333333333332, 35, 40, 45.333333333333336, 51, 57, 63.333333333333336, 70, 77, 84.33333333333333, 92, 100, more...

decimal, strictly-monotonic, +

a(n)=∑[n/3]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/3+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence ax0nbg44smlfg

0, 0.3333333333333333, 1, 2, 3.3333333333333335, 5, 7, 9.333333333333334, 12, 15, 18.333333333333332, 22, 26, 30.333333333333332, 35, 40, 45.333333333333336, 51, 57, 63.333333333333336, 70, 77, 84.33333333333333, 92, 100, more...

decimal, strictly-monotonic, +

a(n)=∑[n]/3
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]/3
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence dz2ls2rdl00um

0, 0.5, 1.5, 3, 5, 7.5, 10.5, 14, 18, 22.5, 27.5, 33, 39, 45.5, 52.5, 60, 68, 76.5, 85.5, 95, 105, 115.5, 126.5, 138, 150, more...

decimal, strictly-monotonic, +

a(n)=∑[n/2]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/2+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=(n+n²)/2/2
n≥0
8 operations
Power

Sequence tnmdchnj445v

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, more...

integer, strictly-monotonic, +, A002378

a(n)=∑[2*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n+n²
n≥0
4 operations
Power
a(n)=∑[2+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=∑[xor(1, 3+a(n-1))]
a(0)=0
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence kbuplydzw1ygc

0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528, 3675, more...

integer, strictly-monotonic, +, A045943

a(n)=∑[3*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[3+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[lcm(3*n, 3)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=3*∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=n+∑[n]+n²
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence ujpnqvrt4jmuo

0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324, 4512, 4704, 4900, more...

integer, strictly-monotonic, +, A046092

a(n)=∑[4*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[4+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=2*(n+n²)
n≥0
6 operations
Power
a(n)=2*lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence tfwxomd1e1ppj

0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640, 5880, 6125, more...

integer, strictly-monotonic, +, A028895

a(n)=∑[5*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[5+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence twfratlz4k3ck

0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676, 5940, 6210, 6486, 6768, 7056, 7350, more...

integer, strictly-monotonic, +, A028896

a(n)=∑[6*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[6+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=3*(n+n²)
n≥0
6 operations
Power
a(n)=3*lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence cbdmfhabpwhkd

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622, 6930, 7245, 7567, 7896, 8232, 8575, more...

integer, strictly-monotonic, +, A024966

a(n)=∑[7*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[7+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence xfgfaefxe20wl

0, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280, 8648, 9024, 9408, 9800, more...

integer, strictly-monotonic, +, A033996

a(n)=∑[8*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[8+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=Δ[n²]²-1
Δ(a)=differences of a
n≥0
6 operations
Power

Sequence pfanepgwgyhlj

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315, 9729, 10152, 10584, 11025, more...

integer, strictly-monotonic, +, A027468

a(n)=∑[9*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[9+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=(3*sqrt(∑[n]))²
∑(a)=partial sums of a
n≥0
6 operations
Power

Sequence lv2ju4b41e0rg

0, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550, 660, 780, 910, 1050, 1200, 1360, 1530, 1710, 1900, 2100, 2310, 2530, 2760, 3000, 3250, 3510, 3780, 4060, 4350, 4650, 4960, 5280, 5610, 5950, 6300, 6660, 7030, 7410, 7800, 8200, 8610, 9030, 9460, 9900, 10350, 10810, 11280, 11760, 12250, more...

integer, strictly-monotonic, +, A124080

a(n)=∑[10*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[10+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence lv3ul4jqprfbf

1, 0.3333333333333333, 0.16666666666666666, 0.1, 0.06666666666666667, 0.047619047619047616, 0.03571428571428571, 0.027777777777777776, 0.022222222222222223, 0.01818181818181818, 0.015151515151515152, 0.01282051282051282, 0.01098901098901099, 0.009523809523809525, 0.008333333333333333, 0.007352941176470588, 0.006535947712418301, 0.005847953216374269, 0.005263157894736842, 0.004761904761904762, 0.004329004329004329, 0.003952569169960474, 0.003623188405797101, 0.003333333333333334, 0.003076923076923077, more...

