Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 57326. [0] [1] [2] [3] [4] ... [573]

Sequence hg4p5djg1ejjl

-1, 2, -6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, -1307674368000, 20922789888000, -355687428096000, more...

integer, non-monotonic, +-

a(n)=∏[-n]
∏(a)=partial products of a
n≥1
3 operations
Arithmetic
a(n)=∏[xor(n, -1)]
xor(a,b)=bitwise exclusive or
∏(a)=partial products of a
n≥0
5 operations
Bitwise
a(n)=∏[Δ[a(n-1)-n]]
a(0)=1
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence elqu2qvxkgifc

0.1, 0.020000000000000004, 0.006000000000000001, 0.002400000000000001, 0.0012, 0.00072, 0.000504, 0.0004032, 0.00036288, 0.00036288, 0.000399168, 0.0004790016, 0.00062270208, 0.000871782912, 0.001307674368, 0.002092278988800001, 0.003556874280960002, 0.006402373705728003, 0.012164510040883205, 0.02432902008176641, 0.05109094217170946, 0.11240007277776082, 0.25852016738884986, 0.6204484017332397, 1.5511210043330992, more...

decimal, non-monotonic, +

a(n)=∏[n/10]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence mjkds454g1hgi

0.1111111111111111, 0.024691358024691357, 0.008230452674897118, 0.003657978966620941, 0.002032210537011634, 0.001354807024674423, 0.001053738796968996, 0.000936656708416885, 0.000936656708416885, 0.001040729676018761, 0.001272002937356264, 0.001696003916475018, 0.00244978343490836, 0.003810774232079671, 0.006351290386799452, 0.011291182909865692, 0.021327789940857416, 0.04265557988171483, 0.09005066863917575, 0.20011259697594613, 0.46692939294387437, 1.1413829605294707, 2.9168675657975363, 7.778313508793429, 21.60642641331508, more...

decimal, non-monotonic, +

a(n)=∏[n/9]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence noiamkyx04ksk

0.125, 0.03125, 0.01171875, 0.005859375, 0.003662109375, 0.00274658203125, 0.00240325927734375, 0.00240325927734375, 0.002703666687011719, 0.003379583358764648, 0.004646927118301392, 0.006970390677452087, 0.011326884850859642, 0.019822048489004374, 0.0371663409168832, 0.0743326818337664, 0.1579569488967536, 0.3554031350176956, 0.8440824456670271, 2.1102061141675676, 5.539291049689865, 15.233050386647129, 43.7950198616105, 131.38505958483148, 410.5783112025984, more...

decimal, non-monotonic, +

a(n)=∏[n/8]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence ptnqfgskvb5g

0.14285714285714285, 0.04081632653061224, 0.017492711370262388, 0.009995835068721363, 0.007139882191943831, 0.00611989902166614, 0.00611989902166614, 0.006994170310475588, 0.008992504684897186, 0.012846435264138837, 0.020187255415075316, 0.03460672356870054, 0.06426962948472957, 0.12853925896945914, 0.27544126922026957, 0.6295800439320447, 1.5289801066921085, 3.9316631314939934, 10.671657071197982, 30.49044877485138, 91.47134632455413, 287.48137416288444, 944.5816579637631, 3238.5656844471873, 11566.306015882812, more...

decimal, non-monotonic, +

a(n)=∏[n/7]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence xcx0tzuqh2svh

0.16666666666666666, 0.05555555555555555, 0.027777777777777776, 0.018518518518518517, 0.015432098765432098, 0.015432098765432098, 0.01800411522633745, 0.02400548696844993, 0.0360082304526749, 0.06001371742112484, 0.11002514860539553, 0.22005029721079106, 0.4767756439567139, 1.1124765025656658, 2.7811912564141643, 7.416510017104438, 21.013445048462575, 63.04033514538773, 199.62772796039448, 665.4257598679816, 2328.9901595379356, 8539.63058497243, 32735.250575727652, 130941.00230291061, 545587.509595461, more...

decimal, non-monotonic, +

a(n)=∏[n/6]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence gkorrvvoo0h2e

0.2, 0.08000000000000002, 0.04800000000000001, 0.03840000000000001, 0.03840000000000001, 0.04608000000000001, 0.06451200000000001, 0.10321920000000002, 0.18579456000000005, 0.3715891200000001, 0.8174960640000003, 1.9619905536000006, 5.101175439360002, 14.283291230208006, 42.849873690624015, 137.11959580999687, 466.20662575398933, 1678.3438527143617, 6377.706640314574, 25510.826561258295, 107145.47155728484, 471440.0748520533, 2168624.344319445, 10409396.852733336, 52046984.26366668, more...

decimal, non-monotonic, +

a(n)=∏[n/5]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence xqnlrfcq5peef

0.25, 0.125, 0.09375, 0.09375, 0.1171875, 0.17578125, 0.3076171875, 0.615234375, 1.38427734375, 3.460693359375, 9.51690673828125, 28.55072021484375, 92.78984069824219, 324.76444244384766, 1217.8666591644287, 4871.466636657715, 20703.733205795288, 93166.7994260788, 442542.2972738743, 2212711.4863693714, 11616735.3034392, 63892044.1689156, 367379253.9712647, 2204275523.827588, 13776722023.922426, more...

decimal, non-monotonic, +

a(n)=∏[n/4]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[n*(1/2)²]
∏(a)=partial products of a
n≥1
7 operations
Power

Sequence vygjifbqn0uek

0.3333333333333333, 0.2222222222222222, 0.2222222222222222, 0.2962962962962963, 0.49382716049382713, 0.9876543209876543, 2.3045267489711936, 6.145404663923182, 18.43621399176955, 61.454046639231834, 225.33150434385004, 901.3260173754002, 3905.7460752934003, 18226.815018035868, 91134.07509017934, 486048.4004809564, 2754274.2693920867, 16525645.61635252, 104662422.2368993, 697749481.5793287, 4884246371.055301, 35817806721.072205, 274603184861.5536, 2196825478892.4287, 18306878990770.242, more...

