Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 83158. [0] [1] [2] [3] [4] ... [831]

Sequence lalqvjgjzo0ro

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric

Sequence tkj4yxowfh2oi

-1, -1, -1, -1, -2, -1, -1, -3, -3, -1, -1, -4, -6, -4, -1, -1, -5, -10, -10, -5, -1, -1, -6, -15, -20, -15, -6, -1, -1, -7, -21, -35, -35, -21, -7, -1, -1, -8, -28, -56, -70, -56, -28, -8, -1, -1, -9, -36, -84, -126, more...

integer, non-monotonic, -

a(n)=-pt(n)
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence vzsphmv5mq1t

-9, -9, -9, -9, -8, -9, -9, -7, -7, -9, -9, -6, -4, -6, -9, -9, -5, 0, 0, -5, -9, -9, -4, 5, 10, 5, -4, -9, -9, -3, 11, 25, 25, 11, -3, -9, -9, -2, 18, 46, 60, 46, 18, -2, -9, -9, -1, 26, 74, 116, more...

integer, non-monotonic, +-

a(n)=pt(n)-10
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence d23m51c0btdfe

-8, -8, -8, -8, -7, -8, -8, -6, -6, -8, -8, -5, -3, -5, -8, -8, -4, 1, 1, -4, -8, -8, -3, 6, 11, 6, -3, -8, -8, -2, 12, 26, 26, 12, -2, -8, -8, -1, 19, 47, 61, 47, 19, -1, -8, -8, 0, 27, 75, 117, more...

integer, non-monotonic, +-

a(n)=pt(n)-9
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 4viehohereopo

-7, -7, -7, -7, -6, -7, -7, -5, -5, -7, -7, -4, -2, -4, -7, -7, -3, 2, 2, -3, -7, -7, -2, 7, 12, 7, -2, -7, -7, -1, 13, 27, 27, 13, -1, -7, -7, 0, 20, 48, 62, 48, 20, 0, -7, -7, 1, 28, 76, 118, more...

integer, non-monotonic, +-

a(n)=pt(n)-8
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wliodqfzukfhn

-6, -6, -6, -6, -5, -6, -6, -4, -4, -6, -6, -3, -1, -3, -6, -6, -2, 3, 3, -2, -6, -6, -1, 8, 13, 8, -1, -6, -6, 0, 14, 28, 28, 14, 0, -6, -6, 1, 21, 49, 63, 49, 21, 1, -6, -6, 2, 29, 77, 119, more...

integer, non-monotonic, +-

a(n)=pt(n)-7
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence xa1tlte3g0szn

-5, -5, -5, -5, -4, -5, -5, -3, -3, -5, -5, -2, 0, -2, -5, -5, -1, 4, 4, -1, -5, -5, 0, 9, 14, 9, 0, -5, -5, 1, 15, 29, 29, 15, 1, -5, -5, 2, 22, 50, 64, 50, 22, 2, -5, -5, 3, 30, 78, 120, more...

integer, non-monotonic, +-

a(n)=pt(n)-6
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence njqf3jwtvxk2

-4, -4, -4, -4, -3, -4, -4, -2, -2, -4, -4, -1, 1, -1, -4, -4, 0, 5, 5, 0, -4, -4, 1, 10, 15, 10, 1, -4, -4, 2, 16, 30, 30, 16, 2, -4, -4, 3, 23, 51, 65, 51, 23, 3, -4, -4, 4, 31, 79, 121, more...

integer, non-monotonic, +-

a(n)=pt(n)-5
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence rcdmeajs1vkeh

-3, -3, -3, -3, -2, -3, -3, -1, -1, -3, -3, 0, 2, 0, -3, -3, 1, 6, 6, 1, -3, -3, 2, 11, 16, 11, 2, -3, -3, 3, 17, 31, 31, 17, 3, -3, -3, 4, 24, 52, 66, 52, 24, 4, -3, -3, 5, 32, 80, 122, more...

integer, non-monotonic, +-

a(n)=pt(n)-4
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence it4jdyxuvwoag

-2, -2, -2, -2, -1, -2, -2, 0, 0, -2, -2, 1, 3, 1, -2, -2, 2, 7, 7, 2, -2, -2, 3, 12, 17, 12, 3, -2, -2, 4, 18, 32, 32, 18, 4, -2, -2, 5, 25, 53, 67, 53, 25, 5, -2, -2, 6, 33, 81, 123, more...

integer, non-monotonic, +-

a(n)=pt(n)-3
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence yryiqhaostkre

-1, -1, -1, -1, 0, -1, -1, 1, 1, -1, -1, 2, 4, 2, -1, -1, 3, 8, 8, 3, -1, -1, 4, 13, 18, 13, 4, -1, -1, 5, 19, 33, 33, 19, 5, -1, -1, 6, 26, 54, 68, 54, 26, 6, -1, -1, 7, 34, 82, 124, more...

integer, non-monotonic, +-

a(n)=pt(n)-2
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence h1csolhkelm1g

