Sequence Database

A database with 899757 machine generated integer and decimal sequences.

Displaying result 0-99 of total 76717. [0] [1] [2] [3] [4] ... [767]

Sequence 1r0kz5stvechb

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric
a(n)=pt(∑(μ(abs(a(n-1)))))
a(0)=2
μ(n)=Möbius function
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence afpks0yvdxnmm

-1, -1, -1, -1, -2, -1, -1, -3, -3, -1, -1, -4, -6, -4, -1, -1, -5, -10, -10, -5, -1, -1, -6, -15, -20, -15, -6, -1, -1, -7, -21, -35, -35, -21, -7, -1, -1, -8, -28, -56, -70, -56, -28, -8, -1, -1, -9, -36, -84, -126, more...

integer, non-monotonic, -

a(n)=-pt(n)
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence 3pzrz3db30ryi

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, more...

integer, non-monotonic, +, A008459

a(n)=pt(n)²
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence dmyqm3furav0o

1, 1, 2, 1, 5, 15, 1, 126, 10, 220, 715, 15, 12870, 17, 27132, 15504, 1540, 1144066, 1, 5311735, 80730, 475020, 54627300, 32, 1037158320, 46376, 254186856, 854992152, 82251, more...

integer, non-monotonic, +, A268295

a(n)=pt(n²)
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence y2c0j0kw3hurn

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 3, 1, 1, 4, 3, 4, 1, 6, 3, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=pt(stern(n))
stern(n)=Stern-Brocot sequence
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence qhzuvz0wfhx0d

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 2, 4, 3, 4, 2, 1, 1, 3, 8, 9, 9, 8, 3, 1, 1, 1, 3, 3, 9, 3, 3, 1, 1, 1, 4, 4, 8, 6, more...

integer, non-monotonic, +

a(n)=stern(pt(n))
pt(n)=Pascals triangle by rows
stern(n)=Stern-Brocot sequence
n≥0
3 operations
Combinatoric

Sequence 1uhgqwiqnvoni

-9, -9, -9, -9, -8, -9, -9, -7, -7, -9, -9, -6, -4, -6, -9, -9, -5, 0, 0, -5, -9, -9, -4, 5, 10, 5, -4, -9, -9, -3, 11, 25, 25, 11, -3, -9, -9, -2, 18, 46, 60, 46, 18, -2, -9, -9, -1, 26, 74, 116, more...

integer, non-monotonic, +-

a(n)=pt(n)-10
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence a4opvjxxcchik

-8, -8, -8, -8, -7, -8, -8, -6, -6, -8, -8, -5, -3, -5, -8, -8, -4, 1, 1, -4, -8, -8, -3, 6, 11, 6, -3, -8, -8, -2, 12, 26, 26, 12, -2, -8, -8, -1, 19, 47, 61, 47, 19, -1, -8, -8, 0, 27, 75, 117, more...

integer, non-monotonic, +-

a(n)=pt(n)-9
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence nfcyf2ebknjok

-7, -7, -7, -7, -6, -7, -7, -5, -5, -7, -7, -4, -2, -4, -7, -7, -3, 2, 2, -3, -7, -7, -2, 7, 12, 7, -2, -7, -7, -1, 13, 27, 27, 13, -1, -7, -7, 0, 20, 48, 62, 48, 20, 0, -7, -7, 1, 28, 76, 118, more...

integer, non-monotonic, +-

a(n)=pt(n)-8
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ce0iw52xcoiaj

-6, -6, -6, -6, -5, -6, -6, -4, -4, -6, -6, -3, -1, -3, -6, -6, -2, 3, 3, -2, -6, -6, -1, 8, 13, 8, -1, -6, -6, 0, 14, 28, 28, 14, 0, -6, -6, 1, 21, 49, 63, 49, 21, 1, -6, -6, 2, 29, 77, 119, more...

integer, non-monotonic, +-

a(n)=pt(n)-7
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wbrbkm1wylg2m

-5, -5, -5, -5, -4, -5, -5, -3, -3, -5, -5, -2, 0, -2, -5, -5, -1, 4, 4, -1, -5, -5, 0, 9, 14, 9, 0, -5, -5, 1, 15, 29, 29, 15, 1, -5, -5, 2, 22, 50, 64, 50, 22, 2, -5, -5, 3, 30, 78, 120, more...

integer, non-monotonic, +-

a(n)=pt(n)-6
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lrbsqzbegefkn

-4, -4, -4, -4, -3, -4, -4, -2, -2, -4, -4, -1, 1, -1, -4, -4, 0, 5, 5, 0, -4, -4, 1, 10, 15, 10, 1, -4, -4, 2, 16, 30, 30, 16, 2, -4, -4, 3, 23, 51, 65, 51, 23, 3, -4, -4, 4, 31, 79, 121, more...

integer, non-monotonic, +-

a(n)=pt(n)-5
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence w4n35mlwoh0id

-3, -3, -3, -3, -2, -3, -3, -1, -1, -3, -3, 0, 2, 0, -3, -3, 1, 6, 6, 1, -3, -3, 2, 11, 16, 11, 2, -3, -3, 3, 17, 31, 31, 17, 3, -3, -3, 4, 24, 52, 66, 52, 24, 4, -3, -3, 5, 32, 80, 122, more...

