Sequence Database

A database with 951925 machine generated integer and decimal sequences.

Displaying result 0-99 of total 843. [0] [1] [2] [3] [4] ... [8]

Sequence xzwufrv2ulxsb

0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, more...

integer, periodic-4, non-monotonic, +, A010873

a(n)=n%4
n≥0
3 operations
Divisibility
a(n)=n%(2^(1+1))
n≥0
7 operations
Power
a(n)=∑(a(n-1)!)%4
a(0)=0
∑(a)=partial sums of a
n≥0
5 operations
Combinatoric

Sequence 3eplfcv0tlgqg

1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, more...

integer, periodic-4, non-monotonic, +-, A087960

a(n)=∏(-a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
3 operations
Recursive
a(n)=(-1)^∑(n)
∑(a)=partial sums of a
n≥0
5 operations
Power
a(n)=∏(-a(n-1)%2)
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Divisibility
a(n)=∏(Δ(C(a(n-2), a(n-1))))
a(0)=1
a(1)=2
C(n,k)=binomial coefficient
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Combinatoric

Sequence 4w3ihkvsbbqab

4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, more...

integer, periodic-4, non-monotonic, +, A109008

a(n)=gcd(n, 4)
gcd(a,b)=greatest common divisor
n≥0
3 operations
Divisibility
a(n)=gcd(4^a(n-1), n)
a(0)=4
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power
a(n)=C(gcd(n, 4), a(n-1))
a(0)=4
gcd(a,b)=greatest common divisor
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence 1tmcbsm2njd2b

-4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, -2, -1, -4, -1, more...

integer, periodic-4, non-monotonic, -

a(n)=-gcd(n, 4)
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility

Sequence gazgsjqtzpkvn

-3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, -1, 3, -3, 1, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(gcd(n, 4))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
4 operations
Divisibility

Sequence yne31nuj3jg2g

-2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(∏(-a(n-1)))
a(0)=1
∏(a)=partial products of a
Δ(a)=differences of a
n≥0
4 operations
Recursive

Sequence caaue0qxzcgpk

-1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, more...

integer, periodic-4, non-monotonic, +-

a(n)=-∏(-a(n-1))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive

Sequence pjacp2pk4yjhb

-0.7568024953, 0.8414709848, 0.9092974268, 0.8414709848, -0.7568024953, 0.8414709848, 0.9092974268, 0.8414709848, -0.7568024953, 0.8414709848, 0.9092974268, 0.8414709848, -0.7568024953, 0.8414709848, 0.9092974268, 0.8414709848, -0.7568024953, 0.8414709848, 0.9092974268, 0.8414709848, -0.7568024953, 0.8414709848, 0.9092974268, 0.8414709848, -0.7568024953, more...

decimal, periodic-4, non-monotonic, +-

a(n)=sin(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Trigonometric

Sequence 51v2rrb2enu5h

-0.6536436209, 0.5403023059, -0.4161468365, 0.5403023059, -0.6536436209, 0.5403023059, -0.4161468365, 0.5403023059, -0.6536436209, 0.5403023059, -0.4161468365, 0.5403023059, -0.6536436209, 0.5403023059, -0.4161468365, 0.5403023059, -0.6536436209, 0.5403023059, -0.4161468365, 0.5403023059, -0.6536436209, 0.5403023059, -0.4161468365, 0.5403023059, -0.6536436209, more...

decimal, periodic-4, non-monotonic, +-

a(n)=cos(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Trigonometric

Sequence a2ahi5pmhacgl

0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, more...

integer, periodic-4, non-monotonic, -

a(n)=-n%4
n≥0
4 operations
Divisibility

Sequence qmwlfpaborgu

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, more...

integer, periodic-4, non-monotonic, +, A011765

a(n)=cf(4+a(n-1))
a(0)=3
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=Δ(floor(n/4))
Δ(a)=differences of a
n≥0
5 operations
Arithmetic
a(n)=sqrt(cf(4+a(n-1)))
a(0)=3
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Power
a(n)=n%(2-a(n-1)-a(n-2))
a(0)=0
a(1)=0
n≥0
7 operations
Divisibility

Sequence yd4aa1bjkyabi

0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, more...

integer, periodic-4, non-monotonic, +

a(n)=cf(4+a(n-1))
a(0)=2
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=sqrt(cf(4+a(n-1)))
a(0)=2
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Power
a(n)=cf(∑(lcm(a(n-1), 4)))
a(0)=2
lcm(a,b)=least common multiple
∑(a)=partial sums of a
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Divisibility

