Sequence Database

A database with 899757 machine generated integer and decimal sequences.

Displaying result 0-99 of total 36296. [0] [1] [2] [3] [4] ... [362]

Sequence xhal04vckjjfh

-1, 2, -6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, more...

integer, non-monotonic, +-

a(n)=∏(-n)
∏(a)=partial products of a
n≥1
3 operations
Arithmetic
a(n)=∏(Δ(a(n-1)-n))
a(0)=1
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence 1vgu3fyz4jtgi

1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, more...

integer, strictly-monotonic, +

a(n)=∏(n²)
∏(a)=partial products of a
n≥1
3 operations
Arithmetic
a(n)=∏(1+a(n-1))²
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive
a(n)=(1+n)!²
n≥0
5 operations
Combinatoric
a(n)=lcm(n, ∏(n²))
∏(a)=partial products of a
lcm(a,b)=least common multiple
n≥1
5 operations
Divisibility
a(n)=∏(sqrt(n^4))
∏(a)=partial products of a
n≥1
5 operations
Power

Sequence 03bgrabg1igme

1, 1, 2, 2, 6, 12, 36, 36, 144, 432, 2160, 4320, 21600, 64800, 259200, 259200, 1296000, 5184000, 36288000, 108864000, 870912000, 4354560000, 30481920000, 60963840000, more...

integer, monotonic, +

a(n)=∏(stern(n))
stern(n)=Stern-Brocot sequence
∏(a)=partial products of a
n≥1
3 operations
Recursive
a(n)=∏(stern(lcm(n, 2)))
lcm(a,b)=least common multiple
stern(n)=Stern-Brocot sequence
∏(a)=partial products of a
n≥1
5 operations
Divisibility

Sequence p2t33hwohlwkk

-3.1415926536, 6.7280117475, -7.6806487842, 1.0875234426, 0.9335381126, 1.7348940865, 4.9590340022, 19.1339732252, 92.9606360834, 544.601273358, 3735.0973740628, 29351.9166438926, 260011.2340294778, 2563296.659705388, 27833319.28077373, 330058837.83410805, 4244030985.1537104, 58815510183.04673, more...

decimal, non-monotonic, +-

a(n)=∏(n-π)
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence bt3jreueztjtk

0.1, 0.02, 0.006, 0.0024, 0.0012, 0.00072, 0.000504, 0.0004032, 0.00036288, 0.00036288, 0.000399168, 0.0004790016, 0.0006227021, 0.0008717829, 0.0013076744, 0.002092279, 0.0035568743, 0.0064023737, 0.01216451, 0.0243290201, 0.0510909422, 0.1124000728, 0.2585201674, 0.6204484017, 1.5511210043, more...

decimal, non-monotonic, +

a(n)=∏(n/10)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence ba2bsop12cmnh

0.1111111111, 0.024691358, 0.0082304527, 0.003657979, 0.0020322105, 0.001354807, 0.0010537388, 0.0009366567, 0.0009366567, 0.0010407297, 0.0012720029, 0.0016960039, 0.0024497834, 0.0038107742, 0.0063512904, 0.0112911829, 0.0213277899, 0.0426555799, 0.0900506686, 0.200112597, 0.4669293929, 1.1413829605, 2.9168675658, 7.7783135088, 21.6064264133, more...

decimal, non-monotonic, +

a(n)=∏(n/9)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence kwxhx3ypoqeqb

0.125, 0.03125, 0.01171875, 0.005859375, 0.0036621094, 0.002746582, 0.0024032593, 0.0024032593, 0.0027036667, 0.0033795834, 0.0046469271, 0.0069703907, 0.0113268849, 0.0198220485, 0.0371663409, 0.0743326818, 0.1579569489, 0.355403135, 0.8440824457, 2.1102061142, 5.5392910497, 15.2330503866, 43.7950198616, 131.3850595848, 410.5783112026, more...

decimal, non-monotonic, +

a(n)=∏(n/8)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 01mzo4kny1vzk

0.1428571429, 0.0408163265, 0.0174927114, 0.0099958351, 0.0071398822, 0.006119899, 0.006119899, 0.0069941703, 0.0089925047, 0.0128464353, 0.0201872554, 0.0346067236, 0.0642696295, 0.128539259, 0.2754412692, 0.6295800439, 1.5289801067, 3.9316631315, 10.6716570712, 30.4904487749, 91.4713463246, 287.4813741629, 944.5816579638, 3238.5656844472, 11566.3060158828, more...

