Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 423641. [0] [1] [2] [3] [4] ... [4236]

Sequence hr1xwu5kzwtrb

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, more...

integer, strictly-monotonic, +, A000290

a(n)=n²
n≥0
2 operations
Power
a(n)=n*and(63, n)
and(a,b)=bitwise and
n≥0
5 operations
Bitwise
a(n)=n*n%50
n≥0
5 operations
Divisibility
a(n)=Δ[C(n, 2)]²
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
5 operations
Combinatoric
a(n)=Δ[n²]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive

Sequence z3estk1pvl5oj

0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, 0.005302147353502685, more...

decimal, constant, monotonic, +

a(n)=Stieltjes²
Stieltjes=0.0728... (Stieltjes gamma(1))
n≥0
2 operations
Power

Sequence ytsrrubxukk1

0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, 0.055559737616361585, more...

decimal, constant, monotonic, +

a(n)=CopelandErdős²
CopelandErdős=0.2357... (Copeland-Erdős)
n≥0
2 operations
Power

Sequence ftiy4wjzca3fo

0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, 0.06838079232708538, more...

decimal, constant, monotonic, +

a(n)=Mertens²
Mertens=0.2614... (Mertens)
n≥0
2 operations
Power

Sequence k0vg2yaggkv1h

0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, 0.1159656728177258, more...

decimal, constant, monotonic, +

a(n)=Pólya_D3²
Pólya_D3=0.3405... (Pólya random walk 3D)
n≥0
2 operations
Power

Sequence gdknopf3dwdfm

0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, 0.13984295053959955, more...

decimal, constant, monotonic, +

a(n)=Artins²
Artins=0.3739... (Artins)
n≥0
2 operations
Power

Sequence cvzukdelh2uml

0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, 0.32165151185683644, more...

decimal, constant, monotonic, +

a(n)=W1²
W1=0.5671... (Lambert W)
n≥0
2 operations
Power

Sequence fy4qkt2xudykp

0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, 0.33317792380771866, more...

decimal, constant, monotonic, +

a(n)=γ²
γ EulerGamma=0.5772... (Euler Gamma)
n≥0
2 operations
Power

Sequence gt5znmyhl1itl

0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, 0.4358136231022362, more...

decimal, constant, monotonic, +

a(n)=TwinPrime²
TwinPrime=0.6601... (Twin Prime)
n≥0
2 operations
Power

Sequence 33rpgcbm24vyb

0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, 0.8389929697164259, more...

decimal, constant, monotonic, +

a(n)=G²
G CatalansConstant=0.9159... (Catalans)
n≥0
2 operations
Power

Sequence dtkvojyz5vkjg

1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, 1.644619341453265, more...

decimal, constant, monotonic, +

a(n)=GlaisherKinkelin²
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
n≥0
2 operations
Power

Sequence c5u2xrg2xenof

1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, 1.77577552159833, more...

decimal, constant, monotonic, +

a(n)=B3²
B3=1.3325... (Mertens B3)
n≥0
2 operations
Power

Sequence z1qmfjwijp0ih

2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, 2.1201542558900823, more...

decimal, constant, monotonic, +

a(n)=Backhouse²
Backhouse=1.456... (Backhouse)
n≥0
2 operations
Power

Sequence ahmjwhffsqldi

2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, 2.618033988749895, more...

decimal, constant, monotonic, +

a(n)=ϕ²
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥0
2 operations
Power

Sequence jjtz4dojfl1fb

2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, 2.761206841957498, more...

decimal, constant, monotonic, +

a(n)=QR²
QR=1.6616... (Quadratic Recurrence)
n≥0
2 operations
Power

Sequence 5kda0x5rmarrc

3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, 3.3829757679062378, more...

decimal, constant, monotonic, +

a(n)=Tribonacci²
Tribonacci=1.8392... (Tribonacci)
n≥0
2 operations
Power

Sequence cu1jqkq2uxq0e

7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, 7.211652450025658, more...

decimal, constant, monotonic, +

a(n)=Khintchine²
Khintchine=2.6854... (Khintchine)
n≥0
2 operations
Power

Sequence vuvrmqoabyohk

7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, 7.3890560989306495, more...

decimal, constant, monotonic, +

a(n)=e²
e=2.7182... (Euler e)
n≥0
2 operations
Power

Sequence zgivhzgbv01qd

9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, 9.869604401089358, more...

decimal, constant, monotonic, +

a(n)=π²
π Pi=3.1415... (Pi)
n≥0
2 operations
Power

Sequence 3vtyk43kllych

0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, 0.010000000000000002, more...

decimal, constant, monotonic, +

a(n)=(1/10)²
n≥0
4 operations
Power

Sequence jfl2omrsgdcb

0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, 0.04000000000000001, more...

decimal, constant, monotonic, +

a(n)=(1/5)²
n≥0
4 operations
Power

Sequence qwy3z1mzvglpp

0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, more...

decimal, constant, monotonic, +

a(n)=(3/10)²
n≥0
4 operations
Power

Sequence eweeg04ypmqll

0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, 0.16000000000000003, more...

decimal, constant, monotonic, +

a(n)=(2/5)²
n≥0
4 operations
Power

Sequence 2qsn0gfnxrj4m

0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, 0.18367346938775508, more...

decimal, constant, monotonic, +

a(n)=(3/7)²
n≥0
4 operations
Power

Sequence qomzdpe2wdrae

0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, 0.48999999999999994, more...

decimal, constant, monotonic, +

a(n)=(7/10)²
n≥0
4 operations
Power

Sequence yizsyjyug1xzh

0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, 0.6400000000000001, more...

decimal, constant, monotonic, +

a(n)=(4/5)²
n≥0
4 operations
Power

Sequence aahzaclajhifo

0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, 0.6944444444444445, more...