Sequence vthgs0x2ujtcf

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, more...

integer, periodic-4, non-monotonic, +, A021913

a(n)=a(n-1)-a(n-2)+a(n-3)
a(0)=0
a(1)=0
a(2)=1
n≥0
5 operations
Recursive
a(n)=a(n-1)!-a(n-2)
a(0)=0
a(1)=0
n≥0
4 operations
Combinatoric
a(n)=floor(n/2)%2
n≥0
6 operations
Divisibility
a(n)=∑(a(n-1))^a(n-2)
a(0)=0
a(1)=0
∑(a)=partial sums of a
n≥0
4 operations
Power

Sequence msyrz5sw2ksrl

0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=cf(4+a(n-1))
a(0)=1
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=Δ(round(n/4))
Δ(a)=differences of a
n≥0
5 operations
Arithmetic
a(n)=∑(∑(n))%2
∑(a)=partial sums of a
n≥0
5 operations
Divisibility
a(n)=sqrt(cf(4+a(n-1)))
a(0)=1
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Power

Sequence uqbnwjmnvbqti

0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=∑(n)%2
∑(a)=partial sums of a
n≥0
4 operations
Divisibility
a(n)=a(n-1)-a(n-2)+a(n-3)
a(0)=0
a(1)=1
a(2)=1
n≥0
5 operations
Recursive
a(n)=a(n-1)!-a(n-2)
a(0)=0
a(1)=1
n≥0
4 operations
Combinatoric
a(n)=∑(a(n-1))^a(n-2)
a(0)=0
a(1)=1
∑(a)=partial sums of a
n≥0
4 operations
Power

Sequence aao0v03vkb0en

0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, more...

integer, periodic-4, non-monotonic, +, A070432

a(n)=n²%8
n≥0
4 operations
Divisibility
a(n)=2-(a(n-2)-2)^a(n-1)
a(0)=0
a(1)=1
n≥0
7 operations
Power

Sequence 3c3jmze5xsibo

0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=floor(exp(tan(a(n-1))))
a(0)=0
n≥0
4 operations
Trigonometric

Sequence nep31a45awofn

0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=(n%4)²
n≥0
4 operations
Divisibility

Sequence ccg0iurl00qvg

0, 1.5574077247, 1.1578212823, -0.1425465431, 0, 1.5574077247, 1.1578212823, -0.1425465431, 0, 1.5574077247, 1.1578212823, -0.1425465431, 0, 1.5574077247, 1.1578212823, -0.1425465431, 0, 1.5574077247, 1.1578212823, -0.1425465431, 0, 1.5574077247, 1.1578212823, -0.1425465431, 0, more...

decimal, periodic-4, non-monotonic, +-

a(n)=tan(floor(exp(a(n-1))))
a(0)=0
n≥0
4 operations
Trigonometric

Sequence yr0fog2ap3k1j

0.8414709848, -0.8414709848, -0.8414709848, 0.8414709848, 0.8414709848, -0.8414709848, -0.8414709848, 0.8414709848, 0.8414709848, -0.8414709848, -0.8414709848, 0.8414709848, 0.8414709848, -0.8414709848, -0.8414709848, 0.8414709848, 0.8414709848, -0.8414709848, -0.8414709848, 0.8414709848, 0.8414709848, -0.8414709848, -0.8414709848, 0.8414709848, 0.8414709848, more...

decimal, periodic-4, non-monotonic, +-

a(n)=sin(∏(-a(n-1)))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Trigonometric

Sequence sqg5bzzeuraef

1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, -3, -1, 1, -2, more...

integer, periodic-4, non-monotonic, +-

a(n)=floor(tan(-a(n-1)))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence psfpdfugiozlb

1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, more...

integer, periodic-4, non-monotonic, +-

a(n)=∏(∏(-a(n-1)))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Recursive
a(n)=∏(-a(n-1))^n
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Power

Sequence pvkf2ndgzxhmo

1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, more...

integer, periodic-4, non-monotonic, +-

a(n)=ceil(tan(-a(n-1)))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence ilce2tqmdeeqe

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, more...

integer, periodic-4, non-monotonic, +, A121262

a(n)=cf(4*n)
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Arithmetic
a(n)=cf(4+a(n-1))
a(0)=0
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=cf(lcm(n, 4))
lcm(a,b)=least common multiple
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Divisibility
a(n)=sqrt(cf(4*n))
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Power

