Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 223214. [0] [1] [2] [3] [4] ... [2232]

Sequence 5ey1pvojvkhlg

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, more...

integer, strictly-monotonic, +, A000217

a(n)=∑[n]
∑(a)=partial sums of a
n≥0
2 operations
Variable
a(n)=C(n, 2)
C(n,k)=binomial coefficient
n≥1
3 operations
Combinatoric
a(n)=n+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=∑[n-1]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[and(63, n)]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
4 operations
Bitwise

Sequence 3narje4d4nqjh

0, -1, -3, -6, -10, -15, -21, -28, -36, -45, -55, -66, -78, -91, -105, -120, -136, -153, -171, -190, -210, -231, -253, -276, -300, -325, -351, -378, -406, -435, -465, -496, -528, -561, -595, -630, -666, -703, -741, -780, -820, -861, -903, -946, -990, -1035, -1081, -1128, -1176, -1225, more...

integer, strictly-monotonic, -

a(n)=∑[-n]
∑(a)=partial sums of a
n≥0
3 operations
Arithmetic
a(n)=a(n-1)-n
a(0)=0
n≥0
3 operations
Recursive
a(n)=-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
5 operations
Combinatoric
a(n)=∑[floor(log(2)-n)]
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[a(n-1)-pt(∑[n])]
a(0)=0
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric

Sequence yilypdkkyl42b

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, more...

integer, strictly-monotonic, +, A000096

a(n)=n+a(n-1)
a(0)=0
n≥1
3 operations
Recursive
a(n)=∑[n]-1
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=C(n, 2)-1
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric
a(n)=∑[n%∑[n]]
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=∑[n%n²]
∑(a)=partial sums of a
n≥1
5 operations
Power

Sequence jpvunvjdqy2l

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272, 1323, more...

integer, strictly-monotonic, +, A055998 (multiple)

a(n)=n+a(n-1)
a(0)=0
n≥2
3 operations
Recursive
a(n)=∑[n]-2
∑(a)=partial sums of a
n≥2
4 operations
Arithmetic
a(n)=∑[n%∑[n]]
∑(a)=partial sums of a
n≥2
5 operations
Divisibility
a(n)=∑[∑[gcd(n, a(n-1))]]
a(0)=0
gcd(a,b)=greatest common divisor
∑(a)=partial sums of a
n≥2
5 operations
Recursive
a(n)=∑[n]-root(3, 8)
∑(a)=partial sums of a
root(n,a)=the n-th root of a
n≥2
6 operations
Power

Sequence 2jectam3hmgeh

1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, -1224, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=1
n≥0
3 operations
Recursive
a(n)=1-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=floor(sqrt(2)-∑[n])
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=pt(∑[n])-∑[n]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=1-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence sjki1skoqrnno

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, more...

integer, strictly-monotonic, +, A000124

a(n)=n+a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=1+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=∑[∑[or(a(n-1), a(n-2))]]
a(0)=1
a(1)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[∑[gcd(a(n-1), a(n-2))]]
a(0)=1
a(1)=0
gcd(a,b)=greatest common divisor
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence irpeslpf0tz1k

1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, more...

integer, strictly-monotonic, +, A034856

a(n)=n+a(n-1)
a(0)=1
n≥2
3 operations
Recursive
a(n)=∑[n]-1
∑(a)=partial sums of a
n≥2
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥2
4 operations
Combinatoric
a(n)=∑[∑[gcd(a(n-1), a(n-2))]]
a(0)=1
a(1)=2
gcd(a,b)=greatest common divisor
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=xor(-1, ∑[-n])
∑(a)=partial sums of a
xor(a,b)=bitwise exclusive or
n≥2
6 operations
Bitwise

Sequence gzrrvqqvhxjtb

2, 1, -1, -4, -8, -13, -19, -26, -34, -43, -53, -64, -76, -89, -103, -118, -134, -151, -169, -188, -208, -229, -251, -274, -298, -323, -349, -376, -404, -433, -463, -494, -526, -559, -593, -628, -664, -701, -739, -778, -818, -859, -901, -944, -988, -1033, -1079, -1126, -1174, -1223, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=2
n≥0
3 operations
Recursive
a(n)=2-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=2-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=2-(n+n²)/2
n≥0
8 operations
Power

Sequence wx2vrj0qv4zui

2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, more...

integer, strictly-monotonic, +

a(n)=n+a(n-1)
a(0)=2
n≥0
3 operations
Recursive
a(n)=2+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[∑[μ(abs(a(n-1)))]]
a(0)=2
μ(n)=Möbius function
∑(a)=partial sums of a
n≥0
5 operations
Prime
a(n)=∑[∑[λ(abs(a(n-1)))]]
a(0)=2
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥0
5 operations
Prime
a(n)=∑[and(n, 1+a(n-1))]
a(0)=2
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence avekgus2dlv1m

3, 2, 0, -3, -7, -12, -18, -25, -33, -42, -52, -63, -75, -88, -102, -117, -133, -150, -168, -187, -207, -228, -250, -273, -297, -322, -348, -375, -403, -432, -462, -493, -525, -558, -592, -627, -663, -700, -738, -777, -817, -858, -900, -943, -987, -1032, -1078, -1125, -1173, -1222, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=3
n≥0
3 operations
Recursive
a(n)=3-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=3-∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence zoz40timqns5j

3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, more...

integer, strictly-monotonic, +, A152950

a(n)=n+a(n-1)
a(0)=3
n≥0
3 operations
Recursive
a(n)=3+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=3+C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=ceil(∑[n]+sqrt(5))
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=2-xor(-1, ∑[n])
∑(a)=partial sums of a
xor(a,b)=bitwise exclusive or
n≥0
7 operations
Bitwise

Sequence mfdcg1xeqfowo

4, 3, 1, -2, -6, -11, -17, -24, -32, -41, -51, -62, -74, -87, -101, -116, -132, -149, -167, -186, -206, -227, -249, -272, -296, -321, -347, -374, -402, -431, -461, -492, -524, -557, -591, -626, -662, -699, -737, -776, -816, -857, -899, -942, -986, -1031, -1077, -1124, -1172, -1221, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=4
n≥0
3 operations
Recursive
a(n)=4-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 4xhymono5rujl