decimal, non-monotonic, +

a(n)=∏(n/7)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence cakngdnidrx2b

0.1666666667, 0.0555555556, 0.0277777778, 0.0185185185, 0.0154320988, 0.0154320988, 0.0180041152, 0.024005487, 0.0360082305, 0.0600137174, 0.1100251486, 0.2200502972, 0.476775644, 1.1124765026, 2.7811912564, 7.4165100171, 21.0134450485, 63.0403351454, 199.6277279604, 665.425759868, 2328.9901595379, 8539.6305849724, 32735.2505757277, 130941.0023029106, 545587.509595461, more...

decimal, non-monotonic, +

a(n)=∏(n/6)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence v2m2fp1fl3yod

0.2, 0.08, 0.048, 0.0384, 0.0384, 0.04608, 0.064512, 0.1032192, 0.18579456, 0.37158912, 0.817496064, 1.9619905536, 5.1011754394, 14.2832912302, 42.8498736906, 137.11959581, 466.206625754, 1678.3438527144, 6377.7066403146, 25510.8265612583, 107145.4715572848, 471440.0748520533, 2168624.344319445, 10409396.852733336, 52046984.26366668, more...

decimal, non-monotonic, +

a(n)=∏(n/5)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence sjtflx55r0ggf

0.25, 0.125, 0.09375, 0.09375, 0.1171875, 0.17578125, 0.3076171875, 0.615234375, 1.3842773438, 3.4606933594, 9.5169067383, 28.5507202148, 92.7898406982, 324.7644424438, 1217.8666591644, 4871.4666366577, 20703.7332057953, 93166.7994260788, 442542.2972738743, 2212711.4863693714, 11616735.3034392, 63892044.1689156, 367379253.9712647, 2204275523.827588, 13776722023.922426, more...

decimal, non-monotonic, +

a(n)=∏(n/4)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 3u5ekzeeu5yne

0.3183098862, 0.2026423673, 0.1935092066, 0.2463835741, 0.3921316372, 0.7489162608, 1.6687121481, 4.2493405915, 12.1734640802, 38.7493396584, 135.6772768601, 518.2490226608, 2144.5292364343, 9556.7480003411, 45630.1105241362, 232392.2445998651, 1257536.7317858378, 7205154.73140035, 43575967.66728428, 277413226.1704361, 1854370821.4119837, 12985820432.336203, 95070845547.86185, more...

decimal, non-monotonic, +

a(n)=∏(n/π)
π=3.141...
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence whezr3o2o4dtl

0.3333333333, 0.2222222222, 0.2222222222, 0.2962962963, 0.4938271605, 0.987654321, 2.304526749, 6.1454046639, 18.4362139918, 61.4540466392, 225.3315043439, 901.3260173754, 3905.7460752934, 18226.8150180359, 91134.0750901793, 486048.4004809564, 2754274.2693920867, 16525645.61635252, 104662422.2368993, 697749481.5793287, 4884246371.055301, 35817806721.072205, more...

decimal, non-monotonic, +

a(n)=∏(n/3)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence v30mzcj5i2jni

0.5, 0.5, 0.75, 1.5, 3.75, 11.25, 39.375, 157.5, 708.75, 3543.75, 19490.625, 116943.75, 760134.375, 5320940.625, 39907054.6875, 319256437.5, 2713679718.75, 24423117468.75, more...

decimal, monotonic, +

a(n)=∏(n/2)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏(log(sqrt(exp(n))))
∏(a)=partial products of a
n≥1
5 operations
Power

Sequence yjxvdm4f1y3bk

1, 0.5, 0.1666666667, 0.0416666667, 0.0083333333, 0.0013888889, 0.0001984127, 0.0000248016, 0.0000027557, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, strictly-monotonic, +

a(n)=∏(1/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=a(n-1)/(1+n)
a(0)=1
n≥0
5 operations
Recursive
a(n)=∏(n^-1)
∏(a)=partial products of a
n≥1
5 operations
Power
a(n)=a(n-1)/n%(n*n)
a(0)=1
n≥1
7 operations
Divisibility

Sequence 0dww2soc1putn

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, more...