Sequence pdiryyzosolm

1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, more...

integer, periodic-4, non-monotonic, +

a(n)=(n+a(n-1))%2
a(0)=1
n≥0
5 operations
Divisibility
a(n)=a(n-1)-a(n-2)+a(n-3)
a(0)=1
a(1)=0
a(2)=0
n≥0
5 operations
Recursive
a(n)=a(n-1)!-a(n-2)
a(0)=1
a(1)=0
n≥0
4 operations
Combinatoric
a(n)=Δ(a(n-1))^a(n-2)
a(0)=1
a(1)=0
Δ(a)=differences of a
n≥0
4 operations
Power

Sequence c5orlud3hy4xl

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, more...

integer, periodic-4, non-monotonic, +-, A057077

a(n)=a(n-1)*Δ(a(n-2))
a(0)=1
a(1)=2
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=n%a(n-1)-a(n-2)
a(0)=1
a(1)=1
n≥0
5 operations
Divisibility
a(n)=(-a(n-2))^a(n-1)
a(0)=1
a(1)=1
n≥0
4 operations
Power
a(n)=a(n-1)*Δ(a(n-2)!)
a(0)=1
a(1)=2
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence p3uxz51smmhwb

1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, more...

integer, periodic-4, non-monotonic, +, A133872

a(n)=a(n-1)!-a(n-2)
a(0)=1
a(1)=1
n≥0
4 operations
Combinatoric
a(n)=(1+n+a(n-1))%2
a(0)=1
n≥0
7 operations
Divisibility
a(n)=Δ(∑(a(n-1)))-a(n-2)
a(0)=1
a(1)=1
∑(a)=partial sums of a
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=Δ(a(n-1))^a(n-2)
a(0)=1
a(1)=1
Δ(a)=differences of a
n≥0
4 operations
Power

Sequence q5q0lhqhpcinm

1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=(n%4)!
n≥0
4 operations
Combinatoric

Sequence yuvwzwe1n1sbe

1, 1.5574077247, 826.7926316054, 0, 1, 1.5574077247, 826.7926316054, 0, 1, 1.5574077247, 826.7926316054, 0, 1, 1.5574077247, 826.7926316054, 0, 1, 1.5574077247, 826.7926316054, 0, 1, 1.5574077247, 826.7926316054, 0, 1, more...

decimal, periodic-4, non-monotonic, +

a(n)=tan(a(n-1))^a(n-1)
a(0)=1
n≥0
4 operations
Trigonometric

Sequence 1m1ol5c5qwfn

1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(a(n-1))-a(n-2)
a(0)=1
a(1)=2
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=n%a(n-1)-a(n-2)
a(0)=1
a(1)=2
n≥0
5 operations
Divisibility
a(n)=sqrt(Δ(a(n-1)))-a(n-2)
a(0)=1
a(1)=2
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(a(n-1)!)-a(n-2)
a(0)=1
a(1)=2
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence xlcm2wcoodxwg

1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, more...

integer, periodic-4, non-monotonic, +-

a(n)=(-a(n-2))^a(n-1)
a(0)=1
a(1)=2
n≥0
4 operations
Power
a(n)=2*a(n-2)%a(n-1)-a(n-2)
a(0)=1
a(1)=2
n≥0
7 operations
Divisibility
a(n)=(a(n-1)-a(n-2))/(a(n-1)-1/a(n-2))
a(0)=1
a(1)=2
n≥0
9 operations
Recursive

Sequence ivcis5aoowhb

1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, more...

decimal, periodic-4, non-monotonic, +

a(n)=a(n-2)^-a(n-1)
a(0)=1
a(1)=2
n≥0
4 operations
Power
a(n)=stern(ceil(a(n-1)))/a(n-2)
a(0)=1
a(1)=2
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Recursive
a(n)=pt(floor(a(n-1)))/a(n-2)
a(0)=1
a(1)=2
pt(n)=Pascals triangle by rows
n≥0
5 operations
Combinatoric
a(n)=agc(floor(a(n-1)))/a(n-2)
a(0)=1
a(1)=2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
5 operations
Prime

Sequence t1hsf0m24gnbc

1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, more...

integer, periodic-4, non-monotonic, +

a(n)=floor(exp(tan(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence m4fwzgzcgjqhi

1, 4.7465010457, 3.1829908777, 0.8671471937, 1, 4.7465010457, 3.1829908777, 0.8671471937, 1, 4.7465010457, 3.1829908777, 0.8671471937, 1, 4.7465010457, 3.1829908777, 0.8671471937, 1, 4.7465010457, 3.1829908777, 0.8671471937, 1, 4.7465010457, 3.1829908777, 0.8671471937, 1, more...