decimal, non-monotonic, +

a(n)=∏[n/3]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence foveegkzlyufl

0.5, 0.5, 0.75, 1.5, 3.75, 11.25, 39.375, 157.5, 708.75, 3543.75, 19490.625, 116943.75, 760134.375, 5320940.625, 39907054.6875, 319256437.5, 2713679718.75, 24423117468.75, 232019615953.125, 2320196159531.25, 24362059675078, 267982656425859, 3081800548897383, more...

decimal, monotonic, +

a(n)=∏[n/2]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence essxyl1122qaf

1, 0.5, 0.16666666666666666, 0.041666666666666664, 0.008333333333333333, 0.001388888888888889, 0.000198412698412698, 0.000024801587301587, 0.000002755731922399, 0.00000027557319224, 0.000000025052108385, 0.000000002087675699, 0.000000000160590438, 0.000000000011470746, 0.000000000000764716, 0.000000000000047795, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, strictly-monotonic, +

a(n)=∏[1/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[n^-1]
∏(a)=partial products of a
n≥1
5 operations
Power
a(n)=1/(1+n)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence kbsd4ktizo42g

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, more...

integer, strictly-monotonic, +

a(n)=∏[1+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=(1+n)!
n≥0
4 operations
Combinatoric
a(n)=∏[1+a(n-1)]
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[sqrt(n)]²
∏(a)=partial products of a
n≥1
4 operations
Power
a(n)=lcm(n, ∏[-n])
∏(a)=partial products of a
lcm(a,b)=least common multiple
n≥1
5 operations
Divisibility

Sequence ybure35gjf5on

2, 2, 1.3333333333333333, 0.6666666666666666, 0.26666666666666666, 0.08888888888888888, 0.025396825396825393, 0.006349206349206348, 0.001410934744268077, 0.000282186948853615, 0.000051306717973385, 0.000008551119662231, 0.000001315556871112, 0.000000187936695873, 0.000000025058226116, 0.000000003132278265, 0.000000000368503325, 0.000000000040944814, 0.00000000000430998, 0.000000000000430998, 0.000000000000041047, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=∏[2/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 3gt3radxcywuf

2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, more...

integer, strictly-monotonic, +

a(n)=∏[2+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=(2+n)!
n≥0
4 operations
Combinatoric
a(n)=∏[1+a(n-1)]
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[n%n²]
∏(a)=partial products of a
n≥2
5 operations
Power
a(n)=∏[n%composite(n)]
composite(n)=nth composite number
∏(a)=partial products of a
n≥2
5 operations
Prime

Sequence k3xmihbi1oawb

2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, more...

integer, strictly-monotonic, +

a(n)=∏[2*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[2+a(n-1)]
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[comp[Δ[contfrac[e]]]]
e=2.7182... (Euler e)
contfrac(a)=continued fraction of a
Δ(a)=differences of a
comp(a)=complement function of a (in range)
∏(a)=partial products of a
n≥0
5 operations
DecimalConstant
a(n)=∏[log(exp(n)²)]
∏(a)=partial products of a
n≥1
5 operations
Power
a(n)=∏[a(n-1)+lpf(a(n-1))]
a(0)=2
lpf(n)=least prime factor of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence btvvio1k2ehe

3, 4.5, 4.5, 3.375, 2.025, 1.0125, 0.4339285714285714, 0.16272321428571426, 0.054241071428571416, 0.016272321428571424, 0.004437905844155842, 0.001109476461038961, 0.000256033029470529, 0.000054864220600828, 0.000010972844120166, 0.000002057408272531, 0.000000363072048094, 0.000000060512008016, 0.000000009554527581, 0.000000001433179137, 0.000000000204739877, 0.000000000027919074, 0.000000000003641618, 0.000000000000455202, 0.000000000000054624, more...

decimal, non-monotonic, convergent, +

a(n)=∏[3/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 1yoodqgaj0b5o

3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, more...

integer, strictly-monotonic, +

a(n)=∏[3+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏[1+a(n-1)]
a(0)=3
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[τ(2^a(n-1))]
a(0)=3
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence 2vgt2kulce4kl

3, 18, 162, 1944, 29160, 524880, 11022480, 264539520, 7142567040, 214277011200, 7071141369600, 254561089305600, more...

integer, strictly-monotonic, +

a(n)=∏[3*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[3+a(n-1)]
a(0)=3
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence abiwv4ndscjhh

4, 8, 10.666666666666666, 10.666666666666666, 8.533333333333333, 5.688888888888888, 3.2507936507936503, 1.6253968253968252, 0.7223985890652556, 0.2889594356261022, 0.10507615840949172, 0.035025386136497236, 0.010777041888152997, 0.00307915482518657, 0.000821107953383085, 0.000205276988345771, 0.000048300467846064, 0.000010733437299125, 0.000002259671010342, 0.000000451934202068, 0.000000086082705156, 0.000000015651400937, 0.000000002721982772, 0.000000000453663795, 0.000000000072586207, more...

decimal, non-monotonic, convergent, +

a(n)=∏[4/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[n/(n/2)²]
∏(a)=partial products of a
n≥1
7 operations
Power

Sequence zx1vmoctye0uj

4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800, 14529715200, 217945728000, 3487131648000, 59281238016000, 1067062284288000, more...

integer, strictly-monotonic, +

a(n)=∏[4+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏[1+a(n-1)]
a(0)=4
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[τ(2^a(n-1))]
a(0)=4
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence qdt3zvm0oopcl

4, 32, 384, 6144, 122880, 2949120, 82575360, 2642411520, 95126814720, 3805072588800, 167423193907200, more...