integer, strictly-monotonic, +

a(n)=∏(1+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=(1+n)*a(n-1)
a(0)=1
n≥0
5 operations
Recursive
a(n)=(1+n)!
n≥0
4 operations
Combinatoric
a(n)=lcm(n, ∏(-n))
∏(a)=partial products of a
lcm(a,b)=least common multiple
n≥1
5 operations
Divisibility
a(n)=∏(sqrt(n*n))
∏(a)=partial products of a
n≥1
5 operations
Power
a(n)=∏(Δ(∑(n)))
∑(a)=partial sums of a
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
4 operations
Variable
a(n)=∏(τ(2^n))
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence cbx0kawwipmig

2, 2, 1.3333333333, 0.6666666667, 0.2666666667, 0.0888888889, 0.0253968254, 0.0063492063, 0.0014109347, 0.0002821869, 0.0000513067, 0.0000085511, 0.0000013156, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=∏(2/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence n1yqtt4vwjphj

2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, more...

integer, strictly-monotonic, +

a(n)=∏(2+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏(1+a(n-1))
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=(2+n)!
n≥0
4 operations
Combinatoric
a(n)=∏(n%n²)
∏(a)=partial products of a
n≥2
5 operations
Divisibility
a(n)=∏(n%composite(n))
composite(n)=nth composite number
∏(a)=partial products of a
n≥2
5 operations
Prime
a(n)=∏(floor(∑(sqrt(a(n-1)))))
a(0)=2
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
5 operations
Power

Sequence szh1g3vouujig

2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, more...

integer, strictly-monotonic, +

a(n)=∏(2*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏(2+a(n-1))
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(log(exp(n)²))
∏(a)=partial products of a
n≥1
5 operations
Power
a(n)=∏(a(n-1)+lpf(a(n-1)))
a(0)=2
lpf(n)=least prime factor of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence jakqbpx1rybrn

3, 4.5, 4.5, 3.375, 2.025, 1.0125, 0.4339285714, 0.1627232143, 0.0542410714, 0.0162723214, 0.0044379058, 0.0011094765, 0.000256033, 0.0000548642, 0.0000109728, 0.0000020574, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=∏(3/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence rbfbyd4hqhkfj

3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, more...

integer, strictly-monotonic, +

a(n)=∏(1+a(n-1))
a(0)=3
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(3+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏(τ(2^a(n-1)))
a(0)=3
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence ioxr4ndwmz2om

3, 18, 162, 1944, 29160, 524880, 11022480, 264539520, 7142567040, more...

integer, strictly-monotonic, +

a(n)=∏(3*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏(3+a(n-1))
a(0)=3
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence u1yyxktxja1of

3.1415926536, 4.9348022005, 5.16771278, 4.0587121264, 2.5501640399, 1.3352627689, 0.5992645293, 0.2353306304, 0.0821458866, 0.0258068914, 0.0073704309, 0.0019295743, 0.0004663028, 0.0001046381, 0.0000219154, 0.0000043031, 0.0000007952, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=∏(π/n)
π=3.141...
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence hk5hfbvas3x4b

3.1415926536, 6.7280117475, 7.6806487842, 1.0875234426, -0.9335381126, 1.7348940865, -4.9590340022, 19.1339732252, -92.9606360834, 544.601273358, -3735.0973740628, 29351.9166438926, -260011.2340294778, 2563296.659705388, -27833319.28077373, 330058837.83410805, -4244030985.1537104, 58815510183.04673, more...

decimal, non-monotonic, +-

a(n)=∏(π-n)
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence dshsvk0on3wcm

3.1415926536, 13.0111970547, 66.8982751907, 410.8619554493, 2934.2087226764, 23889.1321806415, 218384.7152431874, 2214768.8237666083, 24676052.05627775, 299606572.3661012, 3937307530.3735743, 55679799246.45471, more...

decimal, strictly-monotonic, +

a(n)=∏(π+n)
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence vet0qzizzwo4f

4, 8, 10.6666666667, 10.6666666667, 8.5333333333, 5.6888888889, 3.2507936508, 1.6253968254, 0.7223985891, 0.2889594356, 0.1050761584, 0.0350253861, 0.0107770419, 0.0030791548, 0.000821108, 0.000205277, 0.0000483005, 0.0000107334, 0.0000022597, 0, 0, 0, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=∏(4/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence q4vnltpbls1eb

4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800, 14529715200, more...

integer, strictly-monotonic, +

a(n)=∏(1+a(n-1))
a(0)=4
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(4+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏(τ(2^a(n-1)))
a(0)=4
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence ygpzcole2zrto