decimal, strictly-monotonic, convergent, +

a(n)=1/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=2/(n+n²)
n≥1
6 operations
Power
a(n)=1/∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=λ(n²)/∑[n]
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime
a(n)=2/lcm(1+n, n)
lcm(a,b)=least common multiple
n≥1
7 operations
Divisibility

Sequence bsejzaswlxeib

1, 1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, more...

integer, monotonic, +-, A080956

a(n)=∑[1-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=1
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[floor(sqrt(2)-n)]
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[pt(∑[n])-n]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=∑[C(a(n-1), 2)-n]
a(0)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence xfwx5ruzsboej

1, 1.5, 1.8333333333333333, 2.083333333333333, 2.283333333333333, 2.4499999999999997, 2.5928571428571425, 2.7178571428571425, 2.8289682539682537, 2.9289682539682538, 3.0198773448773446, 3.103210678210678, 3.180133755133755, 3.251562326562327, 3.3182289932289937, 3.3807289932289937, 3.439552522640758, 3.4951080781963135, 3.547739657143682, 3.597739657143682, 3.6453587047627294, 3.690813250217275, 3.73429151108684, 3.7759581777535067, 3.8159581777535068, more...

decimal, strictly-monotonic, +

a(n)=∑[1/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[n^-1]
∑(a)=partial sums of a
n≥1
5 operations
Power
a(n)=∑[λ(n²)/n]
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime
a(n)=1/(1+n)+a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence laxxma1zfxnm

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, more...

integer, strictly-monotonic, +

a(n)=∑[1+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=C(2+n, 2)
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=pt(∑[3+n])
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Combinatoric
a(n)=Δ[abs(∑[∑[n]])]
∑(a)=partial sums of a
Δ(a)=differences of a
n≥0
5 operations
Variable

Sequence mpjxk1wcwf3kd

2, 0.6666666666666666, 0.3333333333333333, 0.2, 0.13333333333333333, 0.09523809523809523, 0.07142857142857142, 0.05555555555555555, 0.044444444444444446, 0.03636363636363636, 0.030303030303030304, 0.02564102564102564, 0.02197802197802198, 0.01904761904761905, 0.016666666666666666, 0.014705882352941176, 0.013071895424836602, 0.011695906432748537, 0.010526315789473684, 0.009523809523809525, 0.008658008658008658, 0.007905138339920948, 0.007246376811594203, 0.006666666666666667, 0.006153846153846154, more...

decimal, strictly-monotonic, convergent, +

a(n)=2/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=2/∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=2/C(2+n, 2)
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric
a(n)=2*2/(n+n²)
n≥1
8 operations
Power

Sequence 1xysq5qklq5go

2, 3, 3, 2, 0, -3, -7, -12, -18, -25, -33, -42, -52, -63, -75, -88, -102, -117, -133, -150, -168, -187, -207, -228, -250, -273, -297, -322, -348, -375, -403, -432, -462, -493, -525, -558, -592, -627, -663, -700, -738, -777, -817, -858, -900, -943, -987, -1032, -1078, -1125, more...

integer, non-monotonic, +-

a(n)=∑[2-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=2
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[a(n-1)-pt(∑[n])]
a(0)=2
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=∑[a(n-1)-C(a(n-1), 2)]
a(0)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=∑[a(n-1)-λ(n²)]
a(0)=2
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence k5vohmvlfbdcl

2, 3, 3.6666666666666665, 4.166666666666666, 4.566666666666666, 4.8999999999999995, 5.185714285714285, 5.435714285714285, 5.657936507936507, 5.8579365079365076, 6.039754689754689, 6.206421356421356, 6.36026751026751, 6.503124653124654, 6.636457986457987, 6.761457986457987, 6.879105045281516, 6.990216156392627, 7.095479314287364, 7.195479314287364, 7.290717409525459, 7.38162650043455, 7.46858302217368, 7.5519163555070135, 7.6319163555070135, more...

decimal, strictly-monotonic, +

a(n)=∑[2/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence qc0c3dkrmml2b

2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, more...

integer, strictly-monotonic, +

a(n)=∑[2+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=2
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[floor(∑[sqrt(a(n-1))])]
a(0)=2
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[pt(n+∑[n])]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥2
6 operations
Combinatoric
a(n)=∑[1+C(a(n-1), n)]
a(0)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence 0cornlih3qr2i