integer, strictly-monotonic, +

a(n)=∏[4*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[4+a(n-1)]
a(0)=4
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[n/(1/2)²]
∏(a)=partial products of a
n≥1
7 operations
Power

Sequence acehzsebqj4je

5, 12.5, 20.833333333333336, 26.04166666666667, 26.04166666666667, 21.701388888888893, 15.500992063492067, 9.688120039682541, 5.382288910934745, 2.6911444554673727, 1.2232474797578967, 0.5096864498991237, 0.19603324996120144, 0.07001187498614338, 0.02333729166204779, 0.007292903644389935, 0.002144971660114687, 0.000595825461142969, 0.000156796173984992, 0.000039199043496248, 0.000009333105594345, 0.000002121160362351, 0.000000461121817902, 0.000000096067045396, 0.000000019213409079, more...

decimal, non-monotonic, convergent, +

a(n)=∏[5/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence frsyslqwumusk

5, 30, 210, 1680, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, 871782912000, 14820309504000, 266765571072000, more...

integer, strictly-monotonic, +

a(n)=∏[5+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic
a(n)=∏[1+a(n-1)]
a(0)=5
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏[τ(2^a(n-1))]
a(0)=5
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence hwpkhajfxwt0e

5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000, 35437500000000, 1949062500000000, more...

integer, strictly-monotonic, +

a(n)=∏[5*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[5+a(n-1)]
a(0)=5
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence g1ktv4sgzjvlc

6, 18, 36, 54, 64.8, 64.8, 55.54285714285714, 41.65714285714285, 27.771428571428565, 16.66285714285714, 9.088831168831165, 4.5444155844155825, 2.0974225774225768, 0.8988953903239614, 0.3595581561295846, 0.1348343085485942, 0.04758857948773914, 0.01586285982924638, 0.005009324156604119, 0.001502797246981236, 0.000429370641994639, 0.000117101084180356, 0.000030548108916615, 0.000007637027229154, 0.000001832886534997, more...

decimal, non-monotonic, convergent, +

a(n)=∏[6/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence ueh0et2t0ebhj

6, 42, 336, 3024, 30240, 332640, 3991680, 51891840, 726485760, 10897286400, 174356582400, 2964061900800, 53353114214400, 1013709170073600, more...

integer, strictly-monotonic, +

a(n)=∏[6+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence 1ymwmxqz5hw5c

6, 72, 1296, 31104, 933120, 33592320, 1410877440, 67722117120, 3656994324480, 219419659468800, more...

integer, strictly-monotonic, +

a(n)=∏[6*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence u4wxjpvv3etig

7, 24.5, 57.16666666666667, 100.04166666666667, 140.05833333333334, 163.4013888888889, 163.4013888888889, 142.97621527777778, 111.20372299382717, 77.84260609567902, 49.53620387906847, 28.89611892945661, 15.55944865432279, 7.779724327161395, 3.630538019341984, 1.588360383462118, 0.6540307461314604, 0.2543452901622346, 0.09370615953345485, 0.032797155836709196, 0.010932385278903065, 0.00347848622510552, 0.001058669720684289, 0.000308778668532918, 0.000086458027189217, more...

decimal, non-monotonic, convergent, +

a(n)=∏[7/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence eqy33z3sxjesg

7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400, 29059430400, 494010316800, 8892185702400, 168951528345600, 3379030566912000, more...

integer, strictly-monotonic, +

a(n)=∏[7+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence fk03ozkj5h2bc

7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, more...

integer, strictly-monotonic, +

a(n)=∏[7*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence xxy3un01actbm

8, 32, 85.33333333333333, 170.66666666666666, 273.06666666666666, 364.08888888888885, 416.10158730158724, 416.10158730158724, 369.86807760141085, 295.89446208112867, 215.19597242263904, 143.46398161509268, 88.28552714774935, 50.44887265585677, 26.906065416456943, 13.453032708228472, 6.33083892151928, 2.8137061873419023, 1.1847183946702746, 0.47388735786810987, 0.18052851728308947, 0.06564673355748708, 0.022833646454778114, 0.007611215484926038, 0.002435588955176332, more...

decimal, non-monotonic, +

a(n)=∏[8/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence otjp2n1zulbui

8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200, 4151347200, 70572902400, 1270312243200, 24135932620800, 482718652416000, more...

integer, strictly-monotonic, +

a(n)=∏[8+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence cyv3rni11rmpm

8, 128, 3072, 98304, 3932160, 188743680, 10569646080, 676457349120, 48704929136640, 3896394330931200, more...

integer, strictly-monotonic, +

a(n)=∏[8*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 4pycnided3cs

9, 40.5, 121.5, 273.375, 492.075, 738.1125, 949.0017857142857, 1067.6270089285713, 1067.6270089285713, 960.8643080357142, 786.1617065746753, 589.6212799310065, 408.19934764454297, 262.41386634292047, 157.44831980575228, 88.56467989073566, 46.88718347156594, 23.44359173578297, 11.104859243265617, 4.997186659469528, 2.1416514254869403, 0.8761301286082939, 0.34283352858585414, 0.1285625732196953, 0.04628252635909031, more...

decimal, non-monotonic, +

a(n)=∏[9/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 2hp3axip0lsjb

9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800, 158789030400, 3016991577600, 60339831552000, 1267136462592000, more...

integer, strictly-monotonic, +

a(n)=∏[9+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence t4hld5qrgvweh

9, 162, 4374, 157464, 7085880, 382637520, 24106163760, 1735643790720, 140587147048320, more...

integer, strictly-monotonic, +

a(n)=∏[9*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[n/(1/3)²]
∏(a)=partial products of a
n≥1
7 operations
Power