integer, non-monotonic, +-

a(n)=pt(n)-4
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lcyfoslyw4d3c

-2.1415926536, -2.1415926536, -2.1415926536, -2.1415926536, -1.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, 0.8584073464, 2.8584073464, 0.8584073464, -2.1415926536, -2.1415926536, 1.8584073464, 6.8584073464, 6.8584073464, 1.8584073464, -2.1415926536, -2.1415926536, 2.8584073464, 11.8584073464, 16.8584073464, more...

decimal, non-monotonic, +-

a(n)=pt(n)-π
pt(n)=Pascals triangle by rows
π=3.141...
n≥0
4 operations
Combinatoric

Sequence 34dseja0oxcib

-2, -2, -2, -2, -1, -2, -2, 0, 0, -2, -2, 1, 3, 1, -2, -2, 2, 7, 7, 2, -2, -2, 3, 12, 17, 12, 3, -2, -2, 4, 18, 32, 32, 18, 4, -2, -2, 5, 25, 53, 67, 53, 25, 5, -2, -2, 6, 33, 81, 123, more...

integer, non-monotonic, +-

a(n)=pt(n)-3
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence avqy24kdrusro

-1, -1, -1, -1, 0, -1, -1, 1, 1, -1, -1, 2, 4, 2, -1, -1, 3, 8, 8, 3, -1, -1, 4, 13, 18, 13, 4, -1, -1, 5, 19, 33, 33, 19, 5, -1, -1, 6, 26, 54, 68, 54, 26, 6, -1, -1, 7, 34, 82, 124, more...

integer, non-monotonic, +-

a(n)=pt(n)-2
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wanq1qydgg0gh

0, 0, 0, 0, -1, 0, 0, -2, -2, 0, 0, -3, -5, -3, 0, 0, -4, -9, -9, -4, 0, 0, -5, -14, -19, -14, -5, 0, 0, -6, -20, -34, -34, -20, -6, 0, 0, -7, -27, -55, -69, -55, -27, -7, 0, 0, -8, -35, -83, -125, more...

integer, non-monotonic, -

a(n)=1-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 3rc30lfi2rrsp

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 9, 9, 4, 0, 0, 5, 14, 19, 14, 5, 0, 0, 6, 20, 34, 34, 20, 6, 0, 0, 7, 27, 55, 69, 55, 27, 7, 0, 0, 8, 35, 83, 125, more...

integer, non-monotonic, +, A014473

a(n)=pt(n)-1
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 22ng3mwiyyj1

0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.3, 0.3, 0.1, 0.1, 0.4, 0.6, 0.4, 0.1, 0.1, 0.5, 1, 1, 0.5, 0.1, 0.1, 0.6, 1.5, 2, more...

decimal, non-monotonic, +

a(n)=pt(n)/10
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence h3zxmp1eej2oj

0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.2222222222, 0.1111111111, 0.1111111111, 0.3333333333, 0.3333333333, 0.1111111111, 0.1111111111, 0.4444444444, 0.6666666667, 0.4444444444, 0.1111111111, 0.1111111111, 0.5555555556, 1.1111111111, 1.1111111111, 0.5555555556, 0.1111111111, 0.1111111111, 0.6666666667, 1.6666666667, 2.2222222222, more...

decimal, non-monotonic, +

a(n)=pt(n)/9
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence vbk2tzziyraom

0.125, 0.125, 0.125, 0.125, 0.25, 0.125, 0.125, 0.375, 0.375, 0.125, 0.125, 0.5, 0.75, 0.5, 0.125, 0.125, 0.625, 1.25, 1.25, 0.625, 0.125, 0.125, 0.75, 1.875, 2.5, more...

decimal, non-monotonic, +

a(n)=pt(n)/8
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence y1tk4wiso224p

0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.2857142857, 0.1428571429, 0.1428571429, 0.4285714286, 0.4285714286, 0.1428571429, 0.1428571429, 0.5714285714, 0.8571428571, 0.5714285714, 0.1428571429, 0.1428571429, 0.7142857143, 1.4285714286, 1.4285714286, 0.7142857143, 0.1428571429, 0.1428571429, 0.8571428571, 2.1428571429, 2.8571428571, more...

decimal, non-monotonic, +

a(n)=pt(n)/7
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 3xlkqwtpazakc

0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.5, 0.5, 0.1666666667, 0.1666666667, 0.6666666667, 1, 0.6666666667, 0.1666666667, 0.1666666667, 0.8333333333, 1.6666666667, 1.6666666667, 0.8333333333, 0.1666666667, 0.1666666667, 1, 2.5, 3.3333333333, more...

decimal, non-monotonic, +

a(n)=pt(n)/6
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lkzxaav4gocmo

0.2, 0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.6, 0.6, 0.2, 0.2, 0.8, 1.2, 0.8, 0.2, 0.2, 1, 2, 2, 1, 0.2, 0.2, 1.2, 3, 4, more...

decimal, non-monotonic, +

a(n)=pt(n)/5
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence olefpx3c04gql

0.25, 0.25, 0.25, 0.25, 0.5, 0.25, 0.25, 0.75, 0.75, 0.25, 0.25, 1, 1.5, 1, 0.25, 0.25, 1.25, 2.5, 2.5, 1.25, 0.25, 0.25, 1.5, 3.75, 5, more...