decimal, constant, monotonic, +

a(n)=(5/6)²
n≥0
4 operations
Power

Sequence xa3v2qyws53ce

0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81, more...

decimal, constant, monotonic, +

a(n)=(9/10)²
n≥0
4 operations
Power

Sequence 3kkskxt4ou4vg

1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, 1.234567901234568, more...

decimal, constant, monotonic, +

a(n)=(10/9)²
n≥0
4 operations
Power

Sequence cbuozmtzcu2ec

2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, 2.0408163265306123, more...

decimal, constant, monotonic, +

a(n)=(10/7)²
n≥0
4 operations
Power

Sequence 05kbkdae44icg

2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, 2.5600000000000005, more...

decimal, constant, monotonic, +

a(n)=(8/5)²
n≥0
4 operations
Power

Sequence m1bryj3xq0jon

2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, 2.777777777777778, more...

decimal, constant, monotonic, +

a(n)=(5/3)²
n≥0
4 operations
Power

Sequence feialor2kuv0p

5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, 5.4444444444444455, more...

decimal, constant, monotonic, +

a(n)=(7/3)²
n≥0
4 operations
Power

Sequence htckmxeer5chg

11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, 11.111111111111112, more...

decimal, constant, monotonic, +

a(n)=(10/3)²
n≥0
4 operations
Power

Sequence llkyrrajh4rze

0, -1, -4, -9, -16, -25, -36, -49, -64, -81, -100, -121, -144, -169, -196, -225, -256, -289, -324, -361, -400, -441, -484, -529, -576, -625, -676, -729, -784, -841, -900, -961, -1024, -1089, -1156, -1225, -1296, -1369, -1444, -1521, -1600, -1681, -1764, -1849, -1936, -2025, -2116, -2209, -2304, -2401, more...

integer, strictly-monotonic, -

a(n)=-n²
n≥0
3 operations
Power
a(n)=n*floor(-n)
n≥0
5 operations
Arithmetic
a(n)=a(n-1)-Δ[n²]
a(0)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=∑[or(1, a(n-1)-2)]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=n-lcm(1+n, n)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence gss20hjzzf3fe

-28, -27, -24, -19, -12, -3, 8, 21, 36, 53, 72, 93, 116, 141, 168, 197, 228, 261, 296, 333, 372, 413, 456, 501, 548, 597, 648, 701, 756, 813, 872, 933, 996, 1061, 1128, 1197, 1268, 1341, 1416, 1493, 1572, 1653, 1736, 1821, 1908, 1997, 2088, 2181, 2276, 2373, more...

integer, strictly-monotonic, +-, A155136

a(n)=n²-28
n≥0
4 operations
Power
a(n)=n*(n-4)-24
n≥2
7 operations
Arithmetic
a(n)=1-(28+∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence hksx4gpk5yhnp

-10, -9, -6, -1, 6, 15, 26, 39, 54, 71, 90, 111, 134, 159, 186, 215, 246, 279, 314, 351, 390, 431, 474, 519, 566, 615, 666, 719, 774, 831, 890, 951, 1014, 1079, 1146, 1215, 1286, 1359, 1434, 1511, 1590, 1671, 1754, 1839, 1926, 2015, 2106, 2199, 2294, 2391, more...

integer, strictly-monotonic, +-

a(n)=n²-10
n≥0
4 operations
Power

Sequence hhbbgkkmn4mkd

-9, -8, -5, 0, 7, 16, 27, 40, 55, 72, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392, more...

integer, strictly-monotonic, +-

a(n)=n²-9
n≥0
4 operations
Power
a(n)=(3+n)*(n-3)
n≥0
7 operations
Arithmetic

Sequence n2fguxjoiii0h

-8, -7, -4, 1, 8, 17, 28, 41, 56, 73, 92, 113, 136, 161, 188, 217, 248, 281, 316, 353, 392, 433, 476, 521, 568, 617, 668, 721, 776, 833, 892, 953, 1016, 1081, 1148, 1217, 1288, 1361, 1436, 1513, 1592, 1673, 1756, 1841, 1928, 2017, 2108, 2201, 2296, 2393, more...

integer, strictly-monotonic, +-

a(n)=n²-8
n≥0
4 operations
Power

Sequence zapbulfn0r2ub

-7, -6, -3, 2, 9, 18, 29, 42, 57, 74, 93, 114, 137, 162, 189, 218, 249, 282, 317, 354, 393, 434, 477, 522, 569, 618, 669, 722, 777, 834, 893, 954, 1017, 1082, 1149, 1218, 1289, 1362, 1437, 1514, 1593, 1674, 1757, 1842, 1929, 2018, 2109, 2202, 2297, 2394, more...

integer, strictly-monotonic, +-

a(n)=n²-7
n≥0
4 operations
Power

Sequence u1oeau5d3bg0d

-6, -5, -2, 3, 10, 19, 30, 43, 58, 75, 94, 115, 138, 163, 190, 219, 250, 283, 318, 355, 394, 435, 478, 523, 570, 619, 670, 723, 778, 835, 894, 955, 1018, 1083, 1150, 1219, 1290, 1363, 1438, 1515, 1594, 1675, 1758, 1843, 1930, 2019, 2110, 2203, 2298, 2395, more...

integer, strictly-monotonic, +-

a(n)=n²-6
n≥0
4 operations
Power

Sequence z21rgumvzncej

-5, -4, -1, 4, 11, 20, 31, 44, 59, 76, 95, 116, 139, 164, 191, 220, 251, 284, 319, 356, 395, 436, 479, 524, 571, 620, 671, 724, 779, 836, 895, 956, 1019, 1084, 1151, 1220, 1291, 1364, 1439, 1516, 1595, 1676, 1759, 1844, 1931, 2020, 2111, 2204, 2299, 2396, more...