3, 1, 0.5, 0.3, 0.2, 0.14285714285714285, 0.10714285714285714, 0.08333333333333333, 0.06666666666666667, 0.05454545454545454, 0.045454545454545456, 0.038461538461538464, 0.03296703296703297, 0.02857142857142857, 0.025, 0.022058823529411766, 0.0196078431372549, 0.017543859649122806, 0.015789473684210527, 0.014285714285714285, 0.012987012987012988, 0.011857707509881422, 0.010869565217391304, 0.01, 0.009230769230769232, more...

decimal, strictly-monotonic, convergent, +

a(n)=3/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=3/∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=3/C(2+n, 2)
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric

Sequence anwjo01divzud

3, 4.5, 5.5, 6.25, 6.85, 7.35, 7.7785714285714285, 8.153571428571428, 8.486904761904762, 8.786904761904763, 9.059632034632036, 9.309632034632036, 9.540401265401266, 9.75468697968698, 9.95468697968698, 10.14218697968698, 10.318657567922273, 10.485324234588939, 10.643218971431043, 10.793218971431044, 10.936076114288186, 11.072439750651823, 11.202874533260518, 11.327874533260518, 11.447874533260517, more...

decimal, strictly-monotonic, +

a(n)=∑[3/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[a(n-1)-a(n-1)/n]
a(0)=3
∑(a)=partial sums of a
n≥1
6 operations
Recursive

Sequence t2skcdgilkyhm

3, 5, 6, 6, 5, 3, 0, -4, -9, -15, -22, -30, -39, -49, -60, -72, -85, -99, -114, -130, -147, -165, -184, -204, -225, -247, -270, -294, -319, -345, -372, -400, -429, -459, -490, -522, -555, -589, -624, -660, -697, -735, -774, -814, -855, -897, -940, -984, -1029, -1075, more...

integer, non-monotonic, +-

a(n)=∑[3-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=3
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence 1cmp2ug11qh3p

3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272, 1323, 1375, more...

integer, strictly-monotonic, +

a(n)=∑[3+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=3
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[floor(∑[root(3, a(n-1))])]
a(0)=3
root(n,a)=the n-th root of a
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=∑[∑[φ(a(n-1))]]-n
a(0)=3
ϕ(n)=number of relative primes (Euler's totient)
∑(a)=partial sums of a
n≥0
6 operations
Prime
a(n)=∑[∑[agc(a(n-1))]]-n
a(0)=3
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence 3m3qte25un4wn

4, 1.3333333333333333, 0.6666666666666666, 0.4, 0.26666666666666666, 0.19047619047619047, 0.14285714285714285, 0.1111111111111111, 0.08888888888888889, 0.07272727272727272, 0.06060606060606061, 0.05128205128205128, 0.04395604395604396, 0.0380952380952381, 0.03333333333333333, 0.029411764705882353, 0.026143790849673203, 0.023391812865497075, 0.021052631578947368, 0.01904761904761905, 0.017316017316017316, 0.015810276679841896, 0.014492753623188406, 0.013333333333333334, 0.012307692307692308, more...

decimal, strictly-monotonic, convergent, +

a(n)=4/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence yzeqfmydfslwp

4, 6, 7.333333333333333, 8.333333333333332, 9.133333333333333, 9.799999999999999, 10.37142857142857, 10.87142857142857, 11.315873015873015, 11.715873015873015, 12.079509379509378, 12.412842712842712, 12.72053502053502, 13.006249306249307, 13.272915972915975, 13.522915972915975, 13.758210090563033, 13.980432312785254, 14.190958628574728, 14.390958628574728, 14.581434819050918, 14.7632530008691, 14.93716604434736, 15.103832711014027, 15.263832711014027, more...

decimal, strictly-monotonic, +

a(n)=∑[4/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[n*(2/n)²]
∑(a)=partial sums of a
n≥1
7 operations
Power

Sequence nabzc1xvwq1bj

4, 7, 9, 10, 10, 9, 7, 4, 0, -5, -11, -18, -26, -35, -45, -56, -68, -81, -95, -110, -126, -143, -161, -180, -200, -221, -243, -266, -290, -315, -341, -368, -396, -425, -455, -486, -518, -551, -585, -620, -656, -693, -731, -770, -810, -851, -893, -936, -980, -1025, more...

integer, non-monotonic, +-

a(n)=∑[4-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=4
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence eag32pbdllobp