Sequence hlovwzkqecvde

10, 50, 166.66666666666669, 416.66666666666674, 833.3333333333335, 1388.8888888888891, 1984.1269841269846, 2480.1587301587306, 2755.7319223985896, 2755.7319223985896, 2505.2108385441725, 2087.6756987868107, 1605.9043836821622, 1147.074559772973, 764.716373181982, 477.94773323873875, 281.1457254345522, 156.19206968586235, 82.20635246624333, 41.103176233121665, 19.57294106339127, 8.896791392450577, 3.8681701706306857, 1.611737571096119, 0.6446950284384476, more...

decimal, non-monotonic, +

a(n)=∏[10/n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence i0snokkxc10vc

10, 110, 1320, 17160, 240240, 3603600, 57657600, 980179200, 17643225600, 335221286400, 6704425728000, 140792940288000, 3097444686336000, more...

integer, strictly-monotonic, +

a(n)=∏[10+n]
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence frrzp3dpjslfd

10, 200, 6000, 240000, 12000000, 720000000, 50400000000, 4032000000000, 362880000000000, more...

integer, strictly-monotonic, +

a(n)=∏[10*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence vsynensixktyo

11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, more...

integer, strictly-monotonic, +, A121826

a(n)=∏[11*n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=∏[lcm(n, 11)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility
a(n)=11^n*n!
n≥1
6 operations
Combinatoric
a(n)=∏[∑[contfrac[ϕ^5]]]
ϕ GoldenRatio=1.618... (Golden Ratio)
contfrac(a)=continued fraction of a
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
6 operations
Power
a(n)=∏[∑[11+C(n, 9)]]
C(n,k)=binomial coefficient
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
7 operations
Combinatoric

Sequence rtjcm0iedk0bb

1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056025, 1404728325, 18261468225, 273922023375, 4108830350625, 69850115960625, 1187451971330625, more...

integer, monotonic, +

a(n)=∏[or(1, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=or(1, n)*a(n-1)
a(0)=1
or(a,b)=bitwise or
n≥0
5 operations
Recursive

Sequence 01vdzj4tx3mfh

2, 6, 12, 36, 216, 1512, 9072, 63504, 635040, 6985440, 69854400, 768398400, 10757577600, 161363664000, 2259091296000, 33886369440000, 609954649920000, more...

integer, strictly-monotonic, +

a(n)=∏[or(2, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=or(2, n)*a(n-1)
a(0)=2
or(a,b)=bitwise or
n≥0
5 operations
Recursive

Sequence qhlsbfhfmolj

3, 6, 30, 120, 840, 5040, 45360, 362880, 3991680, 39916800, 518918400, 6227020800, 93405312000, 1307674368000, 22230464256000, 355687428096000, more...

integer, strictly-monotonic, +

a(n)=∏[xor(1, n)]
xor(a,b)=bitwise exclusive or
∏(a)=partial products of a
n≥2
4 operations
Bitwise
a(n)=∏[∑[2-a(n-1)]]
a(0)=3
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence newb0dwqnqqtp

3, 9, 27, 81, 567, 3969, 27783, 194481, 2139291, 23532201, 258854211, 2847396321, 42710944815, 640664172225, 9609962583375, 144149438750625, 2738839336261875, more...

integer, strictly-monotonic, +

a(n)=∏[or(3, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=or(3, n)*a(n-1)
a(0)=3
or(a,b)=bitwise or
n≥0
5 operations
Recursive
a(n)=∏[rad(or(3, n))]
or(a,b)=bitwise or
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence 20fgkcasqepbj

4, 20, 120, 840, 3360, 16800, 100800, 705600, 8467200, 110073600, 1541030400, 23115456000, 277385472000, 3606011136000, 50484155904000, 757262338560000, more...

integer, strictly-monotonic, +

a(n)=∏[or(4, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=or(4, n)*a(n-1)
a(0)=4
or(a,b)=bitwise or
n≥0
5 operations
Recursive

Sequence 2gurhscjrkdte

5, 25, 175, 1225, 6125, 30625, 214375, 1500625, 19508125, 253605625, 3804084375, 57061265625, 741796453125, 9643353890625, 144650308359375, 2169754625390625, more...

integer, strictly-monotonic, +

a(n)=∏[or(5, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=or(5, n)*a(n-1)
a(0)=5
or(a,b)=bitwise or
n≥0
5 operations
Recursive
a(n)=∏[rad(or(5, n))]
or(a,b)=bitwise or
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence fi2bn5lm25j2g

6, 42, 252, 1764, 10584, 74088, 444528, 3111696, 43563744, 653456160, 9148386240, 137225793600, 1921161110400, 28817416656000, 403443833184000, more...

integer, strictly-monotonic, +

a(n)=∏[or(6, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=∏[rad(or(6, n))]
or(a,b)=bitwise or
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence uxvhkwcttub4

7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 86472015, 1297080225, 19456203375, 291843050625, 4377645759375, 65664686390625, 984970295859375, more...

integer, strictly-monotonic, +

a(n)=∏[or(7, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=∏[rad(or(7, n))]
or(a,b)=bitwise or
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence ra22hztqdtzoi

8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200, 2075673600, 18681062400, 186810624000, 2054916864000, 24659002368000, 320567030784000, 4487938430976000, more...

integer, strictly-monotonic, +

a(n)=∏[or(8, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise

Sequence nzwv0vjpmwiff

9, 81, 891, 9801, 127413, 1656369, 24845535, 372683025, 3354147225, 30187325025, 332060575275, 3652666328025, 47484662264325, 617300609436225, more...

integer, strictly-monotonic, +

a(n)=∏[or(9, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise

Sequence nbv1va0h0bazk

10, 110, 1100, 12100, 169400, 2541000, 35574000, 533610000, 5336100000, 58697100000, 586971000000, 6456681000000, 90393534000000, 1355903010000000, more...