4, 32, 384, 6144, 122880, 2949120, 82575360, 2642411520, 95126814720, more...

integer, strictly-monotonic, +

a(n)=∏(4*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏(4+a(n-1))
a(0)=4
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence 0mboe5uzzwvsc

5, 12.5, 20.8333333333, 26.0416666667, 26.0416666667, 21.7013888889, 15.5009920635, 9.6881200397, 5.3822889109, 2.6911444555, 1.2232474798, 0.5096864499, 0.19603325, 0.070011875, 0.0233372917, 0.0072929036, 0.0021449717, 0.0005958255, 0.0001567962, 0.000039199, 0.0000093331, 0.0000021212, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=∏(5/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence ji52zt3rynyag

5, 30, 210, 1680, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, more...

integer, strictly-monotonic, +

a(n)=∏(1+a(n-1))
a(0)=5
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(5+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏(τ(2^a(n-1)))
a(0)=5
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence mty4hgfqwmpto

5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, more...

integer, strictly-monotonic, +

a(n)=∏(5*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏(5+a(n-1))
a(0)=5
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence pcfzhmixdedm

6, 18, 36, 54, 64.8, 64.8, 55.5428571429, 41.6571428571, 27.7714285714, 16.6628571429, 9.0888311688, 4.5444155844, 2.0974225774, 0.8988953903, 0.3595581561, 0.1348343085, 0.0475885795, 0.0158628598, 0.0050093242, 0.0015027972, 0.0004293706, 0.0001171011, 0.0000305481, 0.000007637, 0.0000018329, more...

decimal, non-monotonic, +

a(n)=∏(6/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence mupz1mjhwdnl

6, 42, 336, 3024, 30240, 332640, 3991680, 51891840, 726485760, 10897286400, more...

integer, strictly-monotonic, +

a(n)=∏(6+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence zsozdzf25ukpi

6, 72, 1296, 31104, 933120, 33592320, 1410877440, 67722117120, more...

integer, strictly-monotonic, +

a(n)=∏(6*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 5nd251i2mupxl

7, 24.5, 57.1666666667, 100.0416666667, 140.0583333333, 163.4013888889, 163.4013888889, 142.9762152778, 111.2037229938, 77.8426060957, 49.5362038791, 28.8961189295, 15.5594486543, 7.7797243272, 3.6305380193, 1.5883603835, 0.6540307461, 0.2543452902, 0.0937061595, 0.0327971558, 0.0109323853, 0.0034784862, 0.0010586697, 0.0003087787, 0.000086458, more...

decimal, non-monotonic, +

a(n)=∏(7/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence ai02rbn5rzjy

7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400, 29059430400, more...

integer, strictly-monotonic, +

a(n)=∏(7+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence 3swl2mj0uyd0j

7, 98, 2058, 57624, 2016840, 84707280, 4150656720, more...

integer, strictly-monotonic, +

a(n)=∏(7*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence yv4ysijt2moug

8, 32, 85.3333333333, 170.6666666667, 273.0666666667, 364.0888888889, 416.1015873016, 416.1015873016, 369.8680776014, 295.8944620811, 215.1959724226, 143.4639816151, 88.2855271477, 50.4488726559, 26.9060654165, 13.4530327082, 6.3308389215, 2.8137061873, 1.1847183947, 0.4738873579, 0.1805285173, 0.0656467336, 0.0228336465, 0.0076112155, 0.002435589, more...

decimal, non-monotonic, +

a(n)=∏(8/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence vspjfd4wlbsgg

8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200, 4151347200, 70572902400, more...

integer, strictly-monotonic, +

a(n)=∏(8+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence ydhc3qebobs1n

8, 128, 3072, 98304, 3932160, 188743680, 10569646080, more...

integer, strictly-monotonic, +

a(n)=∏(8*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence ewjr32hyp1zxf

9, 40.5, 121.5, 273.375, 492.075, 738.1125, 949.0017857143, 1067.6270089286, 1067.6270089286, 960.8643080357, 786.1617065747, 589.621279931, 408.1993476445, 262.4138663429, 157.4483198058, 88.5646798907, 46.8871834716, 23.4435917358, 11.1048592433, 4.9971866595, 2.1416514255, 0.8761301286, 0.3428335286, 0.1285625732, 0.0462825264, more...