0, 0, 0, 0, -1, 0, 0, -2, -2, 0, 0, -3, -5, -3, 0, 0, -4, -9, -9, -4, 0, 0, -5, -14, -19, -14, -5, 0, 0, -6, -20, -34, -34, -20, -6, 0, 0, -7, -27, -55, -69, -55, -27, -7, 0, 0, -8, -35, -83, -125, more...

integer, non-monotonic, -

a(n)=1-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 5rg4aq4nbuioi

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 9, 9, 4, 0, 0, 5, 14, 19, 14, 5, 0, 0, 6, 20, 34, 34, 20, 6, 0, 0, 7, 27, 55, 69, 55, 27, 7, 0, 0, 8, 35, 83, 125, more...

integer, non-monotonic, +, A014473

a(n)=pt(n)-1
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence sbwdei1zgkssp

0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.3, 0.3, 0.1, 0.1, 0.4, 0.6, 0.4, 0.1, 0.1, 0.5, 1, 1, 0.5, 0.1, 0.1, 0.6, 1.5, 2, more...

decimal, non-monotonic, +

a(n)=pt(n)/10
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence kqhouahqckruo

0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.1111111111111111, 0.3333333333333333, 0.3333333333333333, 0.1111111111111111, 0.1111111111111111, 0.4444444444444444, 0.6666666666666666, 0.4444444444444444, 0.1111111111111111, 0.1111111111111111, 0.5555555555555556, 1.1111111111111112, 1.1111111111111112, 0.5555555555555556, 0.1111111111111111, 0.1111111111111111, 0.6666666666666666, 1.6666666666666667, 2.2222222222222223, more...

decimal, non-monotonic, +

a(n)=pt(n)/9
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence avcswpy5e1nch

0.125, 0.125, 0.125, 0.125, 0.25, 0.125, 0.125, 0.375, 0.375, 0.125, 0.125, 0.5, 0.75, 0.5, 0.125, 0.125, 0.625, 1.25, 1.25, 0.625, 0.125, 0.125, 0.75, 1.875, 2.5, more...

decimal, non-monotonic, +

a(n)=pt(n)/8
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence bd4pxi03zxzef

0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 0.42857142857142855, 0.14285714285714285, 0.14285714285714285, 0.5714285714285714, 0.8571428571428571, 0.5714285714285714, 0.14285714285714285, 0.14285714285714285, 0.7142857142857143, 1.4285714285714286, 1.4285714285714286, 0.7142857142857143, 0.14285714285714285, 0.14285714285714285, 0.8571428571428571, 2.142857142857143, 2.857142857142857, more...

decimal, non-monotonic, +

a(n)=pt(n)/7
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ahwfq1vlo4k0

0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.16666666666666666, 0.5, 0.5, 0.16666666666666666, 0.16666666666666666, 0.6666666666666666, 1, 0.6666666666666666, 0.16666666666666666, 0.16666666666666666, 0.8333333333333334, 1.6666666666666667, 1.6666666666666667, 0.8333333333333334, 0.16666666666666666, 0.16666666666666666, 1, 2.5, 3.3333333333333335, more...

decimal, non-monotonic, +

a(n)=pt(n)/6
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence qstbuy4r1d2ai

0.2, 0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.6, 0.6, 0.2, 0.2, 0.8, 1.2, 0.8, 0.2, 0.2, 1, 2, 2, 1, 0.2, 0.2, 1.2, 3, 4, more...

decimal, non-monotonic, +

a(n)=pt(n)/5
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence io5oaddkqilde

0.25, 0.25, 0.25, 0.25, 0.5, 0.25, 0.25, 0.75, 0.75, 0.25, 0.25, 1, 1.5, 1, 0.25, 0.25, 1.25, 2.5, 2.5, 1.25, 0.25, 0.25, 1.5, 3.75, 5, more...

decimal, non-monotonic, +

a(n)=pt(n)/4
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lpeuy3san3bsb

0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.3333333333333333, 1, 1, 0.3333333333333333, 0.3333333333333333, 1.3333333333333333, 2, 1.3333333333333333, 0.3333333333333333, 0.3333333333333333, 1.6666666666666667, 3.3333333333333335, 3.3333333333333335, 1.6666666666666667, 0.3333333333333333, 0.3333333333333333, 2, 5, 6.666666666666667, more...

decimal, non-monotonic, +

a(n)=pt(n)/3
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence drohyjlvvbu0d

0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 2, 3, 2, 0.5, 0.5, 2.5, 5, 5, 2.5, 0.5, 0.5, 3, 7.5, 10, more...

decimal, non-monotonic, +

a(n)=pt(n)/2
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence xbrx4lu5ldko

1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -4, -2, 1, 1, -3, -8, -8, -3, 1, 1, -4, -13, -18, -13, -4, 1, 1, -5, -19, -33, -33, -19, -5, 1, 1, -6, -26, -54, -68, -54, -26, -6, 1, 1, -7, -34, -82, -124, more...