4, 5, 7, 10, 14, 19, 25, 32, 40, 49, 59, 70, 82, 95, 109, 124, 140, 157, 175, 194, 214, 235, 257, 280, 304, 329, 355, 382, 410, 439, 469, 500, 532, 565, 599, 634, 670, 707, 745, 784, 824, 865, 907, 950, 994, 1039, 1085, 1132, 1180, 1229, more...

integer, strictly-monotonic, +, A145018

a(n)=n+a(n-1)
a(0)=4
n≥0
3 operations
Recursive
a(n)=4+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=4+C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=ceil(∑[n]+log2(9))
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=3-xor(-1, ∑[n])
∑(a)=partial sums of a
xor(a,b)=bitwise exclusive or
n≥0
7 operations
Bitwise

Sequence xkqqvucjkfsub

5, 4, 2, -1, -5, -10, -16, -23, -31, -40, -50, -61, -73, -86, -100, -115, -131, -148, -166, -185, -205, -226, -248, -271, -295, -320, -346, -373, -401, -430, -460, -491, -523, -556, -590, -625, -661, -698, -736, -775, -815, -856, -898, -941, -985, -1030, -1076, -1123, -1171, -1220, more...

integer, strictly-monotonic, +-

a(n)=a(n-1)-n
a(0)=5
n≥0
3 operations
Recursive
a(n)=5-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence ub205e2nmzfwi

5, 6, 8, 11, 15, 20, 26, 33, 41, 50, 60, 71, 83, 96, 110, 125, 141, 158, 176, 195, 215, 236, 258, 281, 305, 330, 356, 383, 411, 440, 470, 501, 533, 566, 600, 635, 671, 708, 746, 785, 825, 866, 908, 951, 995, 1040, 1086, 1133, 1181, 1230, more...

integer, strictly-monotonic, +

a(n)=n+a(n-1)
a(0)=5
n≥0
3 operations
Recursive
a(n)=5+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence kcd2noudlbnqi

-10, -19, -27, -34, -40, -45, -49, -52, -54, -55, -55, -54, -52, -49, -45, -40, -34, -27, -19, -10, 0, 11, 23, 36, 50, 65, 81, 98, 116, 135, 155, 176, 198, 221, 245, 270, 296, 323, 351, 380, 410, 441, 473, 506, 540, 575, 611, 648, 686, 725, more...

integer, non-monotonic, +-

a(n)=∑[n-10]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence sp3gsw55oa3tf

-10, -9, -7, -4, 0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-10
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 2rhicbhp1kq2e

-9, -17, -24, -30, -35, -39, -42, -44, -45, -45, -44, -42, -39, -35, -30, -24, -17, -9, 0, 10, 21, 33, 46, 60, 75, 91, 108, 126, 145, 165, 186, 208, 231, 255, 280, 306, 333, 361, 390, 420, 451, 483, 516, 550, 585, 621, 658, 696, 735, 775, more...

integer, non-monotonic, +-

a(n)=∑[n-9]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 0hz4ud5amrzme

-9, -8, -6, -3, 1, 6, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-9
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 5noj4tzoofbkc

-8, -15, -21, -26, -30, -33, -35, -36, -36, -35, -33, -30, -26, -21, -15, -8, 0, 9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, more...

integer, non-monotonic, +-

a(n)=∑[n-8]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 2q3pl2bsax34c

-8, -7, -5, -2, 2, 7, 13, 20, 28, 37, 47, 58, 70, 83, 97, 112, 128, 145, 163, 182, 202, 223, 245, 268, 292, 317, 343, 370, 398, 427, 457, 488, 520, 553, 587, 622, 658, 695, 733, 772, 812, 853, 895, 938, 982, 1027, 1073, 1120, 1168, 1217, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-8
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence l3mdbxbkeyi3d

-7, -13, -18, -22, -25, -27, -28, -28, -27, -25, -22, -18, -13, -7, 0, 8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, more...

integer, non-monotonic, +-

a(n)=∑[n-7]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence jekqjceak5cbn

-7, -6, -4, -1, 3, 8, 14, 21, 29, 38, 48, 59, 71, 84, 98, 113, 129, 146, 164, 183, 203, 224, 246, 269, 293, 318, 344, 371, 399, 428, 458, 489, 521, 554, 588, 623, 659, 696, 734, 773, 813, 854, 896, 939, 983, 1028, 1074, 1121, 1169, 1218, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-7
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence gljyfbqgkftz

-6, -11, -15, -18, -20, -21, -21, -20, -18, -15, -11, -6, 0, 7, 15, 24, 34, 45, 57, 70, 84, 99, 115, 132, 150, 169, 189, 210, 232, 255, 279, 304, 330, 357, 385, 414, 444, 475, 507, 540, 574, 609, 645, 682, 720, 759, 799, 840, 882, 925, more...

integer, non-monotonic, +-

a(n)=∑[n-6]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 3lnh0wqj0jpzb

-6, -5, -3, 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-6
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence xoeghxahivj4c

-5, -9, -12, -14, -15, -15, -14, -12, -9, -5, 0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, more...

integer, non-monotonic, +-

a(n)=∑[n-5]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=5
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence dqi4rxlaoiasm

-5, -4, -2, 1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-5
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence pxw3dsqtkf1al

-4, -7, -9, -10, -10, -9, -7, -4, 0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, more...

integer, non-monotonic, +-

a(n)=∑[n-4]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=4
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence mhz0wikmg1jp

-4, -3, -1, 2, 6, 11, 17, 24, 32, 41, 51, 62, 74, 87, 101, 116, 132, 149, 167, 186, 206, 227, 249, 272, 296, 321, 347, 374, 402, 431, 461, 492, 524, 557, 591, 626, 662, 699, 737, 776, 816, 857, 899, 942, 986, 1031, 1077, 1124, 1172, 1221, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-4
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence xxglm33o154kk

-3, -5, -6, -6, -5, -3, 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, more...

integer, non-monotonic, +-

a(n)=∑[n-3]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=3
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence epzredwtgfuno

-3, -2, 0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-3
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-3
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=∑[C(n, a(n-1))]-3
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence sc2rwu1ws2jhn

-2, -3, -3, -2, 0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, more...

integer, non-monotonic, +-, A167544

a(n)=∑[n-2]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=-∑[a(n-1)-1]
a(0)=2
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[n-root(3, 8)]
root(n,a)=the n-th root of a
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[floor(n-ζ(2))]
ζ(n)=Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime
a(n)=∑[xor(-1, 1-n)]
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥0
7 operations
Bitwise