decimal, non-monotonic, +

a(n)=∏(9/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence g3j1bkutg4sbl

9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800, more...

integer, strictly-monotonic, +

a(n)=∏(9+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence 5oj3pa2qihelo

9, 162, 4374, 157464, 7085880, 382637520, 24106163760, more...

integer, strictly-monotonic, +

a(n)=∏(9*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence sxmi32hg45e3k

10, 50, 166.6666666667, 416.6666666667, 833.3333333333, 1388.8888888889, 1984.126984127, 2480.1587301587, 2755.7319223986, 2755.7319223986, 2505.2108385442, 2087.6756987868, 1605.9043836822, 1147.074559773, 764.716373182, 477.9477332387, 281.1457254346, 156.1920696859, 82.2063524662, 41.1031762331, 19.5729410634, 8.8967913925, 3.8681701706, 1.6117375711, 0.6446950284, more...

decimal, non-monotonic, +

a(n)=∏(10/n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence l3vsercunpwlm

10, 110, 1320, 17160, 240240, 3603600, 57657600, 980179200, 17643225600, more...

integer, strictly-monotonic, +

a(n)=∏(10+n)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence vxozoskfrhszd

10, 200, 6000, 240000, 12000000, 720000000, 50400000000, more...

integer, strictly-monotonic, +

a(n)=∏(10*n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 3eplfcv0tlgqg

1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, more...

integer, periodic-4, non-monotonic, +-, A087960

a(n)=∏(-a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
3 operations
Recursive
a(n)=(-1)^∑(n)
∑(a)=partial sums of a
n≥0
5 operations
Power
a(n)=∏(-a(n-1)%2)
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Divisibility
a(n)=∏(Δ(C(a(n-2), a(n-1))))
a(0)=1
a(1)=2
C(n,k)=binomial coefficient
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Combinatoric

Sequence 2pstyqyofcuxo

1, 3, 18, 180, 2700, 56700, 1587600, 57153600, 2571912000, more...

integer, strictly-monotonic, +

a(n)=∏(∑(n))
∑(a)=partial sums of a
∏(a)=partial products of a
n≥1
3 operations
Variable
a(n)=∏(∑(1+n))
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
5 operations
Arithmetic
a(n)=∏(n²-a(n-1))
a(0)=1
∏(a)=partial products of a
n≥1
5 operations
Recursive

Sequence jhwthvlwa3ari

2, -4, -8, 16, 32, -64, -128, 256, 512, -1024, -2048, 4096, 8192, -16384, -32768, 65536, 131072, -262144, -524288, 1048576, 2097152, -4194304, -8388608, 16777216, 33554432, -67108864, -134217728, 268435456, 536870912, -1073741824, -2147483648, 4294967296, 8589934592, -17179869184, -34359738368, 68719476736, more...

integer, non-monotonic, +-

a(n)=∏(-a(n-1))
a(0)=2
∏(a)=partial products of a
n≥0
3 operations
Recursive
a(n)=∏(-a(n-1)%3)
a(0)=2
∏(a)=partial products of a
n≥0
5 operations
Divisibility
a(n)=∏(round(tan(a(n-1))))
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Trigonometric
a(n)=∏(Δ(gpf(P(a(n-1)))))
a(0)=5
P(n)=Partition numbers
gpf(n)=greatest prime factor of n
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence s4eq3t4vnbecj

3, -9, -27, 81, 243, -729, -2187, 6561, 19683, -59049, -177147, 531441, 1594323, -4782969, -14348907, 43046721, 129140163, -387420489, -1162261467, 3486784401, 10460353203, -31381059609, -94143178827, more...

integer, non-monotonic, +-

a(n)=∏(-a(n-1))
a(0)=3
∏(a)=partial products of a
n≥0
3 operations
Recursive
a(n)=∏(-a(n-1)%4)
a(0)=3
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence knkkhwvs1capb

4, -16, -64, 256, 1024, -4096, -16384, 65536, 262144, -1048576, -4194304, 16777216, 67108864, -268435456, -1073741824, 4294967296, 17179869184, -68719476736, more...

integer, non-monotonic, +-

a(n)=∏(-a(n-1))
a(0)=4
∏(a)=partial products of a
n≥0
3 operations
Recursive
a(n)=∏(-a(n-1)%5)
a(0)=4
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence z2ekmslmydon