integer, non-monotonic, +-

a(n)=2-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 2gfkwc0zcp4kb

1, 1, 1, 1, 0.5, 1, 1, 0.3333333333333333, 0.3333333333333333, 1, 1, 0.25, 0.16666666666666666, 0.25, 1, 1, 0.2, 0.1, 0.1, 0.2, 1, 1, 0.16666666666666666, 0.06666666666666667, 0.05, more...

decimal, non-monotonic, +

a(n)=1/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence znk0indc2bj1k

1, 1, 1, 1, 1, 15, 21, 1, 70, 1, 126, 1, 252, 1, 330, 55, 66, 792, 1, 715, 715, 1, 2002, 1001, 1, 3003, 3003, 1, 1820, 11440, 120, 136, 19448, 6188, 1, 3060, 48620, 3060, 1, 11628, 92378, 3876, 1, 15504, 184756, 15504, 1, 5985, 293930, 116280, more...

integer, non-monotonic, +

a(n)=pt(5*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence owetw5a34bhqi

1, 1, 1, 1, 6, 1, 10, 1, 20, 1, 21, 21, 1, 56, 28, 1, 84, 84, 1, 45, 252, 45, 1, 165, 462, 55, 1, 220, 924, 220, 1, 78, 1287, 1287, 78, 1, 364, 3003, 2002, 91, 1, 455, 5005, 5005, 455, 1, 120, 4368, 12870, 4368, more...

integer, non-monotonic, +

a(n)=pt(3*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence jzosj5gfuvueo

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, more...

integer, non-monotonic, +

a(n)=pt(1+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=gcd(μ(n²), pt(n))
μ(n)=Möbius function
pt(n)=Pascals triangle by rows
gcd(a,b)=greatest common divisor
n≥1
6 operations
Prime
a(n)=pt(n)%p(n²)
pt(n)=Pascals triangle by rows
p(n)=nth prime
n≥1
6 operations
Prime
a(n)=pt(n)%p(σ(n))
pt(n)=Pascals triangle by rows
σ(n)=divisor sum of n
p(n)=nth prime
n≥1
6 operations
Prime

Sequence dd1nt054ybvrp

1, 1, 1, 21, 70, 126, 252, 330, 66, 1, 715, 2002, 1, 3003, 1820, 120, 19448, 1, 48620, 1, 92378, 1, 184756, 1, 293930, 210, 170544, 26334, 8855, 817190, 1, 1961256, 10626, 53130, 3268760, 1, 3124550, 657800, 351, 17383860, 80730, 20475, 40116600, 20475, 118755, 77558760, 23751, 142506, 155117520, 142506, more...

integer, non-monotonic, +

a(n)=pt(10*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 0x1lp4fyc3y3m

1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, more...

integer, non-monotonic, +

a(n)=pt(2+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 52zcy4vhjmnkl

1, 1, 2, 1, 3, 1, 6, 1, 5, 10, 1, 6, 20, 6, 1, 21, 35, 7, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, more...

integer, non-monotonic, +, A034850

a(n)=pt(2*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence nw1oh5uf52frm

1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, more...

integer, non-monotonic, +

a(n)=pt(5+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence itrvgiv2bz33b

1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, more...

integer, non-monotonic, +

a(n)=pt(9+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ysdtdxkspxqmp

1, 1, 6, 10, 20, 21, 1, 28, 84, 1, 252, 1, 462, 1, 924, 1, 1287, 78, 364, 2002, 1, 5005, 455, 120, 12870, 120, 680, 24310, 136, 816, 48620, 816, 171, 75582, 11628, 1, 38760, 125970, 190, 1330, 293930, 54264, 1, 26334, 705432, 26334, 1, 100947, 1352078, 33649, more...

integer, non-monotonic, +

a(n)=pt(6*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence k2cjomxdd13hn

1, 1, 10, 1, 1, 1, 1, 45, 462, 220, 1, 1287, 364, 91, 5005, 1, 12870, 1, 24310, 1, 48620, 1, 75582, 171, 38760, 15504, 1330, 293930, 1, 319770, 26334, 1771, 1352078, 253, 134596, 1307504, 1, 1081575, 1081575, 1, 3124550, 1562275, 1, 4686825, 4686825, 1, 3108105, 21474180, 378, 475020, more...

integer, non-monotonic, +

a(n)=pt(9*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wgpacvd2buvgd

1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, more...

integer, non-monotonic, +

a(n)=pt(3+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence isi1eazvg5gkn

1, 2, 3, 6, 5, 1, 20, 1, 35, 1, 70, 1, 84, 36, 10, 252, 10, 55, 462, 11, 66, 924, 66, 13, 1287, 715, 1, 364, 3432, 364, 1, 1365, 6435, 455, 1, 1820, 12870, 1820, 1, 680, 19448, 12376, 136, 18, 8568, 48620, 8568, 18, 171, 27132, more...

integer, non-monotonic, +

a(n)=pt(4*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence h45zc35jadjnd