4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, more...

integer, strictly-monotonic, +

a(n)=∑[4+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=4
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[floor(∑[root(3, a(n-1))])]
a(0)=4
root(n,a)=the n-th root of a
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=∑[∑[pt(a(n-1))]]-n
a(0)=4
pt(n)=Pascals triangle by rows
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=1+∑[∑[φ(a(n-1))]]
a(0)=3
ϕ(n)=number of relative primes (Euler's totient)
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence obck5mv53knbg

5, 1.6666666666666667, 0.8333333333333334, 0.5, 0.3333333333333333, 0.23809523809523808, 0.17857142857142858, 0.1388888888888889, 0.1111111111111111, 0.09090909090909091, 0.07575757575757576, 0.0641025641025641, 0.054945054945054944, 0.047619047619047616, 0.041666666666666664, 0.03676470588235294, 0.032679738562091505, 0.029239766081871343, 0.02631578947368421, 0.023809523809523808, 0.021645021645021644, 0.019762845849802372, 0.018115942028985508, 0.016666666666666666, 0.015384615384615385, more...

decimal, strictly-monotonic, convergent, +

a(n)=5/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence ellnelqf1bwgg

5, 7.5, 9.166666666666666, 10.416666666666666, 11.416666666666666, 12.25, 12.964285714285714, 13.589285714285714, 14.144841269841269, 14.644841269841269, 15.099386724386724, 15.51605339105339, 15.900668775668775, 16.25781163281163, 16.591144966144963, 16.903644966144963, 17.197762613203786, 17.475540390981564, 17.738698285718407, 17.988698285718407, 18.226793523813644, 18.45406625108637, 18.671457555434195, 18.879790888767527, 19.079790888767526, more...

decimal, strictly-monotonic, +

a(n)=∑[5/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence sykhv4dkoxoge

5, 9, 12, 14, 15, 15, 14, 12, 9, 5, 0, -6, -13, -21, -30, -40, -51, -63, -76, -90, -105, -121, -138, -156, -175, -195, -216, -238, -261, -285, -310, -336, -363, -391, -420, -450, -481, -513, -546, -580, -615, -651, -688, -726, -765, -805, -846, -888, -931, -975, more...

integer, non-monotonic, +-

a(n)=∑[5-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=5
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence is2cvx3cb0h5i

5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475, more...

integer, strictly-monotonic, +

a(n)=∑[5+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=5
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=1+∑[∑[pt(a(n-1))]]
a(0)=4
pt(n)=Pascals triangle by rows
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=1+∑[∑[φ(a(n-1))]]
a(0)=4
ϕ(n)=number of relative primes (Euler's totient)
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence oy4evzoxtlivf

6, 2, 1, 0.6, 0.4, 0.2857142857142857, 0.21428571428571427, 0.16666666666666666, 0.13333333333333333, 0.10909090909090909, 0.09090909090909091, 0.07692307692307693, 0.06593406593406594, 0.05714285714285714, 0.05, 0.04411764705882353, 0.0392156862745098, 0.03508771929824561, 0.031578947368421054, 0.02857142857142857, 0.025974025974025976, 0.023715415019762844, 0.021739130434782608, 0.02, 0.018461538461538463, more...

decimal, strictly-monotonic, convergent, +

a(n)=6/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence mbxyx2tcvi1tl

6, 5, 3, 0, -4, -9, -15, -22, -30, -39, -49, -60, -72, -85, -99, -114, -130, -147, -165, -184, -204, -225, -247, -270, -294, -319, -345, -372, -400, -429, -459, -490, -522, -555, -589, -624, -660, -697, -735, -774, -814, -855, -897, -940, -984, -1029, -1075, -1122, -1170, -1219, more...

integer, strictly-monotonic, +-

a(n)=6-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence psjvfior2zfeo

6, 7, 9, 12, 16, 21, 27, 34, 42, 51, 61, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 331, 357, 384, 412, 441, 471, 502, 534, 567, 601, 636, 672, 709, 747, 786, 826, 867, 909, 952, 996, 1041, 1087, 1134, 1182, 1231, more...