Sequence bo3r5oam1hfpj

-2, -1, 1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-2
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-2
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(∑[n]-sqrt(2))
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[C(n, a(n-1))]-2
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence rlqbffn254dgc

-1, -1, 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, more...

integer, monotonic, +-

a(n)=∑[n-1]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=C(n, 2)-1
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=-∑[a(n-1)-1]
a(0)=1
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[floor(n-log(2))]
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[n-pt(∑[n])]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric

Sequence bq1aqsaxvaxx

-1, 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, more...

integer, strictly-monotonic, +-

a(n)=∑[n]-1
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-1
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(∑[n]-log(2))
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[n]-pt(∑[n])
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=∑[C(n, a(n-1))]-1
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence xnrv4swv5nbtl

-1, 2, 6, 11, 17, 24, 32, 41, 51, 62, 74, 87, 101, 116, 132, 149, 167, 186, 206, 227, 249, 272, 296, 321, 347, 374, 402, 431, 461, 492, 524, 557, 591, 626, 662, 699, 737, 776, 816, 857, 899, 942, 986, 1031, 1077, 1124, 1172, 1221, 1271, 1322, more...

integer, strictly-monotonic, +-, A046691

a(n)=∑[n]-3
∑(a)=partial sums of a
n≥2
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]-3
a(0)=2
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(∑[n]-sqrt(5))
∑(a)=partial sums of a
n≥2
6 operations
Power
a(n)=∑[C(n, a(n-1))]-2
a(0)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥2
6 operations
Combinatoric
a(n)=or(1, -3)+∑[n]
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥2
7 operations
Bitwise

Sequence 3wx34cmee1pn

0, 0.1, 0.3, 0.6, 1, 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.6, 7.8, 9.1, 10.5, 12, 13.6, 15.3, 17.1, 19, 21, 23.1, 25.3, 27.6, 30, more...

decimal, strictly-monotonic, +

a(n)=∑[n]/10
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence griipxddx1q0p

0, 0.1, 0.30000000000000004, 0.6000000000000001, 1, 1.5, 2.1, 2.8, 3.5999999999999996, 4.5, 5.5, 6.6, 7.8, 9.1, 10.5, 12, 13.6, 15.299999999999999, 17.099999999999998, 19, 21, 23.099999999999998, 25.299999999999997, 27.599999999999998, 30, more...

decimal, strictly-monotonic, +

a(n)=∑[n/10]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/10+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence xaavoqwmbswgk

0, 0.1111111111111111, 0.3333333333333333, 0.6666666666666666, 1.1111111111111112, 1.6666666666666667, 2.3333333333333335, 3.111111111111111, 4, 5, 6.111111111111111, 7.333333333333333, 8.666666666666666, 10.11111111111111, 11.666666666666666, 13.333333333333332, 15.11111111111111, 17, 19, 21.11111111111111, 23.333333333333332, 25.666666666666664, 28.111111111111107, 30.666666666666664, 33.33333333333333, more...

decimal, strictly-monotonic, +

a(n)=∑[n/9]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/9+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=∑[n*(1/3)²]
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence dvhq4sfq54glc

0, 0.125, 0.375, 0.75, 1.25, 1.875, 2.625, 3.5, 4.5, 5.625, 6.875, 8.25, 9.75, 11.375, 13.125, 15, 17, 19.125, 21.375, 23.75, 26.25, 28.875, 31.625, 34.5, 37.5, more...

decimal, strictly-monotonic, +

a(n)=∑[n/8]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/8+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence w1bit44wcmmfd

0, 0.14285714285714285, 0.42857142857142855, 0.8571428571428571, 1.4285714285714284, 2.142857142857143, 3, 4, 5.142857142857142, 6.428571428571428, 7.857142857142857, 9.428571428571429, 11.142857142857142, 13, 15, 17.142857142857142, 19.428571428571427, 21.857142857142854, 24.428571428571427, 27.142857142857142, 30, 33, 36.142857142857146, 39.42857142857143, 42.85714285714286, more...

decimal, strictly-monotonic, +

a(n)=∑[n/7]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/7+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence bpxdbtn3b3e5b

0, 0.16666666666666666, 0.5, 1, 1.6666666666666665, 2.5, 3.5, 4.666666666666667, 6, 7.5, 9.166666666666666, 11, 13, 15.166666666666666, 17.5, 20, 22.666666666666668, 25.5, 28.5, 31.666666666666668, 35, 38.5, 42.166666666666664, 46, 50, more...

decimal, strictly-monotonic, +

a(n)=∑[n/6]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/6+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence 3gakfsivsjhci

0, 0.2, 0.6, 1.2, 2, 3, 4.2, 5.6, 7.2, 9, 11, 13.2, 15.6, 18.2, 21, 24, 27.2, 30.6, 34.2, 38, 42, 46.2, 50.6, 55.2, 60, more...

decimal, strictly-monotonic, +

a(n)=∑[n]/5
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence 5ea502f3o3i1h

0, 0.2, 0.6000000000000001, 1.2000000000000002, 2, 3, 4.2, 5.6, 7.199999999999999, 9, 11, 13.2, 15.6, 18.2, 21, 24, 27.2, 30.599999999999998, 34.199999999999996, 38, 42, 46.199999999999996, 50.599999999999994, 55.199999999999996, 60, more...

decimal, strictly-monotonic, +

a(n)=∑[n/5]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/5+a(n-1)
a(0)=0
n≥0
5 operations
Recursive

Sequence nrvkhyzt1vdjg

0, 0.25, 0.75, 1.5, 2.5, 3.75, 5.25, 7, 9, 11.25, 13.75, 16.5, 19.5, 22.75, 26.25, 30, 34, 38.25, 42.75, 47.5, 52.5, 57.75, 63.25, 69, 75, more...

decimal, strictly-monotonic, +

a(n)=∑[n/4]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/4+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=∑[n*(1/2)²]
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence ax0nbg44smlfg

0, 0.3333333333333333, 1, 2, 3.3333333333333335, 5, 7, 9.333333333333334, 12, 15, 18.333333333333332, 22, 26, 30.333333333333332, 35, 40, 45.333333333333336, 51, 57, 63.333333333333336, 70, 77, 84.33333333333333, 92, 100, more...