1, 3, 1, 1, 1, 1, 28, 126, 10, 45, 330, 1, 924, 1, 1716, 1, 3432, 1, 5005, 105, 1820, 4368, 17, 24310, 136, 3060, 31824, 1, 27132, 27132, 1, 77520, 38760, 1, 116280, 116280, 1, 74613, 497420, 231, 8855, 1352078, 33649, 24, 735471, 1307504, 276, 12650, 4457400, 480700, more...

integer, non-monotonic, +

a(n)=pt(7*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ltmqlqu4u3r0e

1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, more...

integer, non-monotonic, +

a(n)=pt(6+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence cliydv1mogptj

1, 3, 5, 20, 35, 70, 84, 10, 10, 462, 66, 66, 1287, 1, 3432, 1, 6435, 1, 12870, 1, 19448, 136, 8568, 8568, 171, 92378, 19, 38760, 38760, 21, 293930, 5985, 1540, 705432, 1540, 8855, 1352078, 1771, 10626, 2704156, 10626, 2300, 4457400, 177100, 26, 3124550, 3124550, 26, 296010, 20058300, more...

integer, non-monotonic, +

a(n)=pt(8*n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ob33nzpb4co4k

1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, more...

integer, non-monotonic, +

a(n)=pt(10+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence u00t0egtweljm

2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, more...

integer, non-monotonic, +

a(n)=pt(4+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wdih3nqxrnz2m

2, 2, 2, 2, 1, 2, 2, 0, 0, 2, 2, -1, -3, -1, 2, 2, -2, -7, -7, -2, 2, 2, -3, -12, -17, -12, -3, 2, 2, -4, -18, -32, -32, -18, -4, 2, 2, -5, -25, -53, -67, -53, -25, -5, 2, 2, -6, -33, -81, -123, more...

integer, non-monotonic, +-

a(n)=3-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence hzpjd2thqgt3d

2, 2, 2, 2, 1, 2, 2, 0.6666666666666666, 0.6666666666666666, 2, 2, 0.5, 0.3333333333333333, 0.5, 2, 2, 0.4, 0.2, 0.2, 0.4, 2, 2, 0.3333333333333333, 0.13333333333333333, 0.1, more...

decimal, non-monotonic, +

a(n)=2/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence xaanwvj2qspwn

2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 7, 5, 2, 2, 6, 11, 11, 6, 2, 2, 7, 16, 21, 16, 7, 2, 2, 8, 22, 36, 36, 22, 8, 2, 2, 9, 29, 57, 71, 57, 29, 9, 2, 2, 10, 37, 85, 127, more...

integer, non-monotonic, +

a(n)=1+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence gncuzxjs4eg4c

2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, more...

integer, non-monotonic, +, A028326

a(n)=2*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=pt(n)*lpf(a(n-1))
a(0)=2
pt(n)=Pascals triangle by rows
lpf(n)=least prime factor of n
n≥0
5 operations
Prime

Sequence lvaoxffno3pqn

3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, more...

integer, non-monotonic, +

a(n)=pt(8+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence amozzjuudbjml

3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, more...

integer, non-monotonic, +

a(n)=pt(7+n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence pwn3ofnfogx0h

3, 3, 3, 3, 1.5, 3, 3, 1, 1, 3, 3, 0.75, 0.5, 0.75, 3, 3, 0.6, 0.3, 0.3, 0.6, 3, 3, 0.5, 0.2, 0.15, more...

decimal, non-monotonic, +

a(n)=3/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wmvvmirgjdqaf

3, 3, 3, 3, 2, 3, 3, 1, 1, 3, 3, 0, -2, 0, 3, 3, -1, -6, -6, -1, 3, 3, -2, -11, -16, -11, -2, 3, 3, -3, -17, -31, -31, -17, -3, 3, 3, -4, -24, -52, -66, -52, -24, -4, 3, 3, -5, -32, -80, -122, more...

integer, non-monotonic, +-

a(n)=4-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ozmlwj0di5u2l

3, 3, 3, 3, 4, 3, 3, 5, 5, 3, 3, 6, 8, 6, 3, 3, 7, 12, 12, 7, 3, 3, 8, 17, 22, 17, 8, 3, 3, 9, 23, 37, 37, 23, 9, 3, 3, 10, 30, 58, 72, 58, 30, 10, 3, 3, 11, 38, 86, 128, more...

integer, non-monotonic, +

a(n)=2+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lkfpsholu3xhg

3, 3, 3, 3, 6, 3, 3, 9, 9, 3, 3, 12, 18, 12, 3, 3, 15, 30, 30, 15, 3, 3, 18, 45, 60, 45, 18, 3, 3, 21, 63, 105, 105, 63, 21, 3, 3, 24, 84, 168, 210, 168, 84, 24, 3, 3, 27, 108, 252, 378, more...

integer, non-monotonic, +

a(n)=3*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence aeiqtjg4w4dsp

4, 4, 4, 4, 2, 4, 4, 1.3333333333333333, 1.3333333333333333, 4, 4, 1, 0.6666666666666666, 1, 4, 4, 0.8, 0.4, 0.4, 0.8, 4, 4, 0.6666666666666666, 0.26666666666666666, 0.2, more...