integer, strictly-monotonic, +

a(n)=6+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence uoipfcbirtiyg

6, 9, 11, 12.5, 13.7, 14.7, 15.557142857142857, 16.307142857142857, 16.973809523809525, 17.573809523809526, 18.119264069264073, 18.619264069264073, 19.080802530802533, 19.50937395937396, 19.90937395937396, 20.28437395937396, 20.637315135844545, 20.970648469177878, 21.286437942862086, 21.586437942862087, 21.872152228576372, 22.144879501303645, 22.405749066521036, 22.655749066521036, 22.895749066521034, more...

decimal, strictly-monotonic, +

a(n)=∑[6/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence pyvksiamgvl0o

6, 11, 15, 18, 20, 21, 21, 20, 18, 15, 11, 6, 0, -7, -15, -24, -34, -45, -57, -70, -84, -99, -115, -132, -150, -169, -189, -210, -232, -255, -279, -304, -330, -357, -385, -414, -444, -475, -507, -540, -574, -609, -645, -682, -720, -759, -799, -840, -882, -925, more...

integer, non-monotonic, +-

a(n)=∑[6-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence pv2dsgtjyn4ql

6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525, more...

integer, strictly-monotonic, +

a(n)=∑[6+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence bolbk3xmcffnp

7, 2.3333333333333335, 1.1666666666666667, 0.7, 0.4666666666666667, 0.3333333333333333, 0.25, 0.19444444444444445, 0.15555555555555556, 0.12727272727272726, 0.10606060606060606, 0.08974358974358974, 0.07692307692307693, 0.06666666666666667, 0.058333333333333334, 0.051470588235294115, 0.0457516339869281, 0.04093567251461988, 0.03684210526315789, 0.03333333333333333, 0.030303030303030304, 0.02766798418972332, 0.025362318840579712, 0.023333333333333334, 0.021538461538461538, more...

decimal, strictly-monotonic, convergent, +

a(n)=7/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence pysh2r2bw1whe

7, 6, 4, 1, -3, -8, -14, -21, -29, -38, -48, -59, -71, -84, -98, -113, -129, -146, -164, -183, -203, -224, -246, -269, -293, -318, -344, -371, -399, -428, -458, -489, -521, -554, -588, -623, -659, -696, -734, -773, -813, -854, -896, -939, -983, -1028, -1074, -1121, -1169, -1218, more...

integer, strictly-monotonic, +-

a(n)=7-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence jw5yi0stvclxm

7, 8, 10, 13, 17, 22, 28, 35, 43, 52, 62, 73, 85, 98, 112, 127, 143, 160, 178, 197, 217, 238, 260, 283, 307, 332, 358, 385, 413, 442, 472, 503, 535, 568, 602, 637, 673, 710, 748, 787, 827, 868, 910, 953, 997, 1042, 1088, 1135, 1183, 1232, more...

integer, strictly-monotonic, +

a(n)=7+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence tmjrz5vwsrosc

7, 10.5, 12.833333333333334, 14.583333333333334, 15.983333333333334, 17.150000000000002, 18.150000000000002, 19.025000000000002, 19.80277777777778, 20.50277777777778, 21.139141414141417, 21.72247474747475, 22.26093628593629, 22.76093628593629, 23.227602952602954, 23.665102952602954, 24.076867658485305, 24.465756547374195, 24.834177600005773, 25.184177600005775, 25.517510933339107, 25.835692751520924, 26.14004057760788, 26.43170724427455, 26.71170724427455, more...

decimal, strictly-monotonic, +

a(n)=∑[7/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence qngjtsdfsvgye

7, 13, 18, 22, 25, 27, 28, 28, 27, 25, 22, 18, 13, 7, 0, -8, -17, -27, -38, -50, -63, -77, -92, -108, -125, -143, -162, -182, -203, -225, -248, -272, -297, -323, -350, -378, -407, -437, -468, -500, -533, -567, -602, -638, -675, -713, -752, -792, -833, -875, more...

integer, non-monotonic, +-

a(n)=∑[7-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence liwqtopiwilcl

7, 15, 24, 34, 45, 57, 70, 84, 99, 115, 132, 150, 169, 189, 210, 232, 255, 279, 304, 330, 357, 385, 414, 444, 475, 507, 540, 574, 609, 645, 682, 720, 759, 799, 840, 882, 925, 969, 1014, 1060, 1107, 1155, 1204, 1254, 1305, 1357, 1410, 1464, 1519, 1575, more...