integer, strictly-monotonic, +-, A028875

a(n)=n²-5
n≥0
4 operations
Power
a(n)=n*(n-2)-4
n≥1
7 operations
Arithmetic
a(n)=-(4+∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
7 operations
Recursive
a(n)=xor(-1, n*(4-n))
xor(a,b)=bitwise exclusive or
n≥2
8 operations
Bitwise
a(n)=C(n, 2)-(5-∑[n])
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
8 operations
Combinatoric

Sequence umdnc3z43hihf

-4, -3, 0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, more...

integer, strictly-monotonic, +-

a(n)=n²-4
n≥0
4 operations
Power
a(n)=(2+n)*(n-2)
n≥0
7 operations
Arithmetic

Sequence ziscigisk4f0g

-3, -2, 1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, more...

integer, strictly-monotonic, +-

a(n)=n²-3
n≥0
4 operations
Power

Sequence gt2uucal13cle

-2, -1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119, 142, 167, 194, 223, 254, 287, 322, 359, 398, 439, 482, 527, 574, 623, 674, 727, 782, 839, 898, 959, 1022, 1087, 1154, 1223, 1294, 1367, 1442, 1519, 1598, 1679, 1762, 1847, 1934, 2023, 2114, 2207, 2302, 2399, more...

integer, strictly-monotonic, +-

a(n)=n²-2
n≥0
4 operations
Power
a(n)=n-∑[a(n-1)-2]
a(0)=2
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence 30wku1hc34qlf

-2, 1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497, more...

integer, strictly-monotonic, +-, A123968

a(n)=n²-3
n≥1
4 operations
Power
a(n)=∑[2+a(n-1)]-3
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=n*(2+n)-2
n≥0
7 operations
Arithmetic
a(n)=(n*λ(n))²-3
λ(n)=Liouville's function
n≥1
7 operations
Prime
a(n)=n²-or(3, ω(n))
ω(n)=number of distinct prime divisors of n
or(a,b)=bitwise or
n≥1
7 operations
Prime

Sequence 31gukq4exqhcd

-1, 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, more...

integer, strictly-monotonic, +-

a(n)=n²-1
n≥0
4 operations
Power
a(n)=-∑[a(n-1)-2]
a(0)=1
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[2*n-1]
∑(a)=partial sums of a
n≥0
6 operations
Arithmetic
a(n)=n²-pt(∑[n])
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
6 operations
Combinatoric
a(n)=n²-agc(agc(n²))
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
7 operations
Prime

Sequence bkm00lmowokwo

-1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119, 142, 167, 194, 223, 254, 287, 322, 359, 398, 439, 482, 527, 574, 623, 674, 727, 782, 839, 898, 959, 1022, 1087, 1154, 1223, 1294, 1367, 1442, 1519, 1598, 1679, 1762, 1847, 1934, 2023, 2114, 2207, 2302, 2399, 2498, more...

integer, strictly-monotonic, +-, A008865

a(n)=n²-2
n≥1
4 operations
Power
a(n)=∑[2+a(n-1)]-2
a(0)=1
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor(n²-ζ(2))
ζ(n)=Riemann zeta
n≥1
6 operations
Prime
a(n)=n/(1/n)-2
n≥1
7 operations
Arithmetic
a(n)=n²-π/asin(1)
π Pi=3.1415... (Pi)
n≥1
7 operations
Trigonometric

Sequence izjk4qlv2l1io

0, 0.010000000000000002, 0.04000000000000001, 0.09, 0.16000000000000003, 0.25, 0.36, 0.48999999999999994, 0.6400000000000001, 0.81, 1, 1.2100000000000002, 1.44, 1.6900000000000002, 1.9599999999999997, 2.25, 2.5600000000000005, 2.8899999999999997, 3.24, 3.61, 4, 4.41, 4.840000000000001, 5.289999999999999, 5.76, more...

decimal, strictly-monotonic, +

a(n)=(n/10)²
n≥0
4 operations
Power

Sequence 3qcwiev4q4gnh

0, 0.012345679012345678, 0.04938271604938271, 0.1111111111111111, 0.19753086419753085, 0.308641975308642, 0.4444444444444444, 0.6049382716049383, 0.7901234567901234, 1, 1.234567901234568, 1.4938271604938274, 1.7777777777777777, 2.0864197530864197, 2.419753086419753, 2.777777777777778, 3.1604938271604937, 3.567901234567901, 4, 4.45679012345679, 4.938271604938272, 5.4444444444444455, 5.975308641975309, 6.530864197530863, 7.111111111111111, more...

decimal, strictly-monotonic, +

a(n)=(n/9)²
n≥0
4 operations
Power

Sequence ie5me2p5uf4ee

0, 0.015625, 0.0625, 0.140625, 0.25, 0.390625, 0.5625, 0.765625, 1, 1.265625, 1.5625, 1.890625, 2.25, 2.640625, 3.0625, 3.515625, 4, 4.515625, 5.0625, 5.640625, 6.25, 6.890625, 7.5625, 8.265625, 9, more...

decimal, strictly-monotonic, +

a(n)=(n/8)²
n≥0
4 operations
Power

Sequence lj0ja51zxpqnj

0, 0.02040816326530612, 0.08163265306122448, 0.18367346938775508, 0.32653061224489793, 0.5102040816326531, 0.7346938775510203, 1, 1.3061224489795917, 1.6530612244897962, 2.0408163265306123, 2.4693877551020407, 2.9387755102040813, 3.4489795918367347, 4, 4.591836734693877, 5.224489795918367, 5.897959183673469, 6.612244897959185, 7.367346938775511, 8.16326530612245, 9, 9.877551020408163, 10.795918367346937, 11.755102040816325, more...