integer, strictly-monotonic, +

a(n)=∏[or(10, n)]
or(a,b)=bitwise or
∏(a)=partial products of a
n≥0
4 operations
Bitwise
a(n)=∏[rad(or(10, n))]
or(a,b)=bitwise or
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence csz4naws1z0ei

1, 3, 18, 180, 2700, 56700, 1587600, 57153600, 2571912000, 141455160000, 9336040560000, 728211163680000, more...

integer, strictly-monotonic, +

a(n)=∏[∑[n]]
∑(a)=partial sums of a
∏(a)=partial products of a
n≥1
3 operations
Variable
a(n)=∏[C(n, 2)]
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥2
4 operations
Combinatoric
a(n)=∏[∑[1+n]]
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
5 operations
Arithmetic
a(n)=∏[∑[1+a(n-1)]]
a(0)=1
∑(a)=partial sums of a
∏(a)=partial products of a
n≥0
5 operations
Recursive
a(n)=∏[sqrt(∑[n])]²
∑(a)=partial sums of a
∏(a)=partial products of a
n≥1
5 operations
Power

Sequence zkb3mbpljwx1c

-3.141592653589793, 6.728011747499565, -7.680648784211329, 1.0875234426477005, 0.9335381125621054, 1.7348940865393354, 4.9590340022076616, 19.133973225216053, 92.96063608340587, 544.6012733579907, 3735.097374062797, 29351.916643892557, 260011.23402947784, 2563296.659705388, 27833319.28077373, 330058837.83410805, 4244030985.1537104, 58815510183.04673, 873904808586.6459, 13858738436553.67, 233636257870774, 4172371463947218, more...

decimal, non-monotonic, +-

a(n)=∏[n-π]
π Pi=3.1415... (Pi)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence k0t53o2hcffcd

-2.718281828459045, 4.670774270471604, -3.354932283313806, -0.9451453884988863, -1.211410019187158, -2.764096253966115, -9.070984904528883, -38.83940089949502, -205.13876950262696, -1288.6239360722034, -9383.396331579594, -77710.64391001346, -721288.2957017204, -7416082.976836185, -83666158.08142833, -1027564174.0516965, -13647817762.926891, -194914286946.67242, -2978625200725.912, -48497136056869, -838113837461685, more...

decimal, non-monotonic, +-

a(n)=∏[n-e]
e=2.7182... (Euler e)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence 4rdpfoifi2vij

-1.618033988749895, 1, 0.3819660112501052, 0.5278640450004206, 1.257354213751998, 4.252329215011357, 18.633562088825606, 100.28519783057793, 640.0167239862411, 4724.581703098072, 39601.28325274217, 371537.89347911504, 3857293.7819916345, 43903586.722035155, 543612718.5642107, 7274606923.109536, 104623149513.36606, 1609309729804.5347, 26363657295232, 458252195037968, more...

decimal, non-monotonic, +-

a(n)=∏[n-ϕ]
ϕ GoldenRatio=1.618... (Golden Ratio)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence nexe4n2jgcc0o

-0.5772156649015329, -0.24403774109381418, -0.3472130752010943, -0.8412223995385774, -2.8793228514745866, -12.734624003192852, -69.05711955788313, -443.53898572339375, -3292.2942352330697, -27730.284311056086, -261296.48861404604, -2723436.948342714, -31109232.911157526, -386463291.28565735, -5187413412.359717, -74816944903.46141, -1153885605857.0298, -18950014452364.434, -330162014950545, more...

decimal, non-monotonic, -

a(n)=∏[n-γ]
γ EulerGamma=0.5772... (Euler Gamma)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence uhe4c5w2n5joh

0.3183098861837907, 0.20264236728467558, 0.19350920659919696, 0.2463835741124241, 0.39213163716640637, 0.7489162607730139, 1.6687121480949372, 4.249340591468867, 12.173464080239551, 38.74933965843516, 135.67727686010898, 518.2490226608153, 2144.529236434323, 9556.748000341095, 45630.11052413615, 232392.24459986508, 1257536.7317858378, 7205154.73140035, 43575967.66728428, 277413226.1704361, 1854370821.4119837, 12985820432.336203, 95070845547.86185, 726287760617.6796, 5779614360472.345, more...

decimal, non-monotonic, +

a(n)=∏[n/π]
π Pi=3.1415... (Pi)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence f2y1sy5we5stp

0.36787944117144233, 0.2706705664732254, 0.2987224102071837, 0.4395753333296204, 0.8085536398902562, 1.7847015671997783, 4.595885106394762, 13.52585315702928, 44.782949706974286, 164.74726512210506, 666.6784501040781, 2943.0875479839788, 14075.118232122697, 72491.25281517388, 400020.62363195873, 2354549.815660429, 14725237.996723182, 97508021.85631824, 681552735.2144676, 5014584787.191327, 38740015633.593994, 313536416649.709, 2652902840111.803, 23422761943259, 215418814359447, more...

decimal, non-monotonic, +

a(n)=∏[n/e]
e=2.7182... (Euler e)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence vbapntxcybkbf

0.5772156649015329, -0.24403774109381418, 0.3472130752010943, -0.8412223995385774, 2.8793228514745866, -12.734624003192852, 69.05711955788313, -443.53898572339375, 3292.2942352330697, -27730.284311056086, 261296.48861404604, -2723436.948342714, 31109232.911157526, -386463291.28565735, 5187413412.359717, -74816944903.46141, 1153885605857.0298, -18950014452364.434, 330162014950545, more...

decimal, non-monotonic, +-

a(n)=∏[γ-n]
γ EulerGamma=0.5772... (Euler Gamma)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence nbmwy4vzhrc0g

0.5772156649015329, 0.16658896190385933, 0.0320525861368641, 0.004625313704700916, 0.000533960705087422, 0.000051368413903055, 0.000004235807597998, 0.000000305621812384, 0.000000019601077516, 0.000000001131404899, 0.000000000059369512, 0.000000000002855751, 0.000000000000126799, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, strictly-monotonic, +

a(n)=∏[γ/n]
γ EulerGamma=0.5772... (Euler Gamma)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence iv1zd1rii13tn