decimal, non-monotonic, +

a(n)=pt(n)/4
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence sjmy4djcaewyb

0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.6366197724, 0.3183098862, 0.3183098862, 0.9549296586, 0.9549296586, 0.3183098862, 0.3183098862, 1.2732395447, 1.9098593171, 1.2732395447, 0.3183098862, 0.3183098862, 1.5915494309, 3.1830988618, 3.1830988618, 1.5915494309, 0.3183098862, 0.3183098862, 1.9098593171, 4.7746482928, 6.3661977237, more...

decimal, non-monotonic, +

a(n)=pt(n)/π
pt(n)=Pascals triangle by rows
π=3.141...
n≥0
4 operations
Combinatoric

Sequence wsovvdzbujxzj

0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.6666666667, 0.3333333333, 0.3333333333, 1, 1, 0.3333333333, 0.3333333333, 1.3333333333, 2, 1.3333333333, 0.3333333333, 0.3333333333, 1.6666666667, 3.3333333333, 3.3333333333, 1.6666666667, 0.3333333333, 0.3333333333, 2, 5, 6.6666666667, more...

decimal, non-monotonic, +

a(n)=pt(n)/3
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence dd350nlatqgr

0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 2, 3, 2, 0.5, 0.5, 2.5, 5, 5, 2.5, 0.5, 0.5, 3, 7.5, 10, more...

decimal, non-monotonic, +

a(n)=pt(n)/2
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence bxcnodw2omzvc

1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -4, -2, 1, 1, -3, -8, -8, -3, 1, 1, -4, -13, -18, -13, -4, 1, 1, -5, -19, -33, -33, -19, -5, 1, 1, -6, -26, -54, -68, -54, -26, -6, 1, 1, -7, -34, -82, -124, more...

integer, non-monotonic, +-

a(n)=2-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence q5kzxvn0n0eed

1, 1, 1, 1, 0.5, 1, 1, 0.3333333333, 0.3333333333, 1, 1, 0.25, 0.1666666667, 0.25, 1, 1, 0.2, 0.1, 0.1, 0.2, 1, 1, 0.1666666667, 0.0666666667, 0.05, more...

decimal, non-monotonic, +

a(n)=1/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence rjfacrad4adoj

1, 1, 1, 1, 1, 15, 21, 1, 70, 1, 126, 1, 252, 1, 330, 55, 66, 792, 1, 715, 715, 1, 2002, 1001, 1, 3003, 3003, 1, 1820, 11440, 120, 136, 19448, 6188, 1, 3060, 48620, 3060, 1, 11628, 92378, 3876, 1, 15504, 184756, 15504, 1, 5985, 293930, 116280, more...

integer, non-monotonic, +

a(n)=pt(5*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence yd0bkhr5afhv

1, 1, 1, 1, 6, 1, 10, 1, 20, 1, 21, 21, 1, 56, 28, 1, 84, 84, 1, 45, 252, 45, 1, 165, 462, 55, 1, 220, 924, 220, 1, 78, 1287, 1287, 78, 1, 364, 3003, 2002, 91, 1, 455, 5005, 5005, 455, 1, 120, 4368, 12870, 4368, more...

integer, non-monotonic, +

a(n)=pt(3*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(∑(p(τ(a(n-1)))))
a(0)=1
τ(n)=number of divisors of n
p(n)=nth prime
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence yjutmyei0jkii

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, more...

integer, non-monotonic, +

a(n)=pt(1+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(n%composite(n))
composite(n)=nth composite number
pt(n)=Pascals triangle by rows
n≥1
5 operations
Prime

Sequence k122qqy34otxn

1, 1, 1, 21, 70, 126, 252, 330, 66, 1, 715, 2002, 1, 3003, 1820, 120, 19448, 1, 48620, 1, 92378, 1, 184756, 1, 293930, 210, 170544, 26334, 8855, 817190, 1, 1961256, 10626, 53130, 3268760, 1, 3124550, 657800, 351, 17383860, 80730, 20475, 40116600, 20475, 118755, 77558760, 23751, 142506, 155117520, 142506, more...

integer, non-monotonic, +

a(n)=pt(10*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence yxzdbqdol1xce

1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, more...

integer, non-monotonic, +

a(n)=pt(2+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence g4iachfq4fbtj

1, 1, 2, 1, 3, 1, 6, 1, 5, 10, 1, 6, 20, 6, 1, 21, 35, 7, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, more...

integer, non-monotonic, +, A034850

a(n)=pt(2*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 1snxovcakagud

1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, more...

integer, non-monotonic, +

a(n)=pt(5+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence qxyxprjibu5xo

1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, more...

integer, non-monotonic, +

a(n)=pt(9+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(∑(ϕ(a(n-1))))
a(0)=5
ϕ(n)=number of relative primes (Euler's totient)
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
4 operations
Prime

Sequence cpvmq1txj0yq

1, 1, 6, 10, 20, 21, 1, 28, 84, 1, 252, 1, 462, 1, 924, 1, 1287, 78, 364, 2002, 1, 5005, 455, 120, 12870, 120, 680, 24310, 136, 816, 48620, 816, 171, 75582, 11628, 1, 38760, 125970, 190, 1330, 293930, 54264, 1, 26334, 705432, 26334, 1, 100947, 1352078, 33649, more...