decimal, strictly-monotonic, +

a(n)=(n/7)²
n≥0
4 operations
Power

Sequence x1swia0eh5ngd

0, 0.027777777777777776, 0.1111111111111111, 0.25, 0.4444444444444444, 0.6944444444444445, 1, 1.3611111111111114, 1.7777777777777777, 2.25, 2.777777777777778, 3.3611111111111107, 4, 4.694444444444444, 5.4444444444444455, 6.25, 7.111111111111111, 8.027777777777779, 9, 10.027777777777777, 11.111111111111112, 12.25, 13.444444444444443, 14.694444444444446, 16, more...

decimal, strictly-monotonic, +

a(n)=(n/6)²
n≥0
4 operations
Power

Sequence k4oom20lfqvwc

0, 0.04000000000000001, 0.16000000000000003, 0.36, 0.6400000000000001, 1, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4, 4.840000000000001, 5.76, 6.760000000000001, 7.839999999999999, 9, 10.240000000000002, 11.559999999999999, 12.96, 14.44, 16, 17.64, 19.360000000000003, 21.159999999999997, 23.04, more...

decimal, strictly-monotonic, +

a(n)=(n/5)²
n≥0
4 operations
Power

Sequence dmwaxguzde1ko

0, 0.0625, 0.25, 0.5625, 1, 1.5625, 2.25, 3.0625, 4, 5.0625, 6.25, 7.5625, 9, 10.5625, 12.25, 14.0625, 16, 18.0625, 20.25, 22.5625, 25, 27.5625, 30.25, 33.0625, 36, more...

decimal, strictly-monotonic, +

a(n)=(n/4)²
n≥0
4 operations
Power

Sequence 3gs5bc43k4etj

0, 0.1, 0.4, 0.9, 1.6, 2.5, 3.6, 4.9, 6.4, 8.1, 10, 12.1, 14.4, 16.9, 19.6, 22.5, 25.6, 28.9, 32.4, 36.1, 40, 44.1, 48.4, 52.9, 57.6, more...

decimal, strictly-monotonic, +

a(n)=n²/10
n≥0
4 operations
Power

Sequence 2zhc2uhmcnefk

0, 0.1111111111111111, 0.4444444444444444, 1, 1.7777777777777777, 2.7777777777777777, 4, 5.444444444444445, 7.111111111111111, 9, 11.11111111111111, 13.444444444444445, 16, 18.77777777777778, 21.77777777777778, 25, 28.444444444444443, 32.111111111111114, 36, 40.111111111111114, 44.44444444444444, 49, 53.77777777777778, 58.77777777777778, 64, more...

decimal, strictly-monotonic, +

a(n)=n²/9
n≥0
4 operations
Power

Sequence cygg0b2ob2fle

0, 0.1111111111111111, 0.4444444444444444, 1, 1.7777777777777777, 2.777777777777778, 4, 5.4444444444444455, 7.111111111111111, 9, 11.111111111111112, 13.444444444444443, 16, 18.777777777777775, 21.777777777777782, 25, 28.444444444444443, 32.111111111111114, 36, 40.11111111111111, 44.44444444444445, 49, 53.77777777777777, 58.777777777777786, 64, more...

decimal, strictly-monotonic, +

a(n)=(n/3)²
n≥0
4 operations
Power

Sequence mdyyynh4z52wj

0, 0.125, 0.5, 1.125, 2, 3.125, 4.5, 6.125, 8, 10.125, 12.5, 15.125, 18, 21.125, 24.5, 28.125, 32, 36.125, 40.5, 45.125, 50, 55.125, 60.5, 66.125, 72, more...

decimal, strictly-monotonic, +

a(n)=n²/8
n≥0
4 operations
Power
a(n)=n*n/8
n≥0
5 operations
Arithmetic

Sequence ctm510litewuo

0, 0.14285714285714285, 0.5714285714285714, 1.2857142857142858, 2.2857142857142856, 3.5714285714285716, 5.142857142857143, 7, 9.142857142857142, 11.571428571428571, 14.285714285714286, 17.285714285714285, 20.571428571428573, 24.142857142857142, 28, 32.142857142857146, 36.57142857142857, 41.285714285714285, 46.285714285714285, 51.57142857142857, 57.142857142857146, 63, 69.14285714285714, 75.57142857142857, 82.28571428571429, more...

decimal, strictly-monotonic, +

a(n)=n²/7
n≥0
4 operations
Power

Sequence dstfbtcj3zpx

0, 0.16666666666666666, 0.6666666666666666, 1.5, 2.6666666666666665, 4.166666666666667, 6, 8.166666666666666, 10.666666666666666, 13.5, 16.666666666666668, 20.166666666666668, 24, 28.166666666666668, 32.666666666666664, 37.5, 42.666666666666664, 48.166666666666664, 54, 60.166666666666664, 66.66666666666667, 73.5, 80.66666666666667, 88.16666666666667, 96, more...

decimal, strictly-monotonic, +

a(n)=n²/6
n≥0
4 operations
Power
a(n)=n*n/2/3
n≥0
7 operations
Arithmetic

Sequence palrtwfwcxoqc

0, 0.2, 0.8, 1.8, 3.2, 5, 7.2, 9.8, 12.8, 16.2, 20, 24.2, 28.8, 33.8, 39.2, 45, 51.2, 57.8, 64.8, 72.2, 80, 88.2, 96.8, 105.8, 115.2, more...

decimal, strictly-monotonic, +

a(n)=n²/5
n≥0
4 operations
Power

Sequence zo4mmluddtpdd

0, 0.25, 1, 2.25, 4, 6.25, 9, 12.25, 16, 20.25, 25, 30.25, 36, 42.25, 49, 56.25, 64, 72.25, 81, 90.25, 100, 110.25, 121, 132.25, 144, more...

decimal, strictly-monotonic, +

a(n)=(n/2)²
n≥0
4 operations
Power
a(n)=n*n/4
n≥0
5 operations
Arithmetic
a(n)=(C(n, 2)/n)²
C(n,k)=binomial coefficient
n≥1
6 operations
Combinatoric