5, -25, -125, 625, 3125, -15625, -78125, 390625, 1953125, -9765625, -48828125, 244140625, 1220703125, -6103515625, -30517578125, more...

integer, non-monotonic, +-

a(n)=∏(-a(n-1))
a(0)=5
∏(a)=partial products of a
n≥0
3 operations
Recursive
a(n)=∏(-a(n-1)%6)
a(0)=5
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence orgw4udaqwcun

-1, -4, -36, -576, -14400, -518400, -25401600, -1625702400, more...

integer, strictly-monotonic, -

a(n)=-∏(n²)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence f3cvupxhsoneb

-1, 4, -36, 576, -14400, 518400, -25401600, 1625702400, more...

integer, non-monotonic, +-

a(n)=∏(-n²)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 0ys5buhzpoipn

1, -9, 171, -4959, 193401, -9476649, 559122291, -38579438079, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-10)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence 1cndksqnrosbl

1, -8, 136, -3536, 123760, -5445440, 288608320, -17893715840, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-9)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence aai44fqews2cj

1, -7, 105, -2415, 74865, -2919735, 137227545, -7547514975, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-8)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence zcnu1wvbrqkfc

1, -6, 78, -1560, 42120, -1432080, 58715280, -2818333440, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-7)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence pnklcidjgbf4h

1, -5, 55, -935, 21505, -623645, 21827575, -894930575, 42061737025, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-6)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence cmj2xyyctyzdd

1, -4, 36, -504, 9576, -229824, 6664896, -226606464, 8837652096, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-5)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence tl4blxfjpgejd

1, -3, 21, -231, 3465, -65835, 1514205, -40883535, 1267389585, -44358635475, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-4)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence 03d1q1tugjq

1, -2.1415926536, 11.3144308414, -95.3215675914, 1102.5245783033, -16215.8909996958, 289446.4532166475, -6075813.504014643, 146626035.04633784, -3999127435.692833, more...

decimal, non-monotonic, +-

a(n)=∏(a(n-1)-π)
a(0)=1
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence djqihdodneoop

1, -2, 6, -24, 120, -720, 5040, -40320, 362880, -3628800, 39916800, -479001600, 6227020800, -87178291200, more...

integer, non-monotonic, +-

a(n)=-∏(-n)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=(1-(2+n))*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence bc2n4d1sdesrg

1, -2, 10, -80, 880, -12320, 209440, -4188800, 96342400, -2504902400, 72642169600, more...

integer, non-monotonic, +-, A133480

a(n)=∏(a(n-1)-3)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence wkghz4oil1fx

1, -1, 3, -15, 105, -945, 10395, -135135, 2027025, -34459425, 654729075, -13749310575, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-2)
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence 33yo4jhrslzel

1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152, 4194304, 4194304, 8388608, 8388608, 16777216, 16777216, 33554432, more...

integer, monotonic, +, A163403

a(n)=∏(2/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=2*gcd(a(n-1), a(n-2))
a(0)=1
a(1)=2
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility
a(n)=∏((2/a(n-1))!)
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Combinatoric
a(n)=∏(agc(2+a(n-1)))
a(0)=1
agc(n)=number of factorizations into prime powers (abelian group count)
∏(a)=partial products of a
n≥0
5 operations
Prime
a(n)=∏(a(n-2)^a(n-1))
a(0)=1
a(1)=2
∏(a)=partial products of a
n≥0
4 operations
Power

Sequence az4fef3gfde3i

1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, more...

integer, strictly-monotonic, +, A139684

a(n)=2^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(2*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(1+σ(a(n-1)))
a(0)=1
σ(n)=divisor sum of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence 25cd5ejcfitci

1, 2.1415926536, 2.1415926536, 4.5864190939, 4.5864190939, 9.8222414378, 9.8222414378, 21.035240105, 21.035240105, 45.0489156753, 45.0489156753, 96.4764268625, 96.4764268625, 206.6132070132, 206.6132070132, 442.4813262742, 442.4813262742, 947.6147576994, 947.6147576994, 2029.4048035223, 2029.4048035223, 4346.1584183833, 4346.1584183833, 9307.7009401471, 9307.7009401471, more...

decimal, monotonic, +

a(n)=∏(π-a(n-1))
a(0)=1
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence pohoebcxlmf0h

1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467, 1162261467, 3486784401, 3486784401, 10460353203, 10460353203, 31381059609, 31381059609, 94143178827, 94143178827, more...