integer, non-monotonic, +

a(n)=pt(6*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence azixpsjxl3kin

1, 1, 10, 1, 1, 1, 1, 45, 462, 220, 1, 1287, 364, 91, 5005, 1, 12870, 1, 24310, 1, 48620, 1, 75582, 171, 38760, 15504, 1330, 293930, 1, 319770, 26334, 1771, 1352078, 253, 134596, 1307504, 1, 1081575, 1081575, 1, 3124550, 1562275, 1, 4686825, 4686825, 1, 3108105, 21474180, 378, 475020, more...

integer, non-monotonic, +

a(n)=pt(9*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(∑(τ(a(n-1))²))
a(0)=5
τ(n)=number of divisors of n
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence smkyh3cpfucvg

1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, more...

integer, non-monotonic, +

a(n)=pt(3+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(∑(μ(abs(a(n-1)))))
a(0)=5
μ(n)=Möbius function
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence 52jell0hj0pch

1, 2, 3, 6, 5, 1, 20, 1, 35, 1, 70, 1, 84, 36, 10, 252, 10, 55, 462, 11, 66, 924, 66, 13, 1287, 715, 1, 364, 3432, 364, 1, 1365, 6435, 455, 1, 1820, 12870, 1820, 1, 680, 19448, 12376, 136, 18, 8568, 48620, 8568, 18, 171, 27132, more...

integer, non-monotonic, +

a(n)=pt(4*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence cu4lwosezu0ub

1, 3, 1, 1, 1, 1, 28, 126, 10, 45, 330, 1, 924, 1, 1716, 1, 3432, 1, 5005, 105, 1820, 4368, 17, 24310, 136, 3060, 31824, 1, 27132, 27132, 1, 77520, 38760, 1, 116280, 116280, 1, 74613, 497420, 231, 8855, 1352078, 33649, 24, 735471, 1307504, 276, 12650, 4457400, 480700, more...

integer, non-monotonic, +

a(n)=pt(7*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence kbm0hdrhygljn

1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, more...

integer, non-monotonic, +

a(n)=pt(6+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(∑(agc(a(n-1))²))
a(0)=3
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence xtaiacj30ix5f

1, 3, 5, 20, 35, 70, 84, 10, 10, 462, 66, 66, 1287, 1, 3432, 1, 6435, 1, 12870, 1, 19448, 136, 8568, 8568, 171, 92378, 19, 38760, 38760, 21, 293930, 5985, 1540, 705432, 1540, 8855, 1352078, 1771, 10626, 2704156, 10626, 2300, 4457400, 177100, 26, 3124550, 3124550, 26, 296010, 20058300, more...

integer, non-monotonic, +

a(n)=pt(8*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence cdjxbfwwahhfk

1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, more...

integer, non-monotonic, +

a(n)=pt(10+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 01ahbghojcl4b

2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, more...

integer, non-monotonic, +

a(n)=pt(4+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence i2ujcfxsfj40j

2, 2, 2, 2, 1, 2, 2, 0, 0, 2, 2, -1, -3, -1, 2, 2, -2, -7, -7, -2, 2, 2, -3, -12, -17, -12, -3, 2, 2, -4, -18, -32, -32, -18, -4, 2, 2, -5, -25, -53, -67, -53, -25, -5, 2, 2, -6, -33, -81, -123, more...

integer, non-monotonic, +-

a(n)=3-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence u2gdopz5dungb

2, 2, 2, 2, 1, 2, 2, 0.6666666667, 0.6666666667, 2, 2, 0.5, 0.3333333333, 0.5, 2, 2, 0.4, 0.2, 0.2, 0.4, 2, 2, 0.3333333333, 0.1333333333, 0.1, more...

decimal, non-monotonic, +

a(n)=2/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 54hul5aaywwzo

2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 7, 5, 2, 2, 6, 11, 11, 6, 2, 2, 7, 16, 21, 16, 7, 2, 2, 8, 22, 36, 36, 22, 8, 2, 2, 9, 29, 57, 71, 57, 29, 9, 2, 2, 10, 37, 85, 127, more...

integer, non-monotonic, +

a(n)=1+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 5ihrdrxe3luji

2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, more...

integer, non-monotonic, +, A028326

a(n)=2*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(n)*lpf(a(n-1))
a(0)=2
pt(n)=Pascals triangle by rows
lpf(n)=least prime factor of n
n≥0
5 operations
Prime

Sequence 5i4asrosio0fj

2.1415926536, 2.1415926536, 2.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 2.1415926536, 0.1415926536, 0.1415926536, 2.1415926536, 2.1415926536, -0.8584073464, -2.8584073464, -0.8584073464, 2.1415926536, 2.1415926536, -1.8584073464, -6.8584073464, -6.8584073464, -1.8584073464, 2.1415926536, 2.1415926536, -2.8584073464, -11.8584073464, -16.8584073464, more...

decimal, non-monotonic, +-

a(n)=π-pt(n)
π=3.141...
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 5ivb4inliwcv

3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, more...