decimal, non-monotonic, +

a(n)=4/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence vijzit4hqcqtf

4, 4, 4, 4, 3, 4, 4, 2, 2, 4, 4, 1, -1, 1, 4, 4, 0, -5, -5, 0, 4, 4, -1, -10, -15, -10, -1, 4, 4, -2, -16, -30, -30, -16, -2, 4, 4, -3, -23, -51, -65, -51, -23, -3, 4, 4, -4, -31, -79, -121, more...

integer, non-monotonic, +-

a(n)=5-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence edio4olts4dmb

4, 4, 4, 4, 5, 4, 4, 6, 6, 4, 4, 7, 9, 7, 4, 4, 8, 13, 13, 8, 4, 4, 9, 18, 23, 18, 9, 4, 4, 10, 24, 38, 38, 24, 10, 4, 4, 11, 31, 59, 73, 59, 31, 11, 4, 4, 12, 39, 87, 129, more...

integer, non-monotonic, +

a(n)=3+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence xycrrs5dhn5bg

4, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, more...

integer, non-monotonic, +

a(n)=4*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence csrjpkgdlfpqb

5, 5, 5, 5, 2.5, 5, 5, 1.6666666666666667, 1.6666666666666667, 5, 5, 1.25, 0.8333333333333334, 1.25, 5, 5, 1, 0.5, 0.5, 1, 5, 5, 0.8333333333333334, 0.3333333333333333, 0.25, more...

decimal, non-monotonic, +

a(n)=5/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 5fpab4k0l11ri

5, 5, 5, 5, 4, 5, 5, 3, 3, 5, 5, 2, 0, 2, 5, 5, 1, -4, -4, 1, 5, 5, 0, -9, -14, -9, 0, 5, 5, -1, -15, -29, -29, -15, -1, 5, 5, -2, -22, -50, -64, -50, -22, -2, 5, 5, -3, -30, -78, -120, more...

integer, non-monotonic, +-

a(n)=6-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence v3x3p3nyjjnij

5, 5, 5, 5, 6, 5, 5, 7, 7, 5, 5, 8, 10, 8, 5, 5, 9, 14, 14, 9, 5, 5, 10, 19, 24, 19, 10, 5, 5, 11, 25, 39, 39, 25, 11, 5, 5, 12, 32, 60, 74, 60, 32, 12, 5, 5, 13, 40, 88, 130, more...

integer, non-monotonic, +

a(n)=4+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence im1yynj5c3dei

5, 5, 5, 5, 10, 5, 5, 15, 15, 5, 5, 20, 30, 20, 5, 5, 25, 50, 50, 25, 5, 5, 30, 75, 100, 75, 30, 5, 5, 35, 105, 175, 175, 105, 35, 5, 5, 40, 140, 280, 350, 280, 140, 40, 5, 5, 45, 180, 420, 630, more...

integer, non-monotonic, +

a(n)=5*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence z54vk35vpv30o

6, 6, 6, 6, 3, 6, 6, 2, 2, 6, 6, 1.5, 1, 1.5, 6, 6, 1.2, 0.6, 0.6, 1.2, 6, 6, 1, 0.4, 0.3, more...

decimal, non-monotonic, +

a(n)=6/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence jxnw302bdxvse

6, 6, 6, 6, 5, 6, 6, 4, 4, 6, 6, 3, 1, 3, 6, 6, 2, -3, -3, 2, 6, 6, 1, -8, -13, -8, 1, 6, 6, 0, -14, -28, -28, -14, 0, 6, 6, -1, -21, -49, -63, -49, -21, -1, 6, 6, -2, -29, -77, -119, more...

integer, non-monotonic, +-

a(n)=7-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence uotanjepefjxb

6, 6, 6, 6, 7, 6, 6, 8, 8, 6, 6, 9, 11, 9, 6, 6, 10, 15, 15, 10, 6, 6, 11, 20, 25, 20, 11, 6, 6, 12, 26, 40, 40, 26, 12, 6, 6, 13, 33, 61, 75, 61, 33, 13, 6, 6, 14, 41, 89, 131, more...

integer, non-monotonic, +

a(n)=5+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence cl52bxwildhyp

6, 6, 6, 6, 12, 6, 6, 18, 18, 6, 6, 24, 36, 24, 6, 6, 30, 60, 60, 30, 6, 6, 36, 90, 120, 90, 36, 6, 6, 42, 126, 210, 210, 126, 42, 6, 6, 48, 168, 336, 420, 336, 168, 48, 6, 6, 54, 216, 504, 756, more...

integer, non-monotonic, +

a(n)=6*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence dedblsmgctube

7, 7, 7, 7, 3.5, 7, 7, 2.3333333333333335, 2.3333333333333335, 7, 7, 1.75, 1.1666666666666667, 1.75, 7, 7, 1.4, 0.7, 0.7, 1.4, 7, 7, 1.1666666666666667, 0.4666666666666667, 0.35, more...