decimal, periodic-4, non-monotonic, +

a(n)=exp(tan(floor(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence 5smya0hecwu5i

1.1578212823, 1.5574077247, -2.1850398633, 1.5574077247, 1.1578212823, 1.5574077247, -2.1850398633, 1.5574077247, 1.1578212823, 1.5574077247, -2.1850398633, 1.5574077247, 1.1578212823, 1.5574077247, -2.1850398633, 1.5574077247, 1.1578212823, 1.5574077247, -2.1850398633, 1.5574077247, 1.1578212823, 1.5574077247, -2.1850398633, 1.5574077247, 1.1578212823, more...

decimal, periodic-4, non-monotonic, +-

a(n)=tan(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Trigonometric

Sequence bwa5c3j0bnxmp

1.3862943611, 0, 0.6931471806, 0, 1.3862943611, 0, 0.6931471806, 0, 1.3862943611, 0, 0.6931471806, 0, 1.3862943611, 0, 0.6931471806, 0, 1.3862943611, 0, 0.6931471806, 0, 1.3862943611, 0, 0.6931471806, 0, 1.3862943611, more...

decimal, periodic-4, non-monotonic, +

a(n)=log(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Power

Sequence uozvqjqabzikk

1.5574077247, -1.5574077247, -1.5574077247, 1.5574077247, 1.5574077247, -1.5574077247, -1.5574077247, 1.5574077247, 1.5574077247, -1.5574077247, -1.5574077247, 1.5574077247, 1.5574077247, -1.5574077247, -1.5574077247, 1.5574077247, 1.5574077247, -1.5574077247, -1.5574077247, 1.5574077247, 1.5574077247, -1.5574077247, -1.5574077247, 1.5574077247, 1.5574077247, more...

decimal, periodic-4, non-monotonic, +-

a(n)=tan(∏(-a(n-1)))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Trigonometric

Sequence ex4n4vi1yrupb

2, -0.5, -2, 0.5, 2, -0.5, -2, 0.5, 2, -0.5, -2, 0.5, 2, -0.5, -2, 0.5, 2, -0.5, -2, 0.5, 2, -0.5, -2, 0.5, 2, more...

decimal, periodic-4, non-monotonic, +-

a(n)=Δ(a(n-2))/a(n-1)
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=(1-2)^n/a(n-1)
a(0)=2
n≥0
7 operations
Power
a(n)=Δ(a(n-2)!)/a(n-1)
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
5 operations
Combinatoric
a(n)=Δ(τ(a(n-2)))/a(n-1)
a(0)=2
a(1)=1
τ(n)=number of divisors of n
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence gwzwxmewadrbh

2, 0.5, -2, -0.5, 2, 0.5, -2, -0.5, 2, 0.5, -2, -0.5, 2, 0.5, -2, -0.5, 2, 0.5, -2, -0.5, 2, 0.5, -2, -0.5, 2, more...

decimal, periodic-4, non-monotonic, +-

a(n)=Δ(a(n-2))/a(n-1)
a(0)=2
a(1)=3
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=Δ(P(a(n-2)))/a(n-1)
a(0)=2
a(1)=3
P(n)=Partition numbers
Δ(a)=differences of a
n≥0
5 operations
Combinatoric
a(n)=Δ(gpf(a(n-2)))/a(n-1)
a(0)=2
a(1)=3
gpf(n)=greatest prime factor of n
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence 4xlx3s2u31ezp

2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, -2, -1, 2, 1, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(a(n-1))-a(n-2)
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=n%a(n-1)-a(n-2)
a(0)=2
a(1)=1
n≥1
5 operations
Divisibility
a(n)=sqrt(Δ(a(n-1)))-a(n-2)
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(a(n-1)!)-a(n-2)
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence tmayr2mrywy2i

2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, more...

integer, periodic-4, non-monotonic, +-

a(n)=(-a(n-2))^a(n-1)
a(0)=2
a(1)=1
n≥0
4 operations
Power
a(n)=∏(Δ(a(n-2))/a(n-1))
a(0)=2
a(1)=3
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence zem3jvwep4q0m

2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, 1, 0.5, 1, 2, more...