decimal, strictly-monotonic, +

a(n)=∑[n]/3
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]/3
a(0)=0
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=C(1+n, 2)/3
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric

Sequence dz2ls2rdl00um

0, 0.5, 1.5, 3, 5, 7.5, 10.5, 14, 18, 22.5, 27.5, 33, 39, 45.5, 52.5, 60, 68, 76.5, 85.5, 95, 105, 115.5, 126.5, 138, 150, more...

decimal, strictly-monotonic, +

a(n)=∑[n/2]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n/2+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=∑[C(n, 2)/n]
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥1
6 operations
Combinatoric
a(n)=(n+n²)/2/2
n≥0
8 operations
Power

Sequence tnmdchnj445v

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, more...

integer, strictly-monotonic, +, A002378

a(n)=∑[2*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=n+n²
n≥0
4 operations
Power
a(n)=∑[2+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=2*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric

Sequence kbuplydzw1ygc

0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528, 3675, more...

integer, strictly-monotonic, +, A045943

a(n)=∑[3*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[3+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=3*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(3*n, 3)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=sqrt(9*∑[n]²)
∑(a)=partial sums of a
n≥0
6 operations
Power

Sequence ujpnqvrt4jmuo

0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324, 4512, 4704, 4900, more...

integer, strictly-monotonic, +, A046092

a(n)=∑[4*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[4+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=4*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=2*(n+n²)
n≥0
6 operations
Power
a(n)=∑[lcm(4*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility

Sequence tfwxomd1e1ppj

0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640, 5880, 6125, more...

integer, strictly-monotonic, +, A028895 (multiple)

a(n)=∑[5*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[5+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=5*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(5*n, 5)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=and(5, -3)*∑[n]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
7 operations
Bitwise

Sequence twfratlz4k3ck

0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676, 5940, 6210, 6486, 6768, 7056, 7350, more...

integer, strictly-monotonic, +, A028896 (multiple)

a(n)=∑[6*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[6+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=6*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=3*(n+n²)
n≥0
6 operations
Power
a(n)=∑[lcm(6*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility

Sequence cbdmfhabpwhkd

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622, 6930, 7245, 7567, 7896, 8232, 8575, more...

integer, strictly-monotonic, +, A024966 (multiple)

a(n)=∑[7*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[7+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=7*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(7*n, 7)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=and(7, -9)*∑[n]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
7 operations
Bitwise

Sequence xfgfaefxe20wl

0, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280, 8648, 9024, 9408, 9800, more...

integer, strictly-monotonic, +, A033996

a(n)=∑[8*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[8+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=8*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=4*(n+n²)
n≥0
6 operations
Power
a(n)=∑[lcm(8*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility

Sequence pfanepgwgyhlj

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315, 9729, 10152, 10584, 11025, more...

integer, strictly-monotonic, +, A027468

a(n)=∑[9*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[9+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=9*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(9*n, 3)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=(3*sqrt(∑[n]))²
∑(a)=partial sums of a
n≥0
6 operations
Power

Sequence lv2ju4b41e0rg

0, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550, 660, 780, 910, 1050, 1200, 1360, 1530, 1710, 1900, 2100, 2310, 2530, 2760, 3000, 3250, 3510, 3780, 4060, 4350, 4650, 4960, 5280, 5610, 5950, 6300, 6660, 7030, 7410, 7800, 8200, 8610, 9030, 9460, 9900, 10350, 10810, 11280, 11760, 12250, more...

integer, strictly-monotonic, +, A124080

a(n)=∑[10*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[10+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=10*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=5*(n+n²)
n≥0
6 operations
Power
a(n)=∑[lcm(10*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility

Sequence 0n4kdkqb5qjrn

0, 11, 33, 66, 110, 165, 231, 308, 396, 495, 605, 726, 858, 1001, 1155, 1320, 1496, 1683, 1881, 2090, 2310, 2541, 2783, 3036, 3300, 3575, 3861, 4158, 4466, 4785, 5115, 5456, 5808, 6171, 6545, 6930, 7326, 7733, 8151, 8580, 9020, 9471, 9933, 10406, 10890, 11385, 11891, 12408, 12936, 13475, more...

integer, strictly-monotonic, +, A152740 (multiple)

a(n)=11*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[11+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=11*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(11*n, 11)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=∑[n/11^-1]
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence rfjfuxgvjgsam

0, 12, 36, 72, 120, 180, 252, 336, 432, 540, 660, 792, 936, 1092, 1260, 1440, 1632, 1836, 2052, 2280, 2520, 2772, 3036, 3312, 3600, 3900, 4212, 4536, 4872, 5220, 5580, 5952, 6336, 6732, 7140, 7560, 7992, 8436, 8892, 9360, 9840, 10332, 10836, 11352, 11880, 12420, 12972, 13536, 14112, 14700, more...

integer, strictly-monotonic, +, A049598 (multiple)

a(n)=12*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[12+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=12*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(12*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=6*(n+n²)
n≥0
6 operations
Power

Sequence wsuyvij1ltq5l

0, 13, 39, 78, 130, 195, 273, 364, 468, 585, 715, 858, 1014, 1183, 1365, 1560, 1768, 1989, 2223, 2470, 2730, 3003, 3289, 3588, 3900, 4225, 4563, 4914, 5278, 5655, 6045, 6448, 6864, 7293, 7735, 8190, 8658, 9139, 9633, 10140, 10660, 11193, 11739, 12298, 12870, 13455, 14053, 14664, 15288, 15925, more...

integer, strictly-monotonic, +, A152741 (multiple)

a(n)=∑[13*n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[13+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=13*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(13*n, 13)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=∑[n/13^-1]
∑(a)=partial sums of a
n≥0
7 operations
Power

Sequence agfbic3dhd0ze

0, 14, 42, 84, 140, 210, 294, 392, 504, 630, 770, 924, 1092, 1274, 1470, 1680, 1904, 2142, 2394, 2660, 2940, 3234, 3542, 3864, 4200, 4550, 4914, 5292, 5684, 6090, 6510, 6944, 7392, 7854, 8330, 8820, 9324, 9842, 10374, 10920, 11480, 12054, 12642, 13244, 13860, 14490, 15134, 15792, 16464, 17150, more...