decimal, non-monotonic, +

a(n)=7/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 0vru3lzwvdjvm

7, 7, 7, 7, 6, 7, 7, 5, 5, 7, 7, 4, 2, 4, 7, 7, 3, -2, -2, 3, 7, 7, 2, -7, -12, -7, 2, 7, 7, 1, -13, -27, -27, -13, 1, 7, 7, 0, -20, -48, -62, -48, -20, 0, 7, 7, -1, -28, -76, -118, more...

integer, non-monotonic, +-

a(n)=8-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 0oepzh1qhpsag

7, 7, 7, 7, 8, 7, 7, 9, 9, 7, 7, 10, 12, 10, 7, 7, 11, 16, 16, 11, 7, 7, 12, 21, 26, 21, 12, 7, 7, 13, 27, 41, 41, 27, 13, 7, 7, 14, 34, 62, 76, 62, 34, 14, 7, 7, 15, 42, 90, 132, more...

integer, non-monotonic, +

a(n)=6+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence xnofnb3le4lim

7, 7, 7, 7, 14, 7, 7, 21, 21, 7, 7, 28, 42, 28, 7, 7, 35, 70, 70, 35, 7, 7, 42, 105, 140, 105, 42, 7, 7, 49, 147, 245, 245, 147, 49, 7, 7, 56, 196, 392, 490, 392, 196, 56, 7, 7, 63, 252, 588, 882, more...

integer, non-monotonic, +

a(n)=7*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ws4dhhopw3i0f

8, 8, 8, 8, 4, 8, 8, 2.6666666666666665, 2.6666666666666665, 8, 8, 2, 1.3333333333333333, 2, 8, 8, 1.6, 0.8, 0.8, 1.6, 8, 8, 1.3333333333333333, 0.5333333333333333, 0.4, more...

decimal, non-monotonic, +

a(n)=8/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence wyy44gsng4j5o

8, 8, 8, 8, 7, 8, 8, 6, 6, 8, 8, 5, 3, 5, 8, 8, 4, -1, -1, 4, 8, 8, 3, -6, -11, -6, 3, 8, 8, 2, -12, -26, -26, -12, 2, 8, 8, 1, -19, -47, -61, -47, -19, 1, 8, 8, 0, -27, -75, -117, more...

integer, non-monotonic, +-

a(n)=9-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence k44zxsyfcpv5p

8, 8, 8, 8, 9, 8, 8, 10, 10, 8, 8, 11, 13, 11, 8, 8, 12, 17, 17, 12, 8, 8, 13, 22, 27, 22, 13, 8, 8, 14, 28, 42, 42, 28, 14, 8, 8, 15, 35, 63, 77, 63, 35, 15, 8, 8, 16, 43, 91, 133, more...

integer, non-monotonic, +

a(n)=7+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 0fowcxvctr3ej

8, 8, 8, 8, 16, 8, 8, 24, 24, 8, 8, 32, 48, 32, 8, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 8, 56, 168, 280, 280, 168, 56, 8, 8, 64, 224, 448, 560, 448, 224, 64, 8, 8, 72, 288, 672, 1008, more...

integer, non-monotonic, +

a(n)=8*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence p5drwknerdjdj

9, 9, 9, 9, 4.5, 9, 9, 3, 3, 9, 9, 2.25, 1.5, 2.25, 9, 9, 1.8, 0.9, 0.9, 1.8, 9, 9, 1.5, 0.6, 0.45, more...

decimal, non-monotonic, +

a(n)=9/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 3nnzio0zctl4j

9, 9, 9, 9, 8, 9, 9, 7, 7, 9, 9, 6, 4, 6, 9, 9, 5, 0, 0, 5, 9, 9, 4, -5, -10, -5, 4, 9, 9, 3, -11, -25, -25, -11, 3, 9, 9, 2, -18, -46, -60, -46, -18, 2, 9, 9, 1, -26, -74, -116, more...

integer, non-monotonic, +-

a(n)=10-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence kpqt3mqawrn2i

9, 9, 9, 9, 10, 9, 9, 11, 11, 9, 9, 12, 14, 12, 9, 9, 13, 18, 18, 13, 9, 9, 14, 23, 28, 23, 14, 9, 9, 15, 29, 43, 43, 29, 15, 9, 9, 16, 36, 64, 78, 64, 36, 16, 9, 9, 17, 44, 92, 134, more...

integer, non-monotonic, +

a(n)=8+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence lqzvobbf4t3vm

9, 9, 9, 9, 18, 9, 9, 27, 27, 9, 9, 36, 54, 36, 9, 9, 45, 90, 90, 45, 9, 9, 54, 135, 180, 135, 54, 9, 9, 63, 189, 315, 315, 189, 63, 9, 9, 72, 252, 504, 630, 504, 252, 72, 9, 9, 81, 324, 756, 1134, more...