decimal, periodic-4, non-monotonic, +

a(n)=a(n-2)^-a(n-1)
a(0)=2
a(1)=1
n≥0
4 operations
Power
a(n)=stern(ceil(a(n-1)))/a(n-2)
a(0)=2
a(1)=1
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Recursive
a(n)=pt(floor(a(n-1)))/a(n-2)
a(0)=2
a(1)=1
pt(n)=Pascals triangle by rows
n≥0
5 operations
Combinatoric
a(n)=agc(floor(a(n-1)))/a(n-2)
a(0)=2
a(1)=1
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
5 operations
Prime

Sequence 4ui5oi5nj0zaf

2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=gcd(∑(n), 2)
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility
a(n)=Δ(∑(a(n-1)))/a(n-2)
a(0)=2
a(1)=1
∑(a)=partial sums of a
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=gcd(∑(n), 2)!
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Combinatoric
a(n)=2^((n-a(n-1))%2)
a(0)=2
n≥1
7 operations
Power

Sequence ne5l4rbpooj3i

2, 1, 1.4142135624, 1, 2, 1, 1.4142135624, 1, 2, 1, 1.4142135624, 1, 2, 1, 1.4142135624, 1, 2, 1, 1.4142135624, 1, 2, 1, 1.4142135624, 1, 2, more...

decimal, periodic-4, non-monotonic, +

a(n)=sqrt(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Power

Sequence uofghlg0aathb

2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, more...

integer, periodic-4, non-monotonic, +-

a(n)=a(n-1)*Δ(a(n-2))
a(0)=2
a(1)=3
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=a(n-1)%2-a(n-2)
a(0)=2
a(1)=2
n≥0
5 operations
Divisibility
a(n)=∏(-a(n-1)^a(n-2))
a(0)=2
a(1)=1
∏(a)=partial products of a
n≥0
5 operations
Power
a(n)=Δ(a(n-1)!)-a(n-2)
a(0)=2
a(1)=2
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence 1flwzbnkhgdvn

2, 2, 0.5, 0.5, 2, 2, 0.5, 0.5, 2, 2, 0.5, 0.5, 2, 2, 0.5, 0.5, 2, 2, 0.5, 0.5, 2, 2, 0.5, 0.5, 2, more...

decimal, periodic-4, non-monotonic, +

a(n)=a(n-1)^Δ(a(n-2))
a(0)=2
a(1)=3
Δ(a)=differences of a
n≥0
4 operations
Power
a(n)=stern(ceil(a(n-1)))/a(n-2)
a(0)=2
a(1)=2
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Recursive
a(n)=pt(floor(a(n-1)))/a(n-2)
a(0)=2
a(1)=2
pt(n)=Pascals triangle by rows
n≥0
5 operations
Combinatoric
a(n)=agc(floor(a(n-1)))/a(n-2)
a(0)=2
a(1)=2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
5 operations
Prime

Sequence a0c2jkhtqssdf

2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, -2, -3, 2, 3, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(a(n-1))-a(n-2)
a(0)=2
a(1)=3
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=-a(n-2)%a(n-1)²
a(0)=2
a(1)=3
n≥0
5 operations
Divisibility
a(n)=sqrt(Δ(a(n-1)))-a(n-2)
a(0)=2
a(1)=3
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(a(n-1)!)-a(n-2)
a(0)=2
a(1)=3
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence sxqnkahl5ex0h

2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, more...

integer, periodic-4, non-monotonic, +-

a(n)=ceil(tan(-a(n-1)))
a(0)=2
n≥0
4 operations
Trigonometric

Sequence jqcjpdj0i2fj

2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, more...

integer, periodic-4, non-monotonic, +

a(n)=gcd(∑(a(n-1)), 8)
a(0)=2
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility
a(n)=gcd(∑(a(n-1)!), 8)
a(0)=2
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Combinatoric

Sequence ne4sbcenkhjpb

2.7182818285, 0.3678794412, 0.3678794412, 2.7182818285, 2.7182818285, 0.3678794412, 0.3678794412, 2.7182818285, 2.7182818285, 0.3678794412, 0.3678794412, 2.7182818285, 2.7182818285, 0.3678794412, 0.3678794412, 2.7182818285, 2.7182818285, 0.3678794412, 0.3678794412, 2.7182818285, 2.7182818285, 0.3678794412, 0.3678794412, 2.7182818285, 2.7182818285, more...

decimal, periodic-4, non-monotonic, +

a(n)=exp(∏(-a(n-1)))
a(0)=1
∏(a)=partial products of a
n≥0
4 operations
Power

Sequence tgpaqy45puhrh

3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, more...