integer, strictly-monotonic, +, A163756 (multiple)

a(n)=14*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[14+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=14*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=7*(n+n²)
n≥0
6 operations
Power
a(n)=∑[lcm(14*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility

Sequence g0ghsryefbteg

0, 15, 45, 90, 150, 225, 315, 420, 540, 675, 825, 990, 1170, 1365, 1575, 1800, 2040, 2295, 2565, 2850, 3150, 3465, 3795, 4140, 4500, 4875, 5265, 5670, 6090, 6525, 6975, 7440, 7920, 8415, 8925, 9450, 9990, 10545, 11115, 11700, 12300, 12915, 13545, 14190, 14850, 15525, 16215, 16920, 17640, 18375, more...

integer, strictly-monotonic, +, A194715

a(n)=15*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[15+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=15*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[lcm(15*n, 3)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
6 operations
Divisibility
a(n)=∑[ceil(a(n-1)+zetazero(0))]
a(0)=0
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence dfo0kqmvayatg

0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776, 14448, 15136, 15840, 16560, 17296, 18048, 18816, 19600, more...

integer, strictly-monotonic, +, A035008 (multiple)

a(n)=16*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[16+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=16*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=8*(n+n²)
n≥0
6 operations
Power
a(n)=8*lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence ektxqvzocwrnb

0, 17, 51, 102, 170, 255, 357, 476, 612, 765, 935, 1122, 1326, 1547, 1785, 2040, 2312, 2601, 2907, 3230, 3570, 3927, 4301, 4692, 5100, 5525, 5967, 6426, 6902, 7395, 7905, 8432, 8976, 9537, 10115, 10710, 11322, 11951, 12597, 13260, 13940, 14637, 15351, 16082, 16830, 17595, 18377, 19176, 19992, 20825, more...

integer, strictly-monotonic, +, A195037 (multiple)

a(n)=17*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[17+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=17*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=17*(n²-∑[n])
∑(a)=partial sums of a
n≥1
7 operations
Power
a(n)=∑[n*p(Δ[7*n])]
Δ(a)=differences of a
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime

Sequence g1nccb311f1rm

0, 18, 54, 108, 180, 270, 378, 504, 648, 810, 990, 1188, 1404, 1638, 1890, 2160, 2448, 2754, 3078, 3420, 3780, 4158, 4554, 4968, 5400, 5850, 6318, 6804, 7308, 7830, 8370, 8928, 9504, 10098, 10710, 11340, 11988, 12654, 13338, 14040, 14760, 15498, 16254, 17028, 17820, 18630, 19458, 20304, 21168, 22050, more...

integer, strictly-monotonic, +, A163758 (multiple)

a(n)=18*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[18+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=18*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=9*(n+n²)
n≥0
6 operations
Power
a(n)=9*lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence dn43kslpgnktj

0, 20, 60, 120, 200, 300, 420, 560, 720, 900, 1100, 1320, 1560, 1820, 2100, 2400, 2720, 3060, 3420, 3800, 4200, 4620, 5060, 5520, 6000, 6500, 7020, 7560, 8120, 8700, 9300, 9920, 10560, 11220, 11900, 12600, 13320, 14060, 14820, 15600, 16400, 17220, 18060, 18920, 19800, 20700, 21620, 22560, 23520, 24500, more...

integer, strictly-monotonic, +, A163761 (multiple)

a(n)=20*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[20+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=20*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=10*(n+n²)
n≥0
6 operations
Power
a(n)=10*lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence i3puhr55sjpkf

0, 22, 66, 132, 220, 330, 462, 616, 792, 990, 1210, 1452, 1716, 2002, 2310, 2640, 2992, 3366, 3762, 4180, 4620, 5082, 5566, 6072, 6600, 7150, 7722, 8316, 8932, 9570, 10230, 10912, 11616, 12342, 13090, 13860, 14652, 15466, 16302, 17160, 18040, 18942, 19866, 20812, 21780, 22770, 23782, 24816, 25872, 26950, more...

integer, strictly-monotonic, +, A164136 (multiple)

a(n)=22*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[22+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=22*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=11*(n+n²)
n≥0
6 operations
Power
a(n)=∑[ceil(a(n-1)+zetazero(1))]
a(0)=0
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence weaso4lw2kshp

0, 23, 69, 138, 230, 345, 483, 644, 828, 1035, 1265, 1518, 1794, 2093, 2415, 2760, 3128, 3519, 3933, 4370, 4830, 5313, 5819, 6348, 6900, 7475, 8073, 8694, 9338, 10005, 10695, 11408, 12144, 12903, 13685, 14490, 15318, 16169, 17043, 17940, 18860, 19803, 20769, 21758, 22770, 23805, 24863, 25944, 27048, 28175, more...

integer, strictly-monotonic, +, A195039 (multiple)

a(n)=23*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[23+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=23*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=23*(n²-∑[n])
∑(a)=partial sums of a
n≥1
7 operations
Power
a(n)=23*∑[2*a(n-1)-a(n-2)]
a(0)=0
a(1)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence 2pfpzq3ncgsmg

0, 25, 75, 150, 250, 375, 525, 700, 900, 1125, 1375, 1650, 1950, 2275, 2625, 3000, 3400, 3825, 4275, 4750, 5250, 5775, 6325, 6900, 7500, 8125, 8775, 9450, 10150, 10875, 11625, 12400, 13200, 14025, 14875, 15750, 16650, 17575, 18525, 19500, 20500, 21525, 22575, 23650, 24750, 25875, 27025, 28200, 29400, 30625, more...

integer, strictly-monotonic, +, A123296 (multiple)

a(n)=25*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[25+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=25*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=(5*sqrt(∑[n]))²
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[floor(n*zetazero(2))]
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence 5qi3lxfgylkmi

0, 26, 78, 156, 260, 390, 546, 728, 936, 1170, 1430, 1716, 2028, 2366, 2730, 3120, 3536, 3978, 4446, 4940, 5460, 6006, 6578, 7176, 7800, 8450, 9126, 9828, 10556, 11310, 12090, 12896, 13728, 14586, 15470, 16380, 17316, 18278, 19266, 20280, 21320, 22386, 23478, 24596, 25740, 26910, 28106, 29328, 30576, 31850, more...