integer, non-monotonic, +

a(n)=pt(8+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 50z022skub3jh

3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, more...

integer, non-monotonic, +

a(n)=pt(7+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lhcwusf0xn3pd

3, 3, 3, 3, 1.5, 3, 3, 1, 1, 3, 3, 0.75, 0.5, 0.75, 3, 3, 0.6, 0.3, 0.3, 0.6, 3, 3, 0.5, 0.2, 0.15, more...

decimal, non-monotonic, +

a(n)=3/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence xe2oceeivh0al

3, 3, 3, 3, 2, 3, 3, 1, 1, 3, 3, 0, -2, 0, 3, 3, -1, -6, -6, -1, 3, 3, -2, -11, -16, -11, -2, 3, 3, -3, -17, -31, -31, -17, -3, 3, 3, -4, -24, -52, -66, -52, -24, -4, 3, 3, -5, -32, -80, -122, more...

integer, non-monotonic, +-

a(n)=4-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence dcd0kqkifgni

3, 3, 3, 3, 4, 3, 3, 5, 5, 3, 3, 6, 8, 6, 3, 3, 7, 12, 12, 7, 3, 3, 8, 17, 22, 17, 8, 3, 3, 9, 23, 37, 37, 23, 9, 3, 3, 10, 30, 58, 72, 58, 30, 10, 3, 3, 11, 38, 86, 128, more...

integer, non-monotonic, +

a(n)=2+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence rwkbxidbxs22e

3, 3, 3, 3, 6, 3, 3, 9, 9, 3, 3, 12, 18, 12, 3, 3, 15, 30, 30, 15, 3, 3, 18, 45, 60, 45, 18, 3, 3, 21, 63, 105, 105, 63, 21, 3, 3, 24, 84, 168, 210, 168, 84, 24, 3, 3, 27, 108, 252, 378, more...

integer, non-monotonic, +

a(n)=3*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence avza1daddk3jb

3.1415926536, 3.1415926536, 3.1415926536, 3.1415926536, 1.5707963268, 3.1415926536, 3.1415926536, 1.0471975512, 1.0471975512, 3.1415926536, 3.1415926536, 0.7853981634, 0.5235987756, 0.7853981634, 3.1415926536, 3.1415926536, 0.6283185307, 0.3141592654, 0.3141592654, 0.6283185307, 3.1415926536, 3.1415926536, 0.5235987756, 0.2094395102, 0.1570796327, more...

decimal, non-monotonic, +

a(n)=π/pt(n)
π=3.141...
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence q0xiozx2rquaf

3.1415926536, 3.1415926536, 3.1415926536, 3.1415926536, 6.2831853072, 3.1415926536, 3.1415926536, 9.4247779608, 9.4247779608, 3.1415926536, 3.1415926536, 12.5663706144, 18.8495559215, 12.5663706144, 3.1415926536, 3.1415926536, 15.7079632679, 31.4159265359, 31.4159265359, 15.7079632679, 3.1415926536, 3.1415926536, 18.8495559215, 47.1238898038, 62.8318530718, more...

decimal, non-monotonic, +

a(n)=π*pt(n)
π=3.141...
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence mz3iw40gbcozc

4, 4, 4, 4, 2, 4, 4, 1.3333333333, 1.3333333333, 4, 4, 1, 0.6666666667, 1, 4, 4, 0.8, 0.4, 0.4, 0.8, 4, 4, 0.6666666667, 0.2666666667, 0.2, more...

decimal, non-monotonic, +

a(n)=4/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 4o2whxu2b0che

4, 4, 4, 4, 3, 4, 4, 2, 2, 4, 4, 1, -1, 1, 4, 4, 0, -5, -5, 0, 4, 4, -1, -10, -15, -10, -1, 4, 4, -2, -16, -30, -30, -16, -2, 4, 4, -3, -23, -51, -65, -51, -23, -3, 4, 4, -4, -31, -79, -121, more...

integer, non-monotonic, +-

a(n)=5-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence rso0rcfnw5kyk

4, 4, 4, 4, 5, 4, 4, 6, 6, 4, 4, 7, 9, 7, 4, 4, 8, 13, 13, 8, 4, 4, 9, 18, 23, 18, 9, 4, 4, 10, 24, 38, 38, 24, 10, 4, 4, 11, 31, 59, 73, 59, 31, 11, 4, 4, 12, 39, 87, 129, more...

integer, non-monotonic, +

a(n)=3+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence oehuz5ij4kpxj

4, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, more...

integer, non-monotonic, +

a(n)=4*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence s2x3hgur343ao

4.1415926536, 4.1415926536, 4.1415926536, 4.1415926536, 5.1415926536, 4.1415926536, 4.1415926536, 6.1415926536, 6.1415926536, 4.1415926536, 4.1415926536, 7.1415926536, 9.1415926536, 7.1415926536, 4.1415926536, 4.1415926536, 8.1415926536, 13.1415926536, 13.1415926536, 8.1415926536, 4.1415926536, 4.1415926536, 9.1415926536, 18.1415926536, 23.1415926536, more...

decimal, non-monotonic, +

a(n)=π+pt(n)
π=3.141...
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 5fc2e5ezciehk