integer, periodic-4, non-monotonic, +

a(n)=floor(exp(tan(a(n-1))))
a(0)=3
n≥0
4 operations
Trigonometric

Sequence 5xnkmczc54zob

3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, -1, 2, 3, 1, more...

integer, periodic-4, non-monotonic, +-

a(n)=ceil(tan(-a(n-1)))
a(0)=3
n≥0
4 operations
Trigonometric

Sequence 4mfr0d3gocucn

4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, 0, 1, 4, 3, more...

integer, periodic-4, non-monotonic, +

a(n)=floor(exp(tan(a(n-1))))
a(0)=4
n≥0
4 operations
Trigonometric

Sequence aostf0jez55p

8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, 4, 1, 8, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=gcd(n², 8)
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility

Sequence jsw4q3xjxm1ie

16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=gcd(n, 4)²
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility

Sequence uypzkcnnj3fec

24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, 2, 1, 24, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=gcd(n, 4)!
gcd(a,b)=greatest common divisor
n≥0
4 operations
Combinatoric

Sequence pz4rlsumkqwqf

32.9350615877, 21.0220396388, 25.0108575801, 21.0220396388, 32.9350615877, 21.0220396388, 25.0108575801, 21.0220396388, 32.9350615877, 21.0220396388, 25.0108575801, 21.0220396388, 32.9350615877, 21.0220396388, 25.0108575801, 21.0220396388, 32.9350615877, 21.0220396388, 25.0108575801, 21.0220396388, 32.9350615877, 21.0220396388, 25.0108575801, 21.0220396388, 32.9350615877, more...

decimal, periodic-4, non-monotonic, +

a(n)=Z(gcd(n, 4))
gcd(a,b)=greatest common divisor
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence w32ypbf3tldbd

54.5981500331, 2.7182818285, 7.3890560989, 2.7182818285, 54.5981500331, 2.7182818285, 7.3890560989, 2.7182818285, 54.5981500331, 2.7182818285, 7.3890560989, 2.7182818285, 54.5981500331, 2.7182818285, 7.3890560989, 2.7182818285, 54.5981500331, 2.7182818285, 7.3890560989, 2.7182818285, 54.5981500331, 2.7182818285, 7.3890560989, 2.7182818285, 54.5981500331, more...

decimal, periodic-4, non-monotonic, +

a(n)=exp(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Power

Sequence yg41gqfctoxsh

-54.5981500331, -2.7182818285, -7.3890560989, -2.7182818285, -54.5981500331, -2.7182818285, -7.3890560989, -2.7182818285, -54.5981500331, -2.7182818285, -7.3890560989, -2.7182818285, -54.5981500331, -2.7182818285, -7.3890560989, -2.7182818285, -54.5981500331, -2.7182818285, -7.3890560989, -2.7182818285, -54.5981500331, -2.7182818285, -7.3890560989, -2.7182818285, -54.5981500331, more...

decimal, periodic-4, non-monotonic, -

a(n)=-exp(gcd(n, 4))
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power

Sequence km3rvru4p1y1g

-51.8798682047, 4.6707742705, -4.6707742705, 51.8798682047, -51.8798682047, 4.6707742705, -4.6707742705, 51.8798682047, -51.8798682047, 4.6707742705, -4.6707742705, 51.8798682047, -51.8798682047, 4.6707742705, -4.6707742705, 51.8798682047, -51.8798682047, 4.6707742705, -4.6707742705, 51.8798682047, -51.8798682047, 4.6707742705, -4.6707742705, 51.8798682047, -51.8798682047, more...

decimal, periodic-4, non-monotonic, +-

a(n)=Δ(exp(gcd(n, 4)))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Power

Sequence fydpo0y45l3ch

-32.9350615877, -21.0220396388, -25.0108575801, -21.0220396388, -32.9350615877, -21.0220396388, -25.0108575801, -21.0220396388, -32.9350615877, -21.0220396388, -25.0108575801, -21.0220396388, -32.9350615877, -21.0220396388, -25.0108575801, -21.0220396388, -32.9350615877, -21.0220396388, -25.0108575801, -21.0220396388, -32.9350615877, -21.0220396388, -25.0108575801, -21.0220396388, -32.9350615877, more...

decimal, periodic-4, non-monotonic, -

a(n)=-Z(gcd(n, 4))
gcd(a,b)=greatest common divisor
Z(n)=non trivial zeros of Zeta
n≥0
5 operations
Prime