integer, strictly-monotonic, +, A173307 (multiple)

a(n)=26*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[26+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=26*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=13*(n+n²)
n≥0
6 operations
Power
a(n)=∑[ceil(a(n-1)+zetazero(2))]
a(0)=0
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence gwvcrtunmfvbg

0, 34, 102, 204, 340, 510, 714, 952, 1224, 1530, 1870, 2244, 2652, 3094, 3570, 4080, 4624, 5202, 5814, 6460, 7140, 7854, 8602, 9384, 10200, 11050, 11934, 12852, 13804, 14790, 15810, 16864, 17952, 19074, 20230, 21420, 22644, 23902, 25194, 26520, 27880, 29274, 30702, 32164, 33660, 35190, 36754, 38352, 39984, 41650, more...

integer, strictly-monotonic, +, A173308 (multiple)

a(n)=34*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[34+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=34*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=17*(n+n²)
n≥0
6 operations
Power
a(n)=34*∑[2*a(n-1)-a(n-2)]
a(0)=0
a(1)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence dsznnbdnss1yi

0, 36, 108, 216, 360, 540, 756, 1008, 1296, 1620, 1980, 2376, 2808, 3276, 3780, 4320, 4896, 5508, 6156, 6840, 7560, 8316, 9108, 9936, 10800, 11700, 12636, 13608, 14616, 15660, 16740, 17856, 19008, 20196, 21420, 22680, 23976, 25308, 26676, 28080, 29520, 30996, 32508, 34056, 35640, 37260, 38916, 40608, 42336, 44100, more...

integer, strictly-monotonic, +, A162940 (multiple)

a(n)=36*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[36+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=36*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=18*(n+n²)
n≥0
6 operations
Power
a(n)=∑[6*lcm(6*n, 2)]
lcm(a,b)=least common multiple
∑(a)=partial sums of a
n≥0
8 operations
Divisibility

Sequence paufljvl3qtln

0, 38, 114, 228, 380, 570, 798, 1064, 1368, 1710, 2090, 2508, 2964, 3458, 3990, 4560, 5168, 5814, 6498, 7220, 7980, 8778, 9614, 10488, 11400, 12350, 13338, 14364, 15428, 16530, 17670, 18848, 20064, 21318, 22610, 23940, 25308, 26714, 28158, 29640, 31160, 32718, 34314, 35948, 37620, 39330, 41078, 42864, 44688, 46550, more...

integer, strictly-monotonic, +, A173309 (multiple)

a(n)=38*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[38+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=38*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=19*(n+n²)
n≥0
6 operations
Power
a(n)=∑[ceil(a(n-1)+zetazero(5))]
a(0)=0
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence 5gnfcmq532m2g

0, 41, 123, 246, 410, 615, 861, 1148, 1476, 1845, 2255, 2706, 3198, 3731, 4305, 4920, 5576, 6273, 7011, 7790, 8610, 9471, 10373, 11316, 12300, 13325, 14391, 15498, 16646, 17835, 19065, 20336, 21648, 23001, 24395, 25830, 27306, 28823, 30381, 31980, 33620, 35301, 37023, 38786, 40590, 42435, 44321, 46248, 48216, 50225, more...

integer, strictly-monotonic, +, A195038 (multiple)

a(n)=41*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[41+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=41*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=∑[ceil(a(n-1)+zetazero(6))]
a(0)=0
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime
a(n)=41*(n²-∑[n])
∑(a)=partial sums of a
n≥1
7 operations
Power

Sequence zyyf2yb3ytfno

0, 49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309, 38220, 40180, 42189, 44247, 46354, 48510, 50715, 52969, 55272, 57624, 60025, more...

integer, strictly-monotonic, +, A162942 (multiple)

a(n)=49*∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[49+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=49*C(n, 2)
C(n,k)=binomial coefficient
n≥1
5 operations
Combinatoric
a(n)=(7*sqrt(∑[n]))²
∑(a)=partial sums of a
n≥0
6 operations
Power
a(n)=∑[ceil(a(n-1)+zetazero(8))]
a(0)=0
zetazero(n)=non trivial zeros of Riemann zeta
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence lv3ul4jqprfbf

1, 0.3333333333333333, 0.16666666666666666, 0.1, 0.06666666666666667, 0.047619047619047616, 0.03571428571428571, 0.027777777777777776, 0.022222222222222223, 0.01818181818181818, 0.015151515151515152, 0.01282051282051282, 0.01098901098901099, 0.009523809523809525, 0.008333333333333333, 0.007352941176470588, 0.006535947712418301, 0.005847953216374269, 0.005263157894736842, 0.004761904761904762, 0.004329004329004329, 0.003952569169960474, 0.003623188405797101, 0.003333333333333334, 0.003076923076923077, more...

decimal, strictly-monotonic, convergent, +

a(n)=1/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=1/C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric
a(n)=2/(n+n²)
n≥1
6 operations
Power
a(n)=1/∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=2/lcm(1+n, n)
lcm(a,b)=least common multiple
n≥1
7 operations
Divisibility

Sequence bsejzaswlxeib

1, 1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, more...

integer, monotonic, +-, A080956

a(n)=∑[1-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=1
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=1-C(n, 2)
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=∑[root(3, 8)-n]
root(n,a)=the n-th root of a
∑(a)=partial sums of a
n≥1
6 operations
Power
a(n)=∑[(3-n)%n]
∑(a)=partial sums of a
n≥2
6 operations
Divisibility

Sequence xfwx5ruzsboej

1, 1.5, 1.8333333333333333, 2.083333333333333, 2.283333333333333, 2.4499999999999997, 2.5928571428571425, 2.7178571428571425, 2.8289682539682537, 2.9289682539682538, 3.0198773448773446, 3.103210678210678, 3.180133755133755, 3.251562326562327, 3.3182289932289937, 3.3807289932289937, 3.439552522640758, 3.4951080781963135, 3.547739657143682, 3.597739657143682, 3.6453587047627294, 3.690813250217275, 3.73429151108684, 3.7759581777535067, 3.8159581777535068, more...

decimal, strictly-monotonic, +

a(n)=∑[1/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[n^-1]
∑(a)=partial sums of a
n≥1
5 operations
Power
a(n)=1/(1+n)+a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence laxxma1zfxnm

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, more...