0.5772156649015329, 0.6663558476154373, 1.1538931009271076, 2.664180693907728, 7.689034153258882, 26.629385767343525, 107.59629028131626, 496.8501138853464, 2581.1070195845928, 14898.554044915345, 94596.46657017956, 655230.7481837019, 4916722.875698197, 39732132.49365796, 344010139.12923867, 3177088659.045637, 31175710827.2965, 323911955771.2056, 3552374043480.615, 41009718909732, 497100495526027, more...

decimal, strictly-monotonic, +

a(n)=∏[n*γ]
γ EulerGamma=0.5772... (Euler Gamma)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence wmq1stpslldji

0.5772156649015329, 0.9103935887092515, 2.346280618047406, 8.39315178113403, 38.41726581050288, 214.26137668102277, 1409.243283089791, 10678.14028028523, 91588.71208407852, 877164.8480997932, 9277961.772022108, 107412964.36541194, 1350956018.0301692, 18342221210.592213, 267378514360.13397, 4165012782348.779, 69044315140067, 1213606817652389, more...

decimal, strictly-monotonic, +

a(n)=∏[n+γ]
γ EulerGamma=0.5772... (Euler Gamma)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence pjohjucm2wu0n

0.6180339887498948, 0.7639320225002102, 1.416407864998738, 3.50155281000757, 10.820393249936906, 40.12422480060566, 173.58694289311038, 858.2610456890336, 4773.910477102642, 29504.389340986592, 200581.86973043808, 1487596.9562449732, 11952011.246763686, 103414488.58189349, 958705033.0919713, 9480196730.182894, 99604424587.90695, 1108060556853.6401, 13011562628845, 160831759027483, 2087389364537762, more...

decimal, strictly-monotonic, +

a(n)=∏[n/ϕ]
ϕ GoldenRatio=1.618... (Golden Ratio)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence 02ot0rm02t2rn

1.618033988749895, 1, -0.3819660112501052, 0.5278640450004206, -1.257354213751998, 4.252329215011357, -18.633562088825606, 100.28519783057793, -640.0167239862411, 4724.581703098072, -39601.28325274217, 371537.89347911504, -3857293.7819916345, 43903586.722035155, -543612718.5642107, 7274606923.109536, -104623149513.36606, 1609309729804.5347, -26363657295232, 458252195037968, more...

decimal, non-monotonic, +-

a(n)=∏[ϕ-n]
ϕ GoldenRatio=1.618... (Golden Ratio)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence 0xe0puedopqlm

1.618033988749895, 1.3090169943749475, 0.7060113295832984, 0.28558758192707023, 0.09241808286457896, 0.024922599874998834, 0.005760801955108856, 0.001165146670727872, 0.000209471879457387, 0.000033893262064937, 0.000004985495455516, 0.000000672225091482, 0.000000083667926624, 0.000000009669824932, 0.000000001043073694, 0.000000000105483043, 0.000000000010039715, 0.000000000000902478, 0.000000000000076855, 0, 0, 0, 0, 0, 0, more...

decimal, strictly-monotonic, +

a(n)=∏[ϕ/n]
ϕ GoldenRatio=1.618... (Golden Ratio)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence xrghinxe4v5wm

1.618033988749895, 4.23606797749979, 15.326237921249264, 70.77708763999664, 397.6280839862312, 2631.516174702376, 20046.979660827805, 172765.55208879185, 1661664.9520751406, 17643614.93904831, 204984118.04627866, 2586496568.6618648, 35222998183.82225, 514890984636.7895, 8041584898558.278, 133635331167659, 2354391806609670, more...

decimal, strictly-monotonic, +

a(n)=∏[n+ϕ]
ϕ GoldenRatio=1.618... (Golden Ratio)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence b304edvbd40fd

1.618033988749895, 5.23606797749979, 25.41640786499874, 164.49844718999245, 1330.820393249937, 12919.875775199396, 146333.58694289313, 1894181.7389543112, 27583653.91047711, 446312895.6106591, 7943643781.869734, 154237027603.04382, 3244289788811.248, 73491196067111, 1783668796657034, more...

decimal, strictly-monotonic, +

a(n)=∏[n*ϕ]
ϕ GoldenRatio=1.618... (Golden Ratio)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence cpmyrnf4tgcyg

1.7324547146006335, 6.002798676283925, 31.198730602579584, 216.20155168797626, 1872.7969876290351, 19467.215824246716, 236082.48884404995, 3272017.7666602065, 51017603.454967596, 883856876.3318418, 16843662136.76617, 350170582559.7688, 7886510796711.583, 191282319361165, more...

decimal, strictly-monotonic, +

a(n)=∏[n/γ]
γ EulerGamma=0.5772... (Euler Gamma)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence sn52clzh4sxxj

2.718281828459045, 3.6945280494653248, 3.347589487197944, 2.274922918047676, 1.2367763258548046, 0.5603177687399097, 0.2175859441326306, 0.07393248975797935, 0.022329927049094412, 0.006069903492836945, 0.001499973487734432, 0.00033977922290657, 0.000071047360562682, 0.000013794767798394, 0.000002499871108946, 0.000000424709638059, 0.000000067910617147, 0.000000010255566475, 0.000000001467237894, 0.000000000199418305, 0.000000000025813103, 0.000000000003189422, 0.000000000000376946, 0.000000000000042694, 0, more...

decimal, non-monotonic, +

a(n)=∏[e/n]
e=2.7182... (Euler e)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence nfc4r3ahmhfdb