integer, monotonic, +, A162436

a(n)=∏(3/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(P(3/a(n-1)))
a(0)=1
P(n)=Partition numbers
∏(a)=partial products of a
n≥0
5 operations
Combinatoric
a(n)=∏(2+μ(a(n-1)))
a(0)=1
μ(n)=Möbius function
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence r3wae5kp05lcl

1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075, 13749310575, more...

integer, strictly-monotonic, +

a(n)=∏(2+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(Δ(n²))
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏(comp(lcm(n, 2)))
lcm(a,b)=least common multiple
comp(a)=complement function of a (in range)
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence 40mdmg2heqyng

1, 3, 27, 729, 59049, 14348907, 10460353203, more...

integer, strictly-monotonic, +

a(n)=∏(3*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=3^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(3^τ(a(n-1)))
a(0)=1
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence mg51ce4lsfwsg

1, 3.1415926536, 3.1415926536, 9.8696044011, 9.8696044011, 31.0062766803, 31.0062766803, 97.409091034, 97.409091034, 306.0196847853, 306.0196847853, 961.3891935753, 961.3891935753, 3020.2932277768, 3020.2932277768, 9488.5310160706, 9488.5310160706, 29809.0993334462, 29809.0993334462, 93648.047476083, 93648.047476083, 294204.0179738905, 294204.0179738905, 924269.1815233737, 924269.1815233737, more...

decimal, monotonic, +

a(n)=∏(π/a(n-1))
a(0)=1
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence 2gpibeckwplmg

1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296, 4294967296, 17179869184, 17179869184, 68719476736, 68719476736, more...

integer, monotonic, +, A164906

a(n)=∏(4/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(pt(10+a(n-1)))
a(0)=1
pt(n)=Pascals triangle by rows
∏(a)=partial products of a
n≥0
5 operations
Combinatoric
a(n)=∏(ϕ(6-a(n-1)))
a(0)=1
ϕ(n)=number of relative primes (Euler's totient)
∏(a)=partial products of a
n≥0
5 operations
Prime
a(n)=2^(n%2+n)
n≥0
7 operations
Power

Sequence qqco5fzwomppg

1, 4, 28, 280, 3640, 58240, 1106560, 24344320, 608608000, 17041024000, more...

integer, strictly-monotonic, +

a(n)=∏(3+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence pwcsiuwylo5c

1, 4, 64, 4096, 1048576, 1073741824, more...

integer, strictly-monotonic, +

a(n)=∏(4*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=4^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(ϕ(8*a(n-1)))
a(0)=1
ϕ(n)=number of relative primes (Euler's totient)
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence fjekkiryi3sff

1, 4.1415926536, 30.1639867629, 314.4528644153, 4265.9840994051, 71275.9056345143, 1414795.0747506118, 32527763.76695142, 850039633.2706221, 24884344037.558956, more...

decimal, strictly-monotonic, +

a(n)=∏(π+a(n-1))
a(0)=1
π=3.141...
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence zkhmvlct4ak4h

1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, more...

integer, monotonic, +, A162962

a(n)=∏(5/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(P(5-a(n-1)))
a(0)=1
P(n)=Partition numbers
∏(a)=partial products of a
n≥0
5 operations
Combinatoric
a(n)=∏(gpf(5/a(n-1)))
a(0)=1
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence prhihzhpis4dj

1, 5, 45, 585, 9945, 208845, 5221125, 151412625, 4996616625, more...

integer, strictly-monotonic, +

a(n)=∏(4+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence ke0a3p4eb1w5f

1, 5, 125, 15625, 9765625, 30517578125, more...

integer, strictly-monotonic, +

a(n)=∏(5*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=5^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(5^τ(a(n-1)))
a(0)=1
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence o5mgyq42lzmkc

1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096, 78364164096, more...

integer, monotonic, +

a(n)=∏(6/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(ϕ(8-a(n-1)))
a(0)=1
ϕ(n)=number of relative primes (Euler's totient)
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence cwmmjsvtrnoje

1, 6, 66, 1056, 22176, 576576, 17873856, 643458816, 26381811456, more...

integer, strictly-monotonic, +

a(n)=∏(5+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence qkkhngpwxh3me

1, 6, 216, 46656, 60466176, more...

integer, strictly-monotonic, +

a(n)=6^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(6*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence ngil03yyqhs0e