Sequence pjsxcdtlmb3ri

0, 0.3333333333333333, 1.3333333333333333, 3, 5.333333333333333, 8.333333333333334, 12, 16.333333333333332, 21.333333333333332, 27, 33.333333333333336, 40.333333333333336, 48, 56.333333333333336, 65.33333333333333, 75, 85.33333333333333, 96.33333333333333, 108, 120.33333333333333, 133.33333333333334, 147, 161.33333333333334, 176.33333333333334, 192, more...

decimal, strictly-monotonic, +

a(n)=n²/3
n≥0
4 operations
Power

Sequence nmt423pskfxjb

0, 0.5, 2, 4.5, 8, 12.5, 18, 24.5, 32, 40.5, 50, 60.5, 72, 84.5, 98, 112.5, 128, 144.5, 162, 180.5, 200, 220.5, 242, 264.5, 288, more...

decimal, strictly-monotonic, +

a(n)=n²/2
n≥0
4 operations
Power
a(n)=n*n/2
n≥0
5 operations
Arithmetic
a(n)=n/2+C(n, 2)
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric
a(n)=n-1/2+a(n-1)
a(0)=0
n≥0
7 operations
Recursive

Sequence try5v0k0dtwbj

0, 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418, 4608, 4802, more...

integer, strictly-monotonic, +, A001105

a(n)=2*n²
n≥0
4 operations
Power
a(n)=n*2*n
n≥0
5 operations
Arithmetic
a(n)=2-∑[a(n-1)-4]
a(0)=2
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=∑[or(2, 2+a(n-1))]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=n²/sinh(log(ϕ))
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥0
6 operations
Trigonometric

Sequence fshpv0xqeihrp

0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, more...

integer, strictly-monotonic, +, A005563

a(n)=n²-1
n≥1
4 operations
Power
a(n)=n*(2+n)
n≥0
5 operations
Arithmetic
a(n)=Δ[n²]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥1
5 operations
Recursive
a(n)=∑[or(1, 2+a(n-1))]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=floor((ζ(7)-n)²)
ζ(n)=Riemann zeta
n≥2
6 operations
Prime

Sequence hidua355lzald

0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348, 6627, 6912, 7203, more...

integer, strictly-monotonic, +, A033428

a(n)=3*n²
n≥0
4 operations
Power
a(n)=n*3*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 3)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*∑[or(a(n-1), a(n-2))]
a(0)=1
a(1)=2
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
6 operations
Prime

Sequence 0yffdynyo3vkp

0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464, 8836, 9216, 9604, more...

integer, strictly-monotonic, +, A016742

a(n)=(2*n)²
n≥0
4 operations
Power
a(n)=n*4*n
n≥0
5 operations
Arithmetic
a(n)=(2+sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Recursive
a(n)=Δ[C(2*n, 3)]
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=∑[or(4, 4+a(n-1))]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence lp2u4oitnat3m

0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597, more...

integer, strictly-monotonic, +, A028347

a(n)=n²-4
n≥2
4 operations
Power
a(n)=n*(4+n)
n≥0
5 operations
Arithmetic
a(n)=Δ[n²]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥2
5 operations
Recursive
a(n)=n*∑[φ(a(n-1))]
a(0)=3
ϕ(n)=number of relative primes (Euler's totient)
∑(a)=partial sums of a
n≥0
5 operations
Prime
a(n)=n*∑[agc(a(n-1))]
a(0)=3
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
n≥0
5 operations
Prime

Sequence cgoyje0efstnb

0, 5, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125, 1280, 1445, 1620, 1805, 2000, 2205, 2420, 2645, 2880, 3125, 3380, 3645, 3920, 4205, 4500, 4805, 5120, 5445, 5780, 6125, 6480, 6845, 7220, 7605, 8000, 8405, 8820, 9245, 9680, 10125, 10580, 11045, 11520, 12005, more...

integer, strictly-monotonic, +, A033429

a(n)=5*n²
n≥0
4 operations
Power
a(n)=n*5*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 5)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=(n/tanh(log(ϕ)))²
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥0
6 operations
Trigonometric
a(n)=n*lcm(5*n, 5)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence dkkwshlkrqtdj

0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616, 12150, 12696, 13254, 13824, 14406, more...

integer, strictly-monotonic, +, A033581

a(n)=6*n²
n≥0
4 operations
Power
a(n)=n*6*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 6)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(6*n, 2)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=de[cosh(log(3))]*n²
de(a)=decimal expansion of a
n≥0
7 operations
Trigonometric

Sequence nogpzr4wk54ll

0, 7, 28, 63, 112, 175, 252, 343, 448, 567, 700, 847, 1008, 1183, 1372, 1575, 1792, 2023, 2268, 2527, 2800, 3087, 3388, 3703, 4032, 4375, 4732, 5103, 5488, 5887, 6300, 6727, 7168, 7623, 8092, 8575, 9072, 9583, 10108, 10647, 11200, 11767, 12348, 12943, 13552, 14175, 14812, 15463, 16128, 16807, more...

integer, strictly-monotonic, +, A033582

a(n)=7*n²
n≥0
4 operations
Power
a(n)=n*7*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 7)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(7*n, 7)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=or(7, agc(n))*n²
agc(n)=number of factorizations into prime powers (abelian group count)
or(a,b)=bitwise or
n≥0
7 operations
Prime

Sequence lakhyrv3ku1sk

0, 8, 32, 72, 128, 200, 288, 392, 512, 648, 800, 968, 1152, 1352, 1568, 1800, 2048, 2312, 2592, 2888, 3200, 3528, 3872, 4232, 4608, 5000, 5408, 5832, 6272, 6728, 7200, 7688, 8192, 8712, 9248, 9800, 10368, 10952, 11552, 12168, 12800, 13448, 14112, 14792, 15488, 16200, 16928, 17672, 18432, 19208, more...