integer, non-monotonic, +

a(n)=9*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ko3y1acimzpj

10, 10, 10, 10, 5, 10, 10, 3.3333333333333335, 3.3333333333333335, 10, 10, 2.5, 1.6666666666666667, 2.5, 10, 10, 2, 1, 1, 2, 10, 10, 1.6666666666666667, 0.6666666666666666, 0.5, more...

decimal, non-monotonic, +

a(n)=10/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence tvtf5hu4kx20n

10, 10, 10, 10, 11, 10, 10, 12, 12, 10, 10, 13, 15, 13, 10, 10, 14, 19, 19, 14, 10, 10, 15, 24, 29, 24, 15, 10, 10, 16, 30, 44, 44, 30, 16, 10, 10, 17, 37, 65, 79, 65, 37, 17, 10, 10, 18, 45, 93, 135, more...

integer, non-monotonic, +

a(n)=9+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence sccrvrihmtzdn

10, 10, 10, 10, 20, 10, 10, 30, 30, 10, 10, 40, 60, 40, 10, 10, 50, 100, 100, 50, 10, 10, 60, 150, 200, 150, 60, 10, 10, 70, 210, 350, 350, 210, 70, 10, 10, 80, 280, 560, 700, 560, 280, 80, 10, 10, 90, 360, 840, 1260, more...

integer, non-monotonic, +

a(n)=10*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence l41efdzenk40b

11, 11, 11, 11, 12, 11, 11, 13, 13, 11, 11, 14, 16, 14, 11, 11, 15, 20, 20, 15, 11, 11, 16, 25, 30, 25, 16, 11, 11, 17, 31, 45, 45, 31, 17, 11, 11, 18, 38, 66, 80, 66, 38, 18, 11, 11, 19, 46, 94, 136, more...

integer, non-monotonic, +

a(n)=10+pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence nlmrphjolheek

-1, 0, 1, 2, 2, 4, 5, 4, 5, 8, 9, 7, 6, 9, 13, 14, 11, 7, 8, 14, 19, 20, 16, 8, 4, 10, 20, 26, 27, 22, 9, -4, -3, 12, 27, 34, 35, 29, 10, -17, -30, -15, 14, 35, 43, 44, 37, 11, -36, -77, more...

integer, non-monotonic, +-

a(n)=n-pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence z044rn3lmuiol

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 8, 0, 0, 8, more...

integer, non-monotonic, +

a(n)=and(8, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence zl3wtv1e4y03c

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 4, 4, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 0, 4, 0, 4, 0, 4, 0, 0, 0, 0, 4, 4, 4, more...

integer, non-monotonic, +

a(n)=and(4, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence i1xj34z3kmbhc

0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, more...

integer, non-monotonic, +

a(n)=and(2, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence ou2dav24s3bzm

0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 10, 10, 0, 0, 0, 2, 10, 0, 10, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 8, 8, 8, 2, 8, 8, 8, 0, 0, 8, 0, 0, 10, more...

integer, non-monotonic, +

a(n)=and(10, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence zikoelvlceskl

0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 6, 4, 0, 0, 4, 2, 2, 4, 0, 0, 6, 6, 4, 6, 6, 0, 0, 6, 4, 2, 2, 4, 6, 0, 0, 0, 4, 0, 6, 0, 4, 0, 0, 0, 0, 4, 4, 6, more...

integer, non-monotonic, +

a(n)=and(6, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence 1iq1gfaupgb1i

0, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 5, 7, 5, 0, 0, 4, 11, 11, 4, 0, 0, 7, 14, 21, 14, 7, 0, 0, 6, 20, 34, 34, 20, 6, 0, 0, 9, 29, 57, 71, 57, 29, 9, 0, 0, 8, 37, 85, 127, more...

integer, non-monotonic, +

a(n)=xor(1, pt(n))
pt(n)=Pascals triangle by rows
xor(a,b)=bitwise exclusive or
n≥0
4 operations
Combinatoric

Sequence qym4xi3ej31qm

0, 1, 2, 3, 2, 5, 6, 2.3333333333333335, 2.6666666666666665, 9, 10, 2.75, 2, 3.25, 14, 15, 3.2, 1.7, 1.8, 3.8, 20, 21, 3.6666666666666665, 1.5333333333333334, 1.2, more...

decimal, non-monotonic, +

a(n)=n/pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence zmauo4qwnr0dg

0, 1, 2, 3, 8, 5, 6, 21, 24, 9, 10, 44, 72, 52, 14, 15, 80, 170, 180, 95, 20, 21, 132, 345, 480, 375, 156, 27, 28, 203, 630, 1085, 1120, 693, 238, 35, 36, 296, 1064, 2184, 2800, 2296, 1176, 344, 44, 45, 414, 1692, 4032, 6174, more...

integer, non-monotonic, +

a(n)=n*pt(n)
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence 2m1gcm4ermeyj

1, 0, -1, -2, -2, -4, -5, -4, -5, -8, -9, -7, -6, -9, -13, -14, -11, -7, -8, -14, -19, -20, -16, -8, -4, -10, -20, -26, -27, -22, -9, 4, 3, -12, -27, -34, -35, -29, -10, 17, 30, 15, -14, -35, -43, -44, -37, -11, 36, 77, more...