integer, strictly-monotonic, +

a(n)=∑[1+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=C(2+n, 2)
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=pt(∑[3+n])
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Combinatoric
a(n)=Δ[abs(∑[∑[n]])]
∑(a)=partial sums of a
Δ(a)=differences of a
n≥0
5 operations
Variable

Sequence mpjxk1wcwf3kd

2, 0.6666666666666666, 0.3333333333333333, 0.2, 0.13333333333333333, 0.09523809523809523, 0.07142857142857142, 0.05555555555555555, 0.044444444444444446, 0.03636363636363636, 0.030303030303030304, 0.02564102564102564, 0.02197802197802198, 0.01904761904761905, 0.016666666666666666, 0.014705882352941176, 0.013071895424836602, 0.011695906432748537, 0.010526315789473684, 0.009523809523809525, 0.008658008658008658, 0.007905138339920948, 0.007246376811594203, 0.006666666666666667, 0.006153846153846154, more...

decimal, strictly-monotonic, convergent, +

a(n)=2/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=2/C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric
a(n)=2/∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=2*2/(n+n²)
n≥1
8 operations
Power

Sequence 1xysq5qklq5go

2, 3, 3, 2, 0, -3, -7, -12, -18, -25, -33, -42, -52, -63, -75, -88, -102, -117, -133, -150, -168, -187, -207, -228, -250, -273, -297, -322, -348, -375, -403, -432, -462, -493, -525, -558, -592, -627, -663, -700, -738, -777, -817, -858, -900, -943, -987, -1032, -1078, -1125, more...

integer, non-monotonic, +-

a(n)=∑[2-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=2
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[a(n-1)-pt(∑[n])]
a(0)=2
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=2-(C(n, 2)-n)
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric

Sequence k5vohmvlfbdcl

2, 3, 3.6666666666666665, 4.166666666666666, 4.566666666666666, 4.8999999999999995, 5.185714285714285, 5.435714285714285, 5.657936507936507, 5.8579365079365076, 6.039754689754689, 6.206421356421356, 6.36026751026751, 6.503124653124654, 6.636457986457987, 6.761457986457987, 6.879105045281516, 6.990216156392627, 7.095479314287364, 7.195479314287364, 7.290717409525459, 7.38162650043455, 7.46858302217368, 7.5519163555070135, 7.6319163555070135, more...

decimal, strictly-monotonic, +

a(n)=∑[2/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[n/C(n, 2)]
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥2
6 operations
Combinatoric

Sequence qc0c3dkrmml2b

2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, more...

integer, strictly-monotonic, +

a(n)=∑[2+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=2
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[floor(∑[sqrt(a(n-1))])]
a(0)=2
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[pt(n+∑[n])]
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥2
6 operations
Combinatoric
a(n)=∑[1+C(a(n-1), n)]
a(0)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence 0cornlih3qr2i

3, 1, 0.5, 0.3, 0.2, 0.14285714285714285, 0.10714285714285714, 0.08333333333333333, 0.06666666666666667, 0.05454545454545454, 0.045454545454545456, 0.038461538461538464, 0.03296703296703297, 0.02857142857142857, 0.025, 0.022058823529411766, 0.0196078431372549, 0.017543859649122806, 0.015789473684210527, 0.014285714285714285, 0.012987012987012988, 0.011857707509881422, 0.010869565217391304, 0.01, 0.009230769230769232, more...

decimal, strictly-monotonic, convergent, +

a(n)=3/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=3/C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric
a(n)=3/∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence anwjo01divzud

3, 4.5, 5.5, 6.25, 6.85, 7.35, 7.7785714285714285, 8.153571428571428, 8.486904761904762, 8.786904761904763, 9.059632034632036, 9.309632034632036, 9.540401265401266, 9.75468697968698, 9.95468697968698, 10.14218697968698, 10.318657567922273, 10.485324234588939, 10.643218971431043, 10.793218971431044, 10.936076114288186, 11.072439750651823, 11.202874533260518, 11.327874533260518, 11.447874533260517, more...

decimal, strictly-monotonic, +

a(n)=∑[3/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence t2skcdgilkyhm

3, 5, 6, 6, 5, 3, 0, -4, -9, -15, -22, -30, -39, -49, -60, -72, -85, -99, -114, -130, -147, -165, -184, -204, -225, -247, -270, -294, -319, -345, -372, -400, -429, -459, -490, -522, -555, -589, -624, -660, -697, -735, -774, -814, -855, -897, -940, -984, -1029, -1075, more...

integer, non-monotonic, +-

a(n)=∑[3-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=3
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence 1cmp2ug11qh3p

3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272, 1323, 1375, more...

integer, strictly-monotonic, +

a(n)=∑[3+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=3
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=n+C(3+n, 2)
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric

Sequence 3m3qte25un4wn

4, 1.3333333333333333, 0.6666666666666666, 0.4, 0.26666666666666666, 0.19047619047619047, 0.14285714285714285, 0.1111111111111111, 0.08888888888888889, 0.07272727272727272, 0.06060606060606061, 0.05128205128205128, 0.04395604395604396, 0.0380952380952381, 0.03333333333333333, 0.029411764705882353, 0.026143790849673203, 0.023391812865497075, 0.021052631578947368, 0.01904761904761905, 0.017316017316017316, 0.015810276679841896, 0.014492753623188406, 0.013333333333333334, 0.012307692307692308, more...

decimal, strictly-monotonic, convergent, +

a(n)=4/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=4/C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric

Sequence yzeqfmydfslwp

4, 6, 7.333333333333333, 8.333333333333332, 9.133333333333333, 9.799999999999999, 10.37142857142857, 10.87142857142857, 11.315873015873015, 11.715873015873015, 12.079509379509378, 12.412842712842712, 12.72053502053502, 13.006249306249307, 13.272915972915975, 13.522915972915975, 13.758210090563033, 13.980432312785254, 14.190958628574728, 14.390958628574728, 14.581434819050918, 14.7632530008691, 14.93716604434736, 15.103832711014027, 15.263832711014027, more...

decimal, strictly-monotonic, +

a(n)=∑[4/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[n*(2/n)²]
∑(a)=partial sums of a
n≥1
7 operations
Power