integer, strictly-monotonic, +, A139098

a(n)=8*n²
n≥0
4 operations
Power
a(n)=n*8*n
n≥0
5 operations
Arithmetic
a(n)=∑[or(8, 8+a(n-1))]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=gcd(a(n-1), 8)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(8*n, 2)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence iuo24bpbvshdg

0, 9, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876, 16641, 17424, 18225, 19044, 19881, 20736, 21609, more...

integer, strictly-monotonic, +, A016766

a(n)=(3*n)²
n≥0
4 operations
Power
a(n)=n*9*n
n≥0
5 operations
Arithmetic
a(n)=(3+sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Recursive
a(n)=n*lcm(9*n, 3)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=n*∑[8+ω(a(n-1))]
a(0)=1
ω(n)=number of distinct prime divisors of n
∑(a)=partial sums of a
n≥0
7 operations
Prime

Sequence nt20sbikc2vun

0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810, 17640, 18490, 19360, 20250, 21160, 22090, 23040, 24010, more...

integer, strictly-monotonic, +, A033583

a(n)=10*n²
n≥0
4 operations
Power
a(n)=n*10*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 10)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(10*n, 2)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=and(-2, n*10*n)
and(a,b)=bitwise and
n≥0
8 operations
Bitwise

Sequence xpem2aw2yu5jb

0, 11, 44, 99, 176, 275, 396, 539, 704, 891, 1100, 1331, 1584, 1859, 2156, 2475, 2816, 3179, 3564, 3971, 4400, 4851, 5324, 5819, 6336, 6875, 7436, 8019, 8624, 9251, 9900, 10571, 11264, 11979, 12716, 13475, 14256, 15059, 15884, 16731, 17600, 18491, 19404, 20339, 21296, 22275, 23276, 24299, 25344, 26411, more...

integer, strictly-monotonic, +, A033584

a(n)=11*n²
n≥0
4 operations
Power
a(n)=n*11*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 11)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(11*n, 11)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=n²*p(Δ[5*n])
Δ(a)=differences of a
p(n)=nth prime
n≥0
8 operations
Prime

Sequence mslrfh5heeqbp

0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188, 23232, 24300, 25392, 26508, 27648, 28812, more...

integer, strictly-monotonic, +, A135453

a(n)=12*n²
n≥0
4 operations
Power
a(n)=n*12*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 12)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(12*n, 2)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=4*n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime

Sequence 2sc0ta341ix4p

0, 13, 52, 117, 208, 325, 468, 637, 832, 1053, 1300, 1573, 1872, 2197, 2548, 2925, 3328, 3757, 4212, 4693, 5200, 5733, 6292, 6877, 7488, 8125, 8788, 9477, 10192, 10933, 11700, 12493, 13312, 14157, 15028, 15925, 16848, 17797, 18772, 19773, 20800, 21853, 22932, 24037, 25168, 26325, 27508, 28717, 29952, 31213, more...

integer, strictly-monotonic, +, A152742

a(n)=13*n²
n≥0
4 operations
Power
a(n)=n*13*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 13)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(13*n, 13)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=n²*p(Δ[6*n])
Δ(a)=differences of a
p(n)=nth prime
n≥0
8 operations
Prime

Sequence foaknlvnoa0kd

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696, 25886, 27104, 28350, 29624, 30926, 32256, 33614, more...

integer, strictly-monotonic, +, A144555

a(n)=14*n²
n≥0
4 operations
Power
a(n)=n*14*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 14)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(14*n, 2)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility

Sequence 1w1pjfophykti

0, 15, 60, 135, 240, 375, 540, 735, 960, 1215, 1500, 1815, 2160, 2535, 2940, 3375, 3840, 4335, 4860, 5415, 6000, 6615, 7260, 7935, 8640, 9375, 10140, 10935, 11760, 12615, 13500, 14415, 15360, 16335, 17340, 18375, 19440, 20535, 21660, 22815, 24000, 25215, 26460, 27735, 29040, 30375, 31740, 33135, 34560, 36015, more...

integer, strictly-monotonic, +, A064761

a(n)=15*n²
n≥0
4 operations
Power
a(n)=n*15*n
n≥0
5 operations
Arithmetic
a(n)=gcd(a(n-1), 15)*n²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
6 operations
Recursive
a(n)=n*lcm(15*n, 3)
lcm(a,b)=least common multiple
n≥0
7 operations
Divisibility
a(n)=5*n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime

Sequence cg22u22pynovf

0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896, 28224, 29584, 30976, 32400, 33856, 35344, 36864, 38416, more...

integer, strictly-monotonic, +, A016802 (multiple)

a(n)=(4*n)²
n≥0
4 operations
Power
a(n)=n*16*n
n≥0
5 operations
Arithmetic
a(n)=(4+sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Recursive
a(n)=lcm((4+sqrt(a(n-1)))², 2)
a(0)=0
lcm(a,b)=least common multiple
n≥0
7 operations
Recursive
a(n)=(4*C(n, n-1))²
C(n,k)=binomial coefficient
n≥0
8 operations
Combinatoric

Sequence 2ggpyxk1sqeve

0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988, 31433, 32912, 34425, 35972, 37553, 39168, 40817, more...

integer, strictly-monotonic, +, A244630

a(n)=17*n²
n≥0
4 operations
Power
a(n)=n*17*n
n≥0
5 operations
Arithmetic
a(n)=17*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive
a(n)=n²*p(Δ[7*n])
Δ(a)=differences of a
p(n)=nth prime
n≥0
8 operations
Prime

Sequence kqirlf4nz3sgk

0, 18, 72, 162, 288, 450, 648, 882, 1152, 1458, 1800, 2178, 2592, 3042, 3528, 4050, 4608, 5202, 5832, 6498, 7200, 7938, 8712, 9522, 10368, 11250, 12168, 13122, 14112, 15138, 16200, 17298, 18432, 19602, 20808, 22050, 23328, 24642, 25992, 27378, 28800, 30258, 31752, 33282, 34848, 36450, 38088, 39762, 41472, 43218, more...