Sequence dxtypkccc3drh

-24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, -2, -1, -24, -1, more...

integer, periodic-4, non-monotonic, -

a(n)=-gcd(n, 4)!
gcd(a,b)=greatest common divisor
n≥0
5 operations
Combinatoric

Sequence csvqv3nkajy2c

-23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, -1, 23, -23, 1, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(gcd(n, 4)!)
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence fozlfoqyl0cyi

-16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, -4, -1, -16, -1, more...

integer, periodic-4, non-monotonic, -

a(n)=-gcd(n, 4)²
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence ywo0dzuxsvwxj

-15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, -3, 15, -15, 3, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(gcd(n, 4)²)
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence 3nq0tzg1aeehj

-11.913021949, 3.9888179414, -3.9888179414, 11.913021949, -11.913021949, 3.9888179414, -3.9888179414, 11.913021949, -11.913021949, 3.9888179414, -3.9888179414, 11.913021949, -11.913021949, 3.9888179414, -3.9888179414, 11.913021949, -11.913021949, 3.9888179414, -3.9888179414, 11.913021949, -11.913021949, 3.9888179414, -3.9888179414, 11.913021949, -11.913021949, more...

decimal, periodic-4, non-monotonic, +-

a(n)=Δ(Z(gcd(n, 4)))
gcd(a,b)=greatest common divisor
Z(n)=non trivial zeros of Zeta
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence 0h1kcfwuz4w4c

-10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, -8, -7, -10, -9, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-10
n≥0
5 operations
Divisibility

Sequence uyuvwn0j0pvfj

-9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, -11, -9, -9, -11, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-10
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence hwhht1ovyvswf

-9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, -7, -6, -9, -8, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-9
n≥0
5 operations
Divisibility

Sequence bk1bcdoqp0yf

-8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, -10, -8, -8, -10, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-9
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence k5k4dbashrmdj

-8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, -6, -5, -8, -7, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-8
n≥0
5 operations
Divisibility

Sequence nrtv2qermcllj

-8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, -4, -1, -8, -1, more...

integer, periodic-4, non-monotonic, -

a(n)=-gcd(n², 8)
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence bh4ctsknikyal

-7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, -9, -7, -7, -9, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-8
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence feixkhat5czji

-7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, -5, -4, -7, -6, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-7
n≥0
5 operations
Divisibility

Sequence ftszrbpqt1cag

-7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, -3, 7, -7, 3, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(gcd(n², 8))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence dgdd5sbqmsxki

-6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, -8, -9, -6, -9, more...

integer, periodic-4, non-monotonic, -

a(n)=gcd(n, 4)-10
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence us4l2ihyaovbe

-6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, -8, -6, -6, -8, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-7
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence s4czrdgoigcvp

-6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, -4, -3, -6, -5, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-6
n≥0
5 operations
Divisibility

Sequence lhxt20txybkwb

-5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, -7, -8, -5, -8, more...

integer, periodic-4, non-monotonic, -

a(n)=gcd(n, 4)-9
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence vocudx14l4a0j

-5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, -7, -5, -5, -7, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-6
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence xuehtdoeiapyf

-5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, -3, -2, -5, -4, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-5
n≥0
5 operations
Divisibility

Sequence ekfnco2mxt5f

-4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, -6, -7, -4, -7, more...

integer, periodic-4, non-monotonic, -

a(n)=gcd(n, 4)-8
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence yek0xdhmcdv4k

-4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, -6, -4, -4, -6, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-5
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence x2nwks2ov4opk

-4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, -2, -1, -4, -3, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-4
n≥0
5 operations
Divisibility

Sequence ehujjsfekadmg

-4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, more...

integer, periodic-4, non-monotonic, +-

a(n)=Δ(a(n-1)*Δ(a(n-2)))
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
5 operations
Recursive

Sequence icve3g1op2luc

-3.1415926536, -2.1415926536, -1.1415926536, -0.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -0.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -0.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -0.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -0.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -0.1415926536, -3.1415926536, more...

decimal, periodic-4, non-monotonic, -

a(n)=n%4-π
π=3.141...
n≥0
5 operations
Divisibility

Sequence yakknhu2wbpgd

-3, -9, -7, -1, -3, -9, -7, -1, -3, -9, -7, -1, -3, -9, -7, -1, -3, -9, -7, -1, -3, -9, -7, more...

integer, periodic-4, non-monotonic, -

a(n)=-∏(a(n-1))%10
a(0)=3
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence baf0pxa4xgqmf