Sequence nabzc1xvwq1bj

4, 7, 9, 10, 10, 9, 7, 4, 0, -5, -11, -18, -26, -35, -45, -56, -68, -81, -95, -110, -126, -143, -161, -180, -200, -221, -243, -266, -290, -315, -341, -368, -396, -425, -455, -486, -518, -551, -585, -620, -656, -693, -731, -770, -810, -851, -893, -936, -980, -1025, more...

integer, non-monotonic, +-

a(n)=∑[4-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=4
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence eag32pbdllobp

4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, more...

integer, strictly-monotonic, +

a(n)=∑[4+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=4
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence obck5mv53knbg

5, 1.6666666666666667, 0.8333333333333334, 0.5, 0.3333333333333333, 0.23809523809523808, 0.17857142857142858, 0.1388888888888889, 0.1111111111111111, 0.09090909090909091, 0.07575757575757576, 0.0641025641025641, 0.054945054945054944, 0.047619047619047616, 0.041666666666666664, 0.03676470588235294, 0.032679738562091505, 0.029239766081871343, 0.02631578947368421, 0.023809523809523808, 0.021645021645021644, 0.019762845849802372, 0.018115942028985508, 0.016666666666666666, 0.015384615384615385, more...

decimal, strictly-monotonic, convergent, +

a(n)=5/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=5/C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric

Sequence ellnelqf1bwgg

5, 7.5, 9.166666666666666, 10.416666666666666, 11.416666666666666, 12.25, 12.964285714285714, 13.589285714285714, 14.144841269841269, 14.644841269841269, 15.099386724386724, 15.51605339105339, 15.900668775668775, 16.25781163281163, 16.591144966144963, 16.903644966144963, 17.197762613203786, 17.475540390981564, 17.738698285718407, 17.988698285718407, 18.226793523813644, 18.45406625108637, 18.671457555434195, 18.879790888767527, 19.079790888767526, more...

decimal, strictly-monotonic, +

a(n)=∑[5/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence sykhv4dkoxoge

5, 9, 12, 14, 15, 15, 14, 12, 9, 5, 0, -6, -13, -21, -30, -40, -51, -63, -76, -90, -105, -121, -138, -156, -175, -195, -216, -238, -261, -285, -310, -336, -363, -391, -420, -450, -481, -513, -546, -580, -615, -651, -688, -726, -765, -805, -846, -888, -931, -975, more...

integer, non-monotonic, +-

a(n)=∑[5-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[a(n-1)-1]
a(0)=5
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence is2cvx3cb0h5i

5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475, more...

integer, strictly-monotonic, +

a(n)=∑[5+n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[1+a(n-1)]
a(0)=5
∑(a)=partial sums of a
n≥0
4 operations
Recursive

Sequence oy4evzoxtlivf

6, 2, 1, 0.6, 0.4, 0.2857142857142857, 0.21428571428571427, 0.16666666666666666, 0.13333333333333333, 0.10909090909090909, 0.09090909090909091, 0.07692307692307693, 0.06593406593406594, 0.05714285714285714, 0.05, 0.04411764705882353, 0.0392156862745098, 0.03508771929824561, 0.031578947368421054, 0.02857142857142857, 0.025974025974025976, 0.023715415019762844, 0.021739130434782608, 0.02, 0.018461538461538463, more...

decimal, strictly-monotonic, convergent, +

a(n)=6/∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=6/C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric

Sequence mbxyx2tcvi1tl

6, 5, 3, 0, -4, -9, -15, -22, -30, -39, -49, -60, -72, -85, -99, -114, -130, -147, -165, -184, -204, -225, -247, -270, -294, -319, -345, -372, -400, -429, -459, -490, -522, -555, -589, -624, -660, -697, -735, -774, -814, -855, -897, -940, -984, -1029, -1075, -1122, -1170, -1219, more...

integer, strictly-monotonic, +-

a(n)=6-∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence psjvfior2zfeo

6, 7, 9, 12, 16, 21, 27, 34, 42, 51, 61, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 331, 357, 384, 412, 441, 471, 502, 534, 567, 601, 636, 672, 709, 747, 786, 826, 867, 909, 952, 996, 1041, 1087, 1134, 1182, 1231, more...

integer, strictly-monotonic, +

a(n)=6+∑[n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic

Sequence udol2m15aueii

6, 8, 11, 15, 20, 26, 33, 41, 50, 60, 71, 83, 96, 110, 125, 141, 158, 176, 195, 215, 236, 258, 281, 305, 330, 356, 383, 411, 440, 470, 501, 533, 566, 600, 635, 671, 708, 746, 785, 825, 866, 908, 951, 995, 1040, 1086, 1133, 1181, 1230, 1280, more...

integer, strictly-monotonic, +, A167499

a(n)=5+∑[n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=5+C(n, 2)
C(n,k)=binomial coefficient
n≥2
5 operations
Combinatoric
a(n)=5+∑[1+a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(∑[n]+exp(ϕ))
∑(a)=partial sums of a
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power
a(n)=4-xor(-1, ∑[n])
∑(a)=partial sums of a
xor(a,b)=bitwise exclusive or
n≥1
7 operations
Bitwise

Sequence uoipfcbirtiyg

6, 9, 11, 12.5, 13.7, 14.7, 15.557142857142857, 16.307142857142857, 16.973809523809525, 17.573809523809526, 18.119264069264073, 18.619264069264073, 19.080802530802533, 19.50937395937396, 19.90937395937396, 20.28437395937396, 20.637315135844545, 20.970648469177878, 21.286437942862086, 21.586437942862087, 21.872152228576372, 22.144879501303645, 22.405749066521036, 22.655749066521036, 22.895749066521034, more...

decimal, strictly-monotonic, +

a(n)=∑[6/n]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic

Sequence imjkm20iwjfhg

6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, more...

integer, strictly-monotonic, +, A167614

a(n)=4+∑[n]
∑(a)=partial sums of a
n≥2
4 operations
Arithmetic
a(n)=4+∑[1+a(n-1)]
a(0)=2
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=ceil(∑[n]+log2(9))
∑(a)=partial sums of a
n≥2
6 operations
Power
a(n)=4+∑[C(n, a(n-1))]
a(0)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥2
6 operations
Combinatoric
a(n)=3-xor(-1, ∑[n])
∑(a)=partial sums of a
xor(a,b)=bitwise exclusive or
n≥2
7 operations
Bitwise

[0] [1] [2] [3] [4] ... [2232]