integer, strictly-monotonic, +, A195321

a(n)=18*n²
n≥0
4 operations
Power
a(n)=n*18*n
n≥0
5 operations
Arithmetic
a(n)=18*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive
a(n)=6*n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime
a(n)=(3*n)²*p(pt(∑[n]))
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
p(n)=nth prime
n≥0
9 operations
Prime

Sequence wgjbhl1or4xte

0, 19, 76, 171, 304, 475, 684, 931, 1216, 1539, 1900, 2299, 2736, 3211, 3724, 4275, 4864, 5491, 6156, 6859, 7600, 8379, 9196, 10051, 10944, 11875, 12844, 13851, 14896, 15979, 17100, 18259, 19456, 20691, 21964, 23275, 24624, 26011, 27436, 28899, 30400, 31939, 33516, 35131, 36784, 38475, 40204, 41971, 43776, 45619, more...

integer, strictly-monotonic, +, A244631

a(n)=19*n²
n≥0
4 operations
Power
a(n)=n*19*n
n≥0
5 operations
Arithmetic
a(n)=19*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence 0smufp24mkx4b

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280, 36980, 38720, 40500, 42320, 44180, 46080, 48020, more...

integer, strictly-monotonic, +, A195322

a(n)=20*n²
n≥0
4 operations
Power
a(n)=n*20*n
n≥0
5 operations
Arithmetic
a(n)=20*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence uefb4hiy4b11f

0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749, 30324, 31941, 33600, 35301, 37044, 38829, 40656, 42525, 44436, 46389, 48384, 50421, more...

integer, strictly-monotonic, +, A064762

a(n)=21*n²
n≥0
4 operations
Power
a(n)=n*21*n
n≥0
5 operations
Arithmetic
a(n)=21*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive
a(n)=7*n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime

Sequence bzzzbx45mkq4p

0, 22, 88, 198, 352, 550, 792, 1078, 1408, 1782, 2200, 2662, 3168, 3718, 4312, 4950, 5632, 6358, 7128, 7942, 8800, 9702, 10648, 11638, 12672, 13750, 14872, 16038, 17248, 18502, 19800, 21142, 22528, 23958, 25432, 26950, 28512, 30118, 31768, 33462, 35200, 36982, 38808, 40678, 42592, 44550, 46552, 48598, 50688, 52822, more...

integer, strictly-monotonic, +, A195323

a(n)=22*n²
n≥0
4 operations
Power
a(n)=n*22*n
n≥0
5 operations
Arithmetic
a(n)=22*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence bidqm4hh0fr5l

0, 23, 92, 207, 368, 575, 828, 1127, 1472, 1863, 2300, 2783, 3312, 3887, 4508, 5175, 5888, 6647, 7452, 8303, 9200, 10143, 11132, 12167, 13248, 14375, 15548, 16767, 18032, 19343, 20700, 22103, 23552, 25047, 26588, 28175, 29808, 31487, 33212, 34983, 36800, 38663, 40572, 42527, 44528, 46575, 48668, 50807, 52992, 55223, more...

integer, strictly-monotonic, +, A244632

a(n)=23*n²
n≥0
4 operations
Power
a(n)=n*23*n
n≥0
5 operations
Arithmetic
a(n)=23*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive
a(n)=n²*p(Δ[3*n]²)
Δ(a)=differences of a
p(n)=nth prime
n≥0
9 operations
Prime

Sequence luuqrumgncjpg

0, 24, 96, 216, 384, 600, 864, 1176, 1536, 1944, 2400, 2904, 3456, 4056, 4704, 5400, 6144, 6936, 7776, 8664, 9600, 10584, 11616, 12696, 13824, 15000, 16224, 17496, 18816, 20184, 21600, 23064, 24576, 26136, 27744, 29400, 31104, 32856, 34656, 36504, 38400, 40344, 42336, 44376, 46464, 48600, 50784, 53016, 55296, 57624, more...

integer, strictly-monotonic, +, A195824

a(n)=24*n²
n≥0
4 operations
Power
a(n)=n*24*n
n≥0
5 operations
Arithmetic
a(n)=n²*gcd(a(n-1), 4)!
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
7 operations
Combinatoric
a(n)=24*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive
a(n)=8*n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime

Sequence zh4wrywdgztaj

0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, 3025, 3600, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27225, 28900, 30625, 32400, 34225, 36100, 38025, 40000, 42025, 44100, 46225, 48400, 50625, 52900, 55225, 57600, 60025, more...

integer, strictly-monotonic, +, A016850 (multiple)

a(n)=(5*n)²
n≥0
4 operations
Power
a(n)=n*25*n
n≥0
5 operations
Arithmetic
a(n)=(5+sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Recursive
a(n)=lcm((5+sqrt(a(n-1)))², 5)
a(0)=0
lcm(a,b)=least common multiple
n≥0
7 operations
Recursive
a(n)=(5*C(n, n-1))²
C(n,k)=binomial coefficient
n≥0
8 operations
Combinatoric

Sequence 11zy2cjc42baj

0, 26, 104, 234, 416, 650, 936, 1274, 1664, 2106, 2600, 3146, 3744, 4394, 5096, 5850, 6656, 7514, 8424, 9386, 10400, 11466, 12584, 13754, 14976, 16250, 17576, 18954, 20384, 21866, 23400, 24986, 26624, 28314, 30056, 31850, 33696, 35594, 37544, 39546, 41600, 43706, 45864, 48074, 50336, 52650, 55016, 57434, 59904, 62426, more...