2.718281828459045, 4.670774270471604, 3.354932283313806, -0.9451453884988863, 1.211410019187158, -2.764096253966115, 9.070984904528883, -38.83940089949502, 205.13876950262696, -1288.6239360722034, 9383.396331579594, -77710.64391001346, 721288.2957017204, -7416082.976836185, 83666158.08142833, -1027564174.0516965, 13647817762.926891, -194914286946.67242, 2978625200725.912, -48497136056869, 838113837461686, more...

decimal, non-monotonic, +-

a(n)=∏[e-n]
e=2.7182... (Euler e)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence qxdbxxteymmji

2.718281828459045, 10.107337927389695, 47.6892688768977, 272.7006796312616, 1832.0800205751364, 14140.509931087947, 123280.9507773487, 1198079.0237346618, 12841348.629153177, 150478542.29391313, 1913828510.0296812, 26254438871.927025, 386420230565.0723, 6073862088239.931, 101544538178388, 1799194745585397, more...

decimal, strictly-monotonic, +

a(n)=∏[n+e]
e=2.7182... (Euler e)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence itsg450tgwdre

2.718281828459045, 14.778112197861299, 120.513221539126, 1310.3556007954614, 17809.579092309188, 290468.73131476925, 5527031.118479431, 120192226.03752246, 2940447095.6385546, 79929639076.19458, 2389984140017.207, 77959805497369, 2754917394238100, more...

decimal, strictly-monotonic, +

a(n)=∏[n*e]
e=2.7182... (Euler e)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence impco2ydwiexf

3.141592653589793, 4.934802200544679, 5.167712780049969, 4.058712126416768, 2.550164039877345, 1.335262768854589, 0.5992645293207919, 0.23533063035889312, 0.08214588661112819, 0.025806891390014047, 0.007370430945714347, 0.001929574309403922, 0.000466302805767612, 0.000104638104924846, 0.00002191535344783, 0.000004303069587033, 0.000000795205400148, 0.000000138789524622, 0.000000022948428997, 0.000000003604730797, 0.000000000539266466, 0.000000000077007071, 0.000000000010518472, 0.000000000001376865, 0.000000000000173022, more...

decimal, non-monotonic, convergent, +

a(n)=∏[π/n]
π Pi=3.1415... (Pi)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence icq50qsxagv3p

3.141592653589793, 6.728011747499565, 7.680648784211329, 1.0875234426477005, -0.9335381125621054, 1.7348940865393354, -4.9590340022076616, 19.133973225216053, -92.96063608340587, 544.6012733579907, -3735.097374062797, 29351.916643892557, -260011.23402947784, 2563296.659705388, -27833319.28077373, 330058837.83410805, -4244030985.1537104, 58815510183.04673, -873904808586.6459, 13858738436553.67, -233636257870774, 4172371463947218, more...

decimal, non-monotonic, +-

a(n)=∏[π-n]
π Pi=3.1415... (Pi)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence so20yk0tkd30h

3.141592653589793, 13.011197054679151, 66.89827519074748, 410.86195544932303, 2934.2087226764224, 23889.132180641453, 218384.7152431874, 2214768.8237666083, 24676052.05627775, 299606572.3661012, 3937307530.3735743, 55679799246.45471, 843080839223.4731, 13608667480792, 233274234513889, 4231966139128957, more...

decimal, strictly-monotonic, +

a(n)=∏[n+π]
π Pi=3.1415... (Pi)
∏(a)=partial products of a
n≥0
4 operations
Arithmetic

Sequence ra3tai3wws5ef

3.141592653589793, 19.739208802178716, 186.0376600817989, 2337.818184816058, 36722.362174233764, 692200.219374219, 15222277.867995026, 382577570.5679654, 10817125966.120956, 339830034681.2099, 11743682944660.19, 442726416780386, more...

decimal, strictly-monotonic, +

a(n)=∏[n*π]
π Pi=3.1415... (Pi)
∏(a)=partial products of a
n≥1
4 operations
Arithmetic

Sequence cbkmgrqdzedhj

1, -2, 6, -24, 120, -720, 5040, -40320, 362880, -3628800, 39916800, -479001600, 6227020800, -87178291200, 1307674368000, -20922789888000, 355687428096000, more...

integer, non-monotonic, +-

a(n)=-∏[-n]
∏(a)=partial products of a
n≥1
4 operations
Arithmetic
a(n)=(1-(2+n))*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence nsew5pyorwnqb

2, 4, 24, 96, 960, 5760, 80640, 645120, 11612160, 116121600, 2554675200, 30656102400, 797058662400, 11158821273600, 334764638208000, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 2)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence oydixe5q2ba3p

3, 18, 54, 648, 9720, 58320, 1224720, 29393280, 264539520, 7936185600, 261894124800, 3142729497600, 122566450406400, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 3)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence rm4abpzo3wzoj

4, 16, 192, 768, 15360, 184320, 5160960, 41287680, 1486356480, 29727129600, 1307993702400, 15695924428800, 816188070297600, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 4)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence zoiebuhoiblhg

5, 50, 750, 15000, 75000, 2250000, 78750000, 3150000000, 141750000000, 1417500000000, 77962500000000, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 5)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence vdr5bbv30huu

6, 36, 216, 2592, 77760, 466560, 19595520, 470292480, 8465264640, 253957939200, 16761223987200, 201134687846400, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 6)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence 32okrrqj3vp2o

7, 98, 2058, 57624, 2016840, 84707280, 592950960, 33205253760, 2091930986880, 146435169081600, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 7)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence f1bwtw4ki53sm

8, 64, 1536, 12288, 491520, 11796480, 660602880, 5284823040, 380507258880, 15220290355200, 1339385551257600, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 8)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence 0kq1ktld5b30p

9, 162, 1458, 52488, 2361960, 42515280, 2678462640, 192849310080, 1735643790720, 156207941164800, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 9)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence 3za3da4fz5pi