5, 5, 5, 5, 2.5, 5, 5, 1.6666666667, 1.6666666667, 5, 5, 1.25, 0.8333333333, 1.25, 5, 5, 1, 0.5, 0.5, 1, 5, 5, 0.8333333333, 0.3333333333, 0.25, more...

decimal, non-monotonic, +

a(n)=5/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence da1wwvrnaihkk

5, 5, 5, 5, 4, 5, 5, 3, 3, 5, 5, 2, 0, 2, 5, 5, 1, -4, -4, 1, 5, 5, 0, -9, -14, -9, 0, 5, 5, -1, -15, -29, -29, -15, -1, 5, 5, -2, -22, -50, -64, -50, -22, -2, 5, 5, -3, -30, -78, -120, more...

integer, non-monotonic, +-

a(n)=6-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ezpqgxhjp3ohj

5, 5, 5, 5, 6, 5, 5, 7, 7, 5, 5, 8, 10, 8, 5, 5, 9, 14, 14, 9, 5, 5, 10, 19, 24, 19, 10, 5, 5, 11, 25, 39, 39, 25, 11, 5, 5, 12, 32, 60, 74, 60, 32, 12, 5, 5, 13, 40, 88, 130, more...

integer, non-monotonic, +

a(n)=4+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence bnstyxybbashh

5, 5, 5, 5, 10, 5, 5, 15, 15, 5, 5, 20, 30, 20, 5, 5, 25, 50, 50, 25, 5, 5, 30, 75, 100, 75, 30, 5, 5, 35, 105, 175, 175, 105, 35, 5, 5, 40, 140, 280, 350, 280, 140, 40, 5, 5, 45, 180, 420, 630, more...

integer, non-monotonic, +

a(n)=5*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence cjhrq2dhvch2o

6, 6, 6, 6, 3, 6, 6, 2, 2, 6, 6, 1.5, 1, 1.5, 6, 6, 1.2, 0.6, 0.6, 1.2, 6, 6, 1, 0.4, 0.3, more...

decimal, non-monotonic, +

a(n)=6/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence pzbyqnlcgjezg

6, 6, 6, 6, 5, 6, 6, 4, 4, 6, 6, 3, 1, 3, 6, 6, 2, -3, -3, 2, 6, 6, 1, -8, -13, -8, 1, 6, 6, 0, -14, -28, -28, -14, 0, 6, 6, -1, -21, -49, -63, -49, -21, -1, 6, 6, -2, -29, -77, -119, more...

integer, non-monotonic, +-

a(n)=7-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence j1bsw20qxswvh

6, 6, 6, 6, 7, 6, 6, 8, 8, 6, 6, 9, 11, 9, 6, 6, 10, 15, 15, 10, 6, 6, 11, 20, 25, 20, 11, 6, 6, 12, 26, 40, 40, 26, 12, 6, 6, 13, 33, 61, 75, 61, 33, 13, 6, 6, 14, 41, 89, 131, more...

integer, non-monotonic, +

a(n)=5+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wg4bgbh2nc02g

6, 6, 6, 6, 12, 6, 6, 18, 18, 6, 6, 24, 36, 24, 6, 6, 30, 60, 60, 30, 6, 6, 36, 90, 120, 90, 36, 6, 6, 42, 126, 210, 210, 126, 42, 6, 6, 48, 168, 336, 420, 336, 168, 48, 6, 6, 54, 216, 504, 756, more...

integer, non-monotonic, +

a(n)=6*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 40ztyuozbmeii

7, 7, 7, 7, 3.5, 7, 7, 2.3333333333, 2.3333333333, 7, 7, 1.75, 1.1666666667, 1.75, 7, 7, 1.4, 0.7, 0.7, 1.4, 7, 7, 1.1666666667, 0.4666666667, 0.35, more...

decimal, non-monotonic, +

a(n)=7/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ktmuzx2daoxag

7, 7, 7, 7, 6, 7, 7, 5, 5, 7, 7, 4, 2, 4, 7, 7, 3, -2, -2, 3, 7, 7, 2, -7, -12, -7, 2, 7, 7, 1, -13, -27, -27, -13, 1, 7, 7, 0, -20, -48, -62, -48, -20, 0, 7, 7, -1, -28, -76, -118, more...

integer, non-monotonic, +-

a(n)=8-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 5ewrmb1m5guqf

7, 7, 7, 7, 8, 7, 7, 9, 9, 7, 7, 10, 12, 10, 7, 7, 11, 16, 16, 11, 7, 7, 12, 21, 26, 21, 12, 7, 7, 13, 27, 41, 41, 27, 13, 7, 7, 14, 34, 62, 76, 62, 34, 14, 7, 7, 15, 42, 90, 132, more...

integer, non-monotonic, +

a(n)=6+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence yv0xm1ncwbmfi

7, 7, 7, 7, 14, 7, 7, 21, 21, 7, 7, 28, 42, 28, 7, 7, 35, 70, 70, 35, 7, 7, 42, 105, 140, 105, 42, 7, 7, 49, 147, 245, 245, 147, 49, 7, 7, 56, 196, 392, 490, 392, 196, 56, 7, 7, 63, 252, 588, 882, more...