integer, strictly-monotonic, +

a(n)=∑[7+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence sjvzvb0olro5

8, 2.6666666666666665, 1.3333333333333333, 0.8, 0.5333333333333333, 0.38095238095238093, 0.2857142857142857, 0.2222222222222222, 0.17777777777777778, 0.14545454545454545, 0.12121212121212122, 0.10256410256410256, 0.08791208791208792, 0.0761904761904762, 0.06666666666666667, 0.058823529411764705, 0.05228758169934641, 0.04678362573099415, 0.042105263157894736, 0.0380952380952381, 0.03463203463203463, 0.03162055335968379, 0.028985507246376812, 0.02666666666666667, 0.024615384615384615, more...

decimal, strictly-monotonic, convergent, +

a(n)=8/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence hf30unfanhbxc

8, 7, 5, 2, -2, -7, -13, -20, -28, -37, -47, -58, -70, -83, -97, -112, -128, -145, -163, -182, -202, -223, -245, -268, -292, -317, -343, -370, -398, -427, -457, -488, -520, -553, -587, -622, -658, -695, -733, -772, -812, -853, -895, -938, -982, -1027, -1073, -1120, -1168, -1217, more...

integer, strictly-monotonic, +-

a(n)=8-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence fbji3qfdutjcf

8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 63, 74, 86, 99, 113, 128, 144, 161, 179, 198, 218, 239, 261, 284, 308, 333, 359, 386, 414, 443, 473, 504, 536, 569, 603, 638, 674, 711, 749, 788, 828, 869, 911, 954, 998, 1043, 1089, 1136, 1184, 1233, more...

integer, strictly-monotonic, +

a(n)=8+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence tvnfevxp25tpf

8, 12, 14.666666666666666, 16.666666666666664, 18.266666666666666, 19.599999999999998, 20.74285714285714, 21.74285714285714, 22.63174603174603, 23.43174603174603, 24.159018759018757, 24.825685425685425, 25.44107004107004, 26.012498612498614, 26.54583194583195, 27.04583194583195, 27.516420181126065, 27.96086462557051, 28.381917257149457, 28.781917257149455, 29.162869638101835, 29.5265060017382, 29.87433208869472, 30.207665422028054, 30.527665422028054, more...

decimal, strictly-monotonic, +

a(n)=∑[8/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence bp1urzivdiqhg

8, 15, 21, 26, 30, 33, 35, 36, 36, 35, 33, 30, 26, 21, 15, 8, 0, -9, -19, -30, -42, -55, -69, -84, -100, -117, -135, -154, -174, -195, -217, -240, -264, -289, -315, -342, -370, -399, -429, -460, -492, -525, -559, -594, -630, -667, -705, -744, -784, -825, more...

integer, non-monotonic, +-

a(n)=∑[8-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence xtniilicyj0ji

8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, 918, 962, 1007, 1053, 1100, 1148, 1197, 1247, 1298, 1350, 1403, 1457, 1512, 1568, 1625, more...

integer, strictly-monotonic, +

a(n)=∑[8+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence ovzkzs1ywvwgp

9, 3, 1.5, 0.9, 0.6, 0.42857142857142855, 0.32142857142857145, 0.25, 0.2, 0.16363636363636364, 0.13636363636363635, 0.11538461538461539, 0.0989010989010989, 0.08571428571428572, 0.075, 0.0661764705882353, 0.058823529411764705, 0.05263157894736842, 0.04736842105263158, 0.04285714285714286, 0.03896103896103896, 0.03557312252964427, 0.03260869565217391, 0.03, 0.027692307692307693, more...

decimal, strictly-monotonic, convergent, +

a(n)=9/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence 3rkobdrpzlttp

9, 8, 6, 3, -1, -6, -12, -19, -27, -36, -46, -57, -69, -82, -96, -111, -127, -144, -162, -181, -201, -222, -244, -267, -291, -316, -342, -369, -397, -426, -456, -487, -519, -552, -586, -621, -657, -694, -732, -771, -811, -852, -894, -937, -981, -1026, -1072, -1119, -1167, -1216, more...