10, 100, 3000, 60000, 600000, 18000000, 1260000000, 50400000000, 4536000000000, 45360000000000, more...

integer, strictly-monotonic, +

a(n)=∏[lcm(n, 10)]
lcm(a,b)=least common multiple
∏(a)=partial products of a
n≥1
4 operations
Divisibility

Sequence ho1hm45vpzt3p

-11, -8, -16, 14, -130, 710, -5050, 40310, -362890, 3628790, -39916810, 479001590, -6227020810, 87178291190, -1307674368010, 20922789887990, -355687428096010, more...

integer, non-monotonic, +-

a(n)=∏[-n]-10
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence pgc4nhg1u0tkb

-10, -200, -6000, -240000, -12000000, -720000000, -50400000000, -4032000000000, -362880000000000, more...

integer, strictly-monotonic, -

a(n)=-∏[10*n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence x51a5z4uylmgd

-10, -110, -1320, -17160, -240240, -3603600, -57657600, -980179200, -17643225600, -335221286400, -6704425728000, -140792940288000, -3097444686336000, more...

integer, strictly-monotonic, -

a(n)=-∏[10+n]
∏(a)=partial products of a
n≥0
5 operations
Arithmetic

Sequence h2egw3tmjwyyo

-10, -50, -166.66666666666669, -416.66666666666674, -833.3333333333335, -1388.8888888888891, -1984.1269841269846, -2480.1587301587306, -2755.7319223985896, -2755.7319223985896, -2505.2108385441725, -2087.6756987868107, -1605.9043836821622, -1147.074559772973, -764.716373181982, -477.94773323873875, -281.1457254345522, -156.19206968586235, -82.20635246624333, -41.103176233121665, -19.57294106339127, -8.896791392450577, -3.8681701706306857, -1.611737571096119, -0.6446950284384476, more...

decimal, non-monotonic, -

a(n)=-∏[10/n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence dufy42ipntgb

-10, -7, -15, 15, -129, 711, -5049, 40311, -362889, 3628791, -39916809, 479001591, -6227020809, 87178291191, -1307674368009, 20922789887991, -355687428096009, more...

integer, non-monotonic, +-

a(n)=∏[-n]-9
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence vpxypfgtelium

-10, 5, -1.6666666666666667, 0.4166666666666667, -0.08333333333333333, 0.013888888888888888, -0.001984126984126984, 0.000248015873015873, -0.000027557319223986, 0.000002755731922399, -0.000000250521083854, 0.000000020876756988, -0.000000001605904384, 0.000000000114707456, -0.000000000007647164, 0.000000000000477948, -0.000000000000028115, more...

decimal, non-monotonic, +-

a(n)=10/∏[-n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence zzezmr0umtbod

-10, 20, -60, 240, -1200, 7200, -50400, 403200, -3628800, 36288000, -399168000, 4790016000, -62270208000, 871782912000, -13076743680000, 209227898880000, -3556874280960000, more...

integer, non-monotonic, +-

a(n)=10*∏[-n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence ei1vga5aw2z2l

-10, 50, -166.66666666666669, 416.66666666666674, -833.3333333333335, 1388.8888888888891, -1984.1269841269846, 2480.1587301587306, -2755.7319223985896, 2755.7319223985896, -2505.2108385441725, 2087.6756987868107, -1605.9043836821622, 1147.074559772973, -764.716373181982, 477.94773323873875, -281.1457254345522, 156.19206968586235, -82.20635246624333, 41.103176233121665, -19.57294106339127, 8.896791392450577, -3.8681701706306857, 1.611737571096119, -0.6446950284384476, more...

decimal, non-monotonic, +-

a(n)=∏[-10/n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence gphjd3xuepzrc

-10, 110, -1320, 17160, -240240, 3603600, -57657600, 980179200, -17643225600, 335221286400, -6704425728000, 140792940288000, -3097444686336000, more...

integer, non-monotonic, +-

a(n)=∏[-(10+n)]
∏(a)=partial products of a
n≥0
5 operations
Arithmetic

Sequence u3afskhjain3j

-10, 200, -6000, 240000, -12000000, 720000000, -50400000000, 4032000000000, -362880000000000, more...

integer, non-monotonic, +-

a(n)=∏[-10*n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence kq2ih2yq251f

-9, -162, -4374, -157464, -7085880, -382637520, -24106163760, -1735643790720, -140587147048320, more...

integer, strictly-monotonic, -

a(n)=-∏[9*n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence rcc5f3dwss10f

-9, -90, -990, -11880, -154440, -2162160, -32432400, -518918400, -8821612800, -158789030400, -3016991577600, -60339831552000, -1267136462592000, more...

integer, strictly-monotonic, -

a(n)=-∏[9+n]
∏(a)=partial products of a
n≥0
5 operations
Arithmetic

Sequence rqgyimnxsox0m

-9, -40.5, -121.5, -273.375, -492.075, -738.1125, -949.0017857142857, -1067.6270089285713, -1067.6270089285713, -960.8643080357142, -786.1617065746753, -589.6212799310065, -408.19934764454297, -262.41386634292047, -157.44831980575228, -88.56467989073566, -46.88718347156594, -23.44359173578297, -11.104859243265617, -4.997186659469528, -2.1416514254869403, -0.8761301286082939, -0.34283352858585414, -0.1285625732196953, -0.04628252635909031, more...

decimal, non-monotonic, -

a(n)=-∏[9/n]
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

Sequence an25evp4twtfb

-9, -6, -14, 16, -128, 712, -5048, 40312, -362888, 3628792, -39916808, 479001592, -6227020808, 87178291192, -1307674368008, 20922789887992, -355687428096008, more...

integer, non-monotonic, +-

a(n)=∏[-n]-8
∏(a)=partial products of a
n≥1
5 operations
Arithmetic

[0] [1] [2] [3] [4] ... [573]