integer, non-monotonic, +

a(n)=7*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ps1bnij5om3ob

8, 8, 8, 8, 4, 8, 8, 2.6666666667, 2.6666666667, 8, 8, 2, 1.3333333333, 2, 8, 8, 1.6, 0.8, 0.8, 1.6, 8, 8, 1.3333333333, 0.5333333333, 0.4, more...

decimal, non-monotonic, +

a(n)=8/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence e0lr1mclkctwp

8, 8, 8, 8, 7, 8, 8, 6, 6, 8, 8, 5, 3, 5, 8, 8, 4, -1, -1, 4, 8, 8, 3, -6, -11, -6, 3, 8, 8, 2, -12, -26, -26, -12, 2, 8, 8, 1, -19, -47, -61, -47, -19, 1, 8, 8, 0, -27, -75, -117, more...

integer, non-monotonic, +-

a(n)=9-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence isvg1onmof5dd

8, 8, 8, 8, 9, 8, 8, 10, 10, 8, 8, 11, 13, 11, 8, 8, 12, 17, 17, 12, 8, 8, 13, 22, 27, 22, 13, 8, 8, 14, 28, 42, 42, 28, 14, 8, 8, 15, 35, 63, 77, 63, 35, 15, 8, 8, 16, 43, 91, 133, more...

integer, non-monotonic, +

a(n)=7+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence zlahnduz30yud

8, 8, 8, 8, 16, 8, 8, 24, 24, 8, 8, 32, 48, 32, 8, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 8, 56, 168, 280, 280, 168, 56, 8, 8, 64, 224, 448, 560, 448, 224, 64, 8, 8, 72, 288, 672, 1008, more...

integer, non-monotonic, +

a(n)=8*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence pnf1qrm0ztjx

9, 9, 9, 9, 4.5, 9, 9, 3, 3, 9, 9, 2.25, 1.5, 2.25, 9, 9, 1.8, 0.9, 0.9, 1.8, 9, 9, 1.5, 0.6, 0.45, more...

decimal, non-monotonic, +

a(n)=9/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence bmczgl3sx50mf

9, 9, 9, 9, 8, 9, 9, 7, 7, 9, 9, 6, 4, 6, 9, 9, 5, 0, 0, 5, 9, 9, 4, -5, -10, -5, 4, 9, 9, 3, -11, -25, -25, -11, 3, 9, 9, 2, -18, -46, -60, -46, -18, 2, 9, 9, 1, -26, -74, -116, more...

integer, non-monotonic, +-

a(n)=10-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence w4uz3ni5deeof

9, 9, 9, 9, 10, 9, 9, 11, 11, 9, 9, 12, 14, 12, 9, 9, 13, 18, 18, 13, 9, 9, 14, 23, 28, 23, 14, 9, 9, 15, 29, 43, 43, 29, 15, 9, 9, 16, 36, 64, 78, 64, 36, 16, 9, 9, 17, 44, 92, 134, more...

integer, non-monotonic, +

a(n)=8+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence e3ftznzioxvlh

9, 9, 9, 9, 18, 9, 9, 27, 27, 9, 9, 36, 54, 36, 9, 9, 45, 90, 90, 45, 9, 9, 54, 135, 180, 135, 54, 9, 9, 63, 189, 315, 315, 189, 63, 9, 9, 72, 252, 504, 630, 504, 252, 72, 9, 9, 81, 324, 756, 1134, more...

integer, non-monotonic, +

a(n)=9*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 1bsdn2xn4bdib

10, 10, 10, 10, 5, 10, 10, 3.3333333333, 3.3333333333, 10, 10, 2.5, 1.6666666667, 2.5, 10, 10, 2, 1, 1, 2, 10, 10, 1.6666666667, 0.6666666667, 0.5, more...

decimal, non-monotonic, +

a(n)=10/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence hpymcf0m1rnsd

10, 10, 10, 10, 11, 10, 10, 12, 12, 10, 10, 13, 15, 13, 10, 10, 14, 19, 19, 14, 10, 10, 15, 24, 29, 24, 15, 10, 10, 16, 30, 44, 44, 30, 16, 10, 10, 17, 37, 65, 79, 65, 37, 17, 10, 10, 18, 45, 93, 135, more...

integer, non-monotonic, +

a(n)=9+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 2fuxpjeujyjui

10, 10, 10, 10, 20, 10, 10, 30, 30, 10, 10, 40, 60, 40, 10, 10, 50, 100, 100, 50, 10, 10, 60, 150, 200, 150, 60, 10, 10, 70, 210, 350, 350, 210, 70, 10, 10, 80, 280, 560, 700, 560, 280, 80, 10, 10, 90, 360, 840, 1260, more...

integer, non-monotonic, +

a(n)=10*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence dpdmrkxm1jlxd

11, 11, 11, 11, 12, 11, 11, 13, 13, 11, 11, 14, 16, 14, 11, 11, 15, 20, 20, 15, 11, 11, 16, 25, 30, 25, 16, 11, 11, 17, 31, 45, 45, 31, 17, 11, 11, 18, 38, 66, 80, 66, 38, 18, 11, 11, 19, 46, 94, 136, more...