integer, non-monotonic, +-

a(n)=pt(n)-n
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence uz5x00ktbj4zm

1, 0.5, 0.3333333333333333, 0.5, 0.2, 0.16666666666666666, 0.42857142857142855, 0.375, 0.1111111111111111, 0.1, 0.36363636363636365, 0.5, 0.3076923076923077, 0.07142857142857142, 0.06666666666666667, 0.3125, 0.5882352941176471, 0.5555555555555556, 0.2631578947368421, 0.05, 0.047619047619047616, 0.2727272727272727, 0.6521739130434783, 0.8333333333333334, 0.6, more...

decimal, non-monotonic, +

a(n)=pt(n)/n
pt(n)=Pascals triangle by rows
n≥1
4 operations
Combinatoric

Sequence mnleynpiby0xl

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, more...

integer, non-monotonic, +, A047999

a(n)=and(1, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric
a(n)=pt(n)%2
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric
a(n)=lpf(pt(n))%2
pt(n)=Pascals triangle by rows
lpf(n)=least prime factor of n
n≥0
5 operations
Prime
a(n)=μ(gcd(pt(n), 2)²)
pt(n)=Pascals triangle by rows
gcd(a,b)=greatest common divisor
μ(n)=Möbius function
n≥0
6 operations
Prime

Sequence ulufyzgdbwlam

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 8, 8, 1, 1, 1, 0, 9, 0, 9, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 0, 8, 8, 8, 1, 1, 9, 0, 0, 8, more...

integer, non-monotonic, +

a(n)=and(9, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence xtb0zkvh5ts1e

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 5, 0, 0, 5, 1, 1, 4, 5, 4, 5, 4, 1, 1, 5, 5, 1, 1, 5, 5, 1, 1, 0, 4, 0, 4, 0, 4, 0, 1, 1, 1, 4, 4, 4, more...

integer, non-monotonic, +

a(n)=and(5, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric

Sequence u43ev0o5piium

1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 4, 4, 4, 4, 1, 1, 10, 10, 5, 5, 1, 1, 15, 15, 15, 15, 1, 1, 7, 7, 35, 35, 21, 21, 1, 1, 8, 8, 56, 56, 56, 56, 8, 8, 1, 1, 36, 36, 126, 126, more...

integer, non-monotonic, +

a(n)=pt(or(1, n))
or(a,b)=bitwise or
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence odrv1yocpbzup

1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 4, 1, 4, 6, 1, 1, 10, 5, 5, 10, 1, 1, 15, 6, 15, 20, 1, 6, 7, 1, 35, 21, 21, 35, 1, 7, 8, 1, 56, 28, 56, 70, 8, 28, 1, 1, 36, 9, 126, 84, more...

integer, non-monotonic, +

a(n)=pt(xor(1, n))
xor(a,b)=bitwise exclusive or
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence htv1spe5vxdsf

1, 1, 1, 1, 1, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 1, 10, 5, 10, 5, 6, 15, 6, 15, 6, 1, 6, 1, 21, 35, 21, 35, 7, 1, 7, 1, 28, 56, 28, 56, 28, 8, 28, 8, 9, 36, 9, 36, 126, 84, more...

integer, non-monotonic, +

a(n)=pt(or(2, n))
or(a,b)=bitwise or
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence j5gspts2guyil

1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 3, 1, 1, 1, 6, 4, 10, 5, 5, 10, 6, 15, 1, 1, 6, 1, 20, 15, 21, 35, 1, 7, 7, 1, 35, 21, 28, 56, 1, 8, 28, 8, 70, 56, 9, 36, 1, 1, 126, 84, more...

integer, non-monotonic, +

a(n)=pt(xor(2, n))
xor(a,b)=bitwise exclusive or
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence a2kl3acey2bn

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 0, 3, 2, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 2, more...

integer, non-monotonic, +, A034931

a(n)=and(3, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric
a(n)=pt(n)%4
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence f3etkff4gctyb

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 2, 2, 5, 1, 1, 6, 7, 4, 7, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 4, 6, more...

integer, non-monotonic, +, A034930

a(n)=and(7, pt(n))
pt(n)=Pascals triangle by rows
and(a,b)=bitwise and
n≥0
4 operations
Combinatoric
a(n)=pt(n)%8
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

Sequence ovkcbcvqs2lrp

1, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 3, 1, 1, 4, 6, 5, 10, 10, 5, 15, 6, 1, 1, 1, 6, 15, 20, 35, 21, 7, 1, 1, 7, 21, 35, 56, 28, 8, 1, 8, 28, 56, 70, 36, 9, 1, 1, 84, 126, more...

integer, non-monotonic, +

a(n)=pt(xor(3, n))
xor(a,b)=bitwise exclusive or
pt(n)=Pascals triangle by rows
n≥0
4 operations
Combinatoric

[0] [1] [2] [3] [4] ... [831]