integer, strictly-monotonic, +, A244633

a(n)=26*n²
n≥0
4 operations
Power
a(n)=n*26*n
n≥0
5 operations
Arithmetic
a(n)=26*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence y2fettm4xssap

0, 27, 108, 243, 432, 675, 972, 1323, 1728, 2187, 2700, 3267, 3888, 4563, 5292, 6075, 6912, 7803, 8748, 9747, 10800, 11907, 13068, 14283, 15552, 16875, 18252, 19683, 21168, 22707, 24300, 25947, 27648, 29403, 31212, 33075, 34992, 36963, 38988, 41067, 43200, 45387, 47628, 49923, 52272, 54675, 57132, 59643, 62208, 64827, more...

integer, strictly-monotonic, +, A244634

a(n)=27*n²
n≥0
4 operations
Power
a(n)=n*27*n
n≥0
5 operations
Arithmetic
a(n)=27*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive
a(n)=9*n*∑[p(τ(a(n-1)))]
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
n≥0
8 operations
Prime

Sequence wthm0buzbvoxn

0, 28, 112, 252, 448, 700, 1008, 1372, 1792, 2268, 2800, 3388, 4032, 4732, 5488, 6300, 7168, 8092, 9072, 10108, 11200, 12348, 13552, 14812, 16128, 17500, 18928, 20412, 21952, 23548, 25200, 26908, 28672, 30492, 32368, 34300, 36288, 38332, 40432, 42588, 44800, 47068, 49392, 51772, 54208, 56700, 59248, 61852, 64512, 67228, more...

integer, strictly-monotonic, +, A064763

a(n)=28*n²
n≥0
4 operations
Power
a(n)=n*28*n
n≥0
5 operations
Arithmetic
a(n)=28*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence s42v01zxgotwk

0, 29, 116, 261, 464, 725, 1044, 1421, 1856, 2349, 2900, 3509, 4176, 4901, 5684, 6525, 7424, 8381, 9396, 10469, 11600, 12789, 14036, 15341, 16704, 18125, 19604, 21141, 22736, 24389, 26100, 27869, 29696, 31581, 33524, 35525, 37584, 39701, 41876, 44109, 46400, 48749, 51156, 53621, 56144, 58725, 61364, 64061, 66816, 69629, more...

integer, strictly-monotonic, +, A244635

a(n)=29*n²
n≥0
4 operations
Power
a(n)=n*29*n
n≥0
5 operations
Arithmetic
a(n)=29*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence aijjnxgavm53b

0, 30, 120, 270, 480, 750, 1080, 1470, 1920, 2430, 3000, 3630, 4320, 5070, 5880, 6750, 7680, 8670, 9720, 10830, 12000, 13230, 14520, 15870, 17280, 18750, 20280, 21870, 23520, 25230, 27000, 28830, 30720, 32670, 34680, 36750, 38880, 41070, 43320, 45630, 48000, 50430, 52920, 55470, 58080, 60750, 63480, 66270, 69120, 72030, more...

integer, strictly-monotonic, +, A244636

a(n)=30*n²
n≥0
4 operations
Power
a(n)=n*30*n
n≥0
5 operations
Arithmetic
a(n)=30*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence atrftvnmlhxan

0, 32, 128, 288, 512, 800, 1152, 1568, 2048, 2592, 3200, 3872, 4608, 5408, 6272, 7200, 8192, 9248, 10368, 11552, 12800, 14112, 15488, 16928, 18432, 20000, 21632, 23328, 25088, 26912, 28800, 30752, 32768, 34848, 36992, 39200, 41472, 43808, 46208, 48672, 51200, 53792, 56448, 59168, 61952, 64800, 67712, 70688, 73728, 76832, more...

integer, strictly-monotonic, +, A244082

a(n)=32*n²
n≥0
4 operations
Power
a(n)=n*32*n
n≥0
5 operations
Arithmetic
a(n)=32*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence gzjh2jh5nyp4j

0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944, 75106, 78336, 81634, more...

integer, strictly-monotonic, +, A303302

a(n)=34*n²
n≥0
4 operations
Power
a(n)=n*34*n
n≥0
5 operations
Arithmetic
a(n)=34*(1-∑[a(n-1)-2])
a(0)=1
∑(a)=partial sums of a
n≥0
8 operations
Recursive

Sequence 2aomdg1wndgjo

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900, 76176, 79524, 82944, 86436, more...

integer, strictly-monotonic, +, A016910

a(n)=(6*n)²
n≥0
4 operations
Power
a(n)=n*36*n
n≥0
5 operations
Arithmetic
a(n)=(6+sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Recursive
a(n)=(n*de[cosh(log(3))])²
de(a)=decimal expansion of a
n≥0
7 operations
Trigonometric
a(n)=(n*gcd(a(n-1), 3)!)²
a(0)=0
gcd(a,b)=greatest common divisor
n≥0
7 operations
Combinatoric

Sequence kfcagrrdd3dnn

0, 49, 196, 441, 784, 1225, 1764, 2401, 3136, 3969, 4900, 5929, 7056, 8281, 9604, 11025, 12544, 14161, 15876, 17689, 19600, 21609, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 44100, 47089, 50176, 53361, 56644, 60025, 63504, 67081, 70756, 74529, 78400, 82369, 86436, 90601, 94864, 99225, 103684, 108241, 112896, 117649, more...

integer, strictly-monotonic, +, A016982 (multiple)

a(n)=(7*n)²
n≥0
4 operations
Power
a(n)=n*49*n
n≥0
5 operations
Arithmetic
a(n)=(7+sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Recursive
a(n)=(n*or(7, agc(n)))²
agc(n)=number of factorizations into prime powers (abelian group count)
or(a,b)=bitwise or
n≥0
7 operations
Prime
a(n)=(7*C(n, n-1))²
C(n,k)=binomial coefficient
n≥0
8 operations
Combinatoric

[0] [1] [2] [3] [4] ... [4236]