integer, strictly-monotonic, +-

a(n)=9-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence mjdu0vyl5iorl

9, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64, 75, 87, 100, 114, 129, 145, 162, 180, 199, 219, 240, 262, 285, 309, 334, 360, 387, 415, 444, 474, 505, 537, 570, 604, 639, 675, 712, 750, 789, 829, 870, 912, 955, 999, 1044, 1090, 1137, 1185, 1234, more...

integer, strictly-monotonic, +

a(n)=9+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence cxe42d14zktji

9, 13.5, 16.5, 18.75, 20.55, 22.05, 23.335714285714285, 24.460714285714285, 25.460714285714285, 26.360714285714284, 27.1788961038961, 27.9288961038961, 28.621203796203794, 29.264060939060936, 29.864060939060938, 30.426560939060938, 30.95597270376682, 31.45597270376682, 31.929656914293137, 32.379656914293136, 32.80822834286457, 33.21731925195547, 33.60862359978156, 33.98362359978156, 34.34362359978156, more...

decimal, strictly-monotonic, +

a(n)=∑[9/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[(3/sqrt(n))²]
∑(a)=partial sums of a
n≥1
6 operations
Power

Sequence x3s3ccv5ehu4i

9, 17, 24, 30, 35, 39, 42, 44, 45, 45, 44, 42, 39, 35, 30, 24, 17, 9, 0, -10, -21, -33, -46, -60, -75, -91, -108, -126, -145, -165, -186, -208, -231, -255, -280, -306, -333, -361, -390, -420, -451, -483, -516, -550, -585, -621, -658, -696, -735, -775, more...

integer, non-monotonic, +-

a(n)=∑[9-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence qx1jh3yi3yzsb

9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560, 1617, 1675, more...

integer, strictly-monotonic, +

a(n)=∑[9+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence wz2tjkssaupto

10, 3.3333333333333335, 1.6666666666666667, 1, 0.6666666666666666, 0.47619047619047616, 0.35714285714285715, 0.2777777777777778, 0.2222222222222222, 0.18181818181818182, 0.15151515151515152, 0.1282051282051282, 0.10989010989010989, 0.09523809523809523, 0.08333333333333333, 0.07352941176470588, 0.06535947712418301, 0.05847953216374269, 0.05263157894736842, 0.047619047619047616, 0.04329004329004329, 0.039525691699604744, 0.036231884057971016, 0.03333333333333333, 0.03076923076923077, more...

decimal, strictly-monotonic, convergent, +

a(n)=10/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence ruudgo1aoycbo

10, 9, 7, 4, 0, -5, -11, -18, -26, -35, -45, -56, -68, -81, -95, -110, -126, -143, -161, -180, -200, -221, -243, -266, -290, -315, -341, -368, -396, -425, -455, -486, -518, -551, -585, -620, -656, -693, -731, -770, -810, -851, -893, -936, -980, -1025, -1071, -1118, -1166, -1215, more...

integer, strictly-monotonic, +-

a(n)=10-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence w2x3bln5qxxli

10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 65, 76, 88, 101, 115, 130, 146, 163, 181, 200, 220, 241, 263, 286, 310, 335, 361, 388, 416, 445, 475, 506, 538, 571, 605, 640, 676, 713, 751, 790, 830, 871, 913, 956, 1000, 1045, 1091, 1138, 1186, 1235, more...

integer, strictly-monotonic, +

a(n)=10+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence yihuvj2rvo0lb

10, 15, 18.333333333333332, 20.833333333333332, 22.833333333333332, 24.5, 25.928571428571427, 27.178571428571427, 28.289682539682538, 29.289682539682538, 30.198773448773448, 31.03210678210678, 31.80133755133755, 32.51562326562326, 33.182289932289926, 33.807289932289926, 34.39552522640757, 34.95108078196313, 35.47739657143681, 35.97739657143681, 36.45358704762729, 36.90813250217274, 37.34291511086839, 37.759581777535054, 38.15958177753505, more...

decimal, strictly-monotonic, +

a(n)=∑[10/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence poixgi00s1duo

10, 19, 27, 34, 40, 45, 49, 52, 54, 55, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10, 0, -11, -23, -36, -50, -65, -81, -98, -116, -135, -155, -176, -198, -221, -245, -270, -296, -323, -351, -380, -410, -441, -473, -506, -540, -575, -611, -648, -686, -725, more...

integer, non-monotonic, +-

a(n)=∑[10-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

[0] [1] [2] [3] [4] ... [1576]