-3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, -5, -6, -3, -6, more...

integer, periodic-4, non-monotonic, -

a(n)=gcd(n, 4)-7
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence 3j3dz0muzwmnl

-3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, -5, -3, -3, -5, more...

integer, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-4
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Recursive

Sequence b0g1usv5vnt5i

-3, -4, -2, -1, -3, -4, -2, -1, -3, -4, -2, -1, -3, -4, -2, -1, -3, -4, -2, -1, -3, -4, -2, more...

integer, periodic-4, non-monotonic, -

a(n)=-∏(a(n-1))%5
a(0)=3
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence dt2m2h1eu2vi

-3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, -3, 0, -3, -2, more...

integer, periodic-4, non-monotonic, -

a(n)=∑(Δ(gcd(n, 4)))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

Sequence zvvarr5oqntuh

-3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, -1, 0, -3, -2, more...

integer, periodic-4, non-monotonic, -

a(n)=n%4-3
n≥0
5 operations
Divisibility

Sequence 3yz1wd3jirxvm

-3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, -1, 0, -3, 0, more...

integer, periodic-4, non-monotonic, -

a(n)=1-gcd(n, 4)
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence bcwf2455oa3jo

-2.7182818285, -0.3678794412, -0.3678794412, -2.7182818285, -2.7182818285, -0.3678794412, -0.3678794412, -2.7182818285, -2.7182818285, -0.3678794412, -0.3678794412, -2.7182818285, -2.7182818285, -0.3678794412, -0.3678794412, -2.7182818285, -2.7182818285, -0.3678794412, -0.3678794412, -2.7182818285, -2.7182818285, -0.3678794412, -0.3678794412, -2.7182818285, -2.7182818285, more...

decimal, periodic-4, non-monotonic, -

a(n)=-exp(∏(-a(n-1)))
a(0)=1
∏(a)=partial products of a
n≥0
5 operations
Power

Sequence vxoqcgrit2u0j

-2.5, -1.5, 2.5, 1.5, -2.5, -1.5, 2.5, 1.5, -2.5, -1.5, 2.5, 1.5, -2.5, -1.5, 2.5, 1.5, -2.5, -1.5, 2.5, 1.5, -2.5, -1.5, 2.5, 1.5, -2.5, more...

decimal, periodic-4, non-monotonic, +-

a(n)=Δ(Δ(a(n-2))/a(n-1))
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
5 operations
Recursive

Sequence 4wxzfxvbhmiik

-2.3504023873, 0, 2.3504023873, 0, -2.3504023873, 0, 2.3504023873, 0, -2.3504023873, 0, 2.3504023873, 0, -2.3504023873, 0, 2.3504023873, 0, -2.3504023873, 0, 2.3504023873, 0, -2.3504023873, 0, 2.3504023873, 0, -2.3504023873, more...

decimal, periodic-4, non-monotonic, +-

a(n)=Δ(exp(∏(-a(n-1))))
a(0)=1
∏(a)=partial products of a
Δ(a)=differences of a
n≥0
5 operations
Power

Sequence elwe3irpz1ktn

-2.1415926536, -4.1415926536, -4.1415926536, -2.1415926536, -2.1415926536, -4.1415926536, -4.1415926536, -2.1415926536, -2.1415926536, -4.1415926536, -4.1415926536, -2.1415926536, -2.1415926536, -4.1415926536, -4.1415926536, -2.1415926536, -2.1415926536, -4.1415926536, -4.1415926536, -2.1415926536, -2.1415926536, -4.1415926536, -4.1415926536, -2.1415926536, -2.1415926536, more...

decimal, periodic-4, non-monotonic, -

a(n)=∏(-a(n-1))-π
a(0)=1
∏(a)=partial products of a
π=3.141...
n≥0
5 operations
Recursive

Sequence 40xoqrpxbcihg

-2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, -4, -5, -2, -5, more...

integer, periodic-4, non-monotonic, -

a(n)=gcd(n, 4)-6
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence pj4bn0pskbvhe

-2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, -2, -4, -8, -6, more...

integer, periodic-4, non-monotonic, -

a(n)=-∏(a(n-1))%10
a(0)=2
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence ue5s3lqcggzfj

-2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, -6, 0, -2, -4, more...

integer, periodic-4, non-monotonic, -

a(n)=-∑(a(n-1))%8
a(0)=2
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

[0] [1] [2] [3] [4] ... [8]