integer, non-monotonic, +

a(n)=10+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence majiov2qpfuee

0, 0, 0, 1, -1, 0, 2, 0, -2, 0, 3, 2, -2, -3, 0, 4, 5, 0, -5, -4, 0, 5, 9, 5, -5, -9, -5, 0, 6, 14, 14, 0, -14, -14, -6, 0, 7, 20, 28, 14, -14, -28, -20, -7, 0, 8, 27, 48, 42, 0, more...

integer, non-monotonic, +-, A259525

a(n)=Δ(pt(n))
pt(n)=Pascals triangle by rows
Δ(a)=differences of a
n≥0
3 operations
Combinatoric

Sequence vt4jgoae3hyoi

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=cf(pt(n))
pt(n)=Pascals triangle by rows
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Combinatoric
a(n)=cf(pt(comp(p(a(n-1)))))
a(0)=1
p(n)=nth prime
comp(a)=complement function of a (in range)
pt(n)=Pascals triangle by rows
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Prime

Sequence vusi1l2g2owhp

0, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, more...

integer, strictly-monotonic, +

a(n)=comp(pt(n))
pt(n)=Pascals triangle by rows
comp(a)=complement function of a (in range)
n≥0
3 operations
Combinatoric
a(n)=comp(pt(comp(p(a(n-1)))))
a(0)=1
p(n)=nth prime
comp(a)=complement function of a (in range)
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence u44amqiiyfhwp

1, 1, 1, 1, 2, 2, 2, 6, 18, 18, 18, 72, 432, 1728, 1728, 1728, 8640, 86400, 864000, 4320000, 4320000, 4320000, 25920000, 388800000, 7776000000, more...

integer, monotonic, +

a(n)=∏(pt(n))
pt(n)=Pascals triangle by rows
∏(a)=partial products of a
n≥0
3 operations
Combinatoric

Sequence a2gsp1ba5btgo

1, 2, 3, 4, 6, 7, 8, 11, 14, 15, 16, 20, 26, 30, 31, 32, 37, 47, 57, 62, 63, 64, 70, 85, 105, 120, 126, 127, 128, 135, 156, 191, 226, 247, 254, 255, 256, 264, 292, 348, 418, 474, 502, 510, 511, 512, 521, 557, 641, 767, more...

integer, strictly-monotonic, +, A163866

a(n)=∑(pt(n))
pt(n)=Pascals triangle by rows
∑(a)=partial sums of a
n≥0
3 operations
Combinatoric

Sequence p2e3pj3zpiohj

-1, 0, 1, 2, 2, 4, 5, 4, 5, 8, 9, 7, 6, 9, 13, 14, 11, 7, 8, 14, 19, 20, 16, 8, 4, 10, 20, 26, 27, 22, 9, -4, -3, 12, 27, 34, 35, 29, 10, -17, -30, -15, 14, 35, 43, 44, 37, 11, -36, -77, more...

integer, non-monotonic, +-

a(n)=n-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 3rgdkcd5crlck

0, 1, 2, 3, 2, 5, 6, 2.3333333333, 2.6666666667, 9, 10, 2.75, 2, 3.25, 14, 15, 3.2, 1.7, 1.8, 3.8, 20, 21, 3.6666666667, 1.5333333333, 1.2, more...

decimal, non-monotonic, +

a(n)=n/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence q2dhwld2wtcwk

0, 1, 2, 3, 8, 5, 6, 21, 24, 9, 10, 44, 72, 52, 14, 15, 80, 170, 180, 95, 20, 21, 132, 345, 480, 375, 156, 27, 28, 203, 630, 1085, 1120, 693, 238, 35, 36, 296, 1064, 2184, 2800, 2296, 1176, 344, 44, 45, 414, 1692, 4032, 6174, more...

integer, non-monotonic, +

a(n)=n*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence g1iimx2mtvote

1, 0, -1, -2, -2, -4, -5, -4, -5, -8, -9, -7, -6, -9, -13, -14, -11, -7, -8, -14, -19, -20, -16, -8, -4, -10, -20, -26, -27, -22, -9, 4, 3, -12, -27, -34, -35, -29, -10, 17, 30, 15, -14, -35, -43, -44, -37, -11, 36, 77, more...

integer, non-monotonic, +-

a(n)=pt(n)-n
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 35l1tiw3tpheo

1, 0.5, 0.3333333333, 0.5, 0.2, 0.1666666667, 0.4285714286, 0.375, 0.1111111111, 0.1, 0.3636363636, 0.5, 0.3076923077, 0.0714285714, 0.0666666667, 0.3125, 0.5882352941, 0.5555555556, 0.2631578947, 0.05, 0.0476190476, 0.2727272727, 0.652173913, 0.8333333333, 0.6, more...

decimal, non-monotonic, +

a(n)=pt(n)/n
pt(n)=Pascals triangle by rows
n≥1
4 operations
Combinatoric

Sequence apggwjvswmf4b

1, 2, 3, 4, 6, 6, 7, 10, 11, 10, 11, 15, 18, 17, 15, 16, 21, 27, 28, 24, 21, 22, 28, 38, 44, 40, 32, 28, 29, 36, 51, 66, 67, 54, 41, 36, 37, 45, 66, 95, 110, 97, 70, 51, 45, 46, 55, 83, 132, 175, more...

integer, non-monotonic, +

a(n)=n+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

[0] [1] [2] [3] [4] ... [767]