1, 7, 7, 49, 49, 343, 343, 2401, 2401, 16807, 16807, 117649, 117649, 823543, 823543, 5764801, 5764801, 40353607, 40353607, 282475249, 282475249, 1977326743, 1977326743, 13841287201, 13841287201, 96889010407, 96889010407, more...

integer, monotonic, +

a(n)=∏(7/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(gpf(7/a(n-1)))
a(0)=1
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence dw4nkavlgmfqn

1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, more...

integer, strictly-monotonic, +, A131940

a(n)=∏(6+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence ye0t2gqdseoec

1, 7, 343, 117649, 282475249, more...

integer, strictly-monotonic, +

a(n)=∏(7*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=7^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(7^τ(a(n-1)))
a(0)=1
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence 1lhizrjo1x4pb

1, 8, 8, 64, 64, 512, 512, 4096, 4096, 32768, 32768, 262144, 262144, 2097152, 2097152, 16777216, 16777216, 134217728, 134217728, 1073741824, 1073741824, 8589934592, 8589934592, 68719476736, 68719476736, more...

integer, monotonic, +, A164683

a(n)=∏(8/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(gcd(Ω(a(n-1)), 8))
a(0)=1
Ω(n)=max factorization terms
gcd(a,b)=greatest common divisor
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence le5q4ppzljajl

1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, more...

integer, strictly-monotonic, +

a(n)=∏(7+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence wxez5y5yxhhpp

1, 8, 512, 262144, 1073741824, more...

integer, strictly-monotonic, +

a(n)=8^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(8*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence tvchi2thgpall

1, 9, 9, 81, 81, 729, 729, 6561, 6561, 59049, 59049, 531441, 531441, 4782969, 4782969, 43046721, 43046721, 387420489, 387420489, 3486784401, 3486784401, 31381059609, 31381059609, more...

integer, monotonic, +

a(n)=∏(9/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(C(9, a(n-1)))
a(0)=1
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=∏(gcd(Ω(a(n-1)), 9))
a(0)=1
Ω(n)=max factorization terms
gcd(a,b)=greatest common divisor
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence bx5flhsrpyqjh

1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, more...

integer, strictly-monotonic, +

a(n)=∏(8+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence t0gjwzirn1pvd

1, 9, 729, 531441, 3486784401, more...

integer, strictly-monotonic, +, A053854

a(n)=∏(9*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=9^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power

Sequence jamzqt5euwsye

1, 10, 10, 100, 100, 1000, 1000, 10000, 10000, 100000, 100000, 1000000, 1000000, 10000000, 10000000, 100000000, 100000000, 1000000000, 1000000000, 10000000000, 10000000000, more...

integer, monotonic, +, A286508

a(n)=∏(10/a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(C(10, a(n-1)))
a(0)=1
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=∏(C(10, composite(a(n-1))))
a(0)=1
composite(n)=nth composite number
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence tdgouspelxkll

1, 10, 190, 5320, 196840, 9054640, 498005200, 31872332800, more...

integer, strictly-monotonic, +, A045756

a(n)=∏(9+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence uce1lwuiuogei

1, 10, 1000, 1000000, 10000000000, more...

integer, strictly-monotonic, +

a(n)=10^∑(n)
∑(a)=partial sums of a
n≥0
4 operations
Power
a(n)=∏(10*a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence zdezbxetnolkk

1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, more...

integer, strictly-monotonic, +, A045757

a(n)=∏(10+a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence xv0rcpwtpn0zm

1, 16, 1296, 331776, 207360000, more...

integer, strictly-monotonic, +

a(n)=∏(n^4)
∏(a)=partial products of a
n≥1
4 operations
Power
a(n)=∏(n²)²
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence zdsdufvpwvzhn

2, -16, 288, -8064, 306432, -14708736, 853106688, -58011254784, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-10)
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence 54vn2ywkmnywi

2, -14, 224, -5600, 190400, -8187200, 425734400, -25969798400, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-9)
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence lzujrxso5nvlm

2, -12, 168, -3696, 110880, -4213440, 193818240, -10466184960, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-8)
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence jaorfq1s0ilal

2, -10, 120, -2280, 59280, -1956240, 78249600, -3677731200, more...

integer, non-monotonic, +-

a(n)=∏(a(n-1)-7)
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive

[0] [1] [2] [3] [4] ... [362]