Sequence Database

A database with 951925 machine generated integer and decimal sequences.

Displaying result 0-99 of total 690. [0] [1] [2] [3] [4] ... [6]

Sequence qgdcvovgywgbn

0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, more...

integer, periodic-3, non-monotonic, +, A011655

a(n)=n²%3
n≥0
4 operations
Divisibility
a(n)=(a(n-1)-a(n-2))²
a(0)=0
a(1)=1
n≥0
4 operations
Recursive
a(n)=a(n-3)^a(n-1)
a(0)=0
a(1)=1
a(2)=1
n≥0
3 operations
Power
a(n)=cf(comp(3*n))
comp(a)=complement function of a (in range)
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Arithmetic
a(n)=a(n-1)!*a(n-3)
a(0)=0
a(1)=1
a(2)=1
n≥0
4 operations
Combinatoric
a(n)=a(n-3)^cos(a(n-1))
a(0)=0
a(1)=1
a(2)=1
n≥0
4 operations
Trigonometric

Sequence hexbe3joutxph

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, more...

integer, periodic-3, non-monotonic, +, A010872

a(n)=n%3
n≥0
3 operations
Divisibility
a(n)=a(n-3)^a(n-1)
a(0)=0
a(1)=1
a(2)=2
n≥0
3 operations
Power
a(n)=3-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
5 operations
Recursive
a(n)=a(n-1)!*a(n-3)
a(0)=0
a(1)=1
a(2)=2
n≥0
4 operations
Combinatoric

Sequence 24w2vmvil15lg

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, more...

integer, periodic-3, non-monotonic, +, A010882

a(n)=1+n%3
n≥0
5 operations
Divisibility
a(n)=6-a(n-1)-a(n-2)
a(0)=1
a(1)=2
n≥0
5 operations
Recursive
a(n)=C(a(n-3), a(n-1))
a(0)=1
a(1)=2
a(2)=3
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=gcd(6^a(n-1), a(n-3))
a(0)=1
a(1)=2
a(2)=3
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power
a(n)=ceil(abs(tan(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence y1izymmnck4jb

3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, more...

integer, periodic-3, non-monotonic, +, A109007

a(n)=gcd(n, 3)
gcd(a,b)=greatest common divisor
n≥0
3 operations
Divisibility
a(n)=C(gcd(n, 3), 2)
gcd(a,b)=greatest common divisor
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=gcd(n^3, 3)
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power

Sequence 1hgzv5fo4kq0e

-3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(n, 3)
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility

Sequence 41rt5qnzfi3lp

-2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ(gcd(n, 3))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
4 operations
Divisibility

Sequence dm13wvendqm1g

-0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, 0.5403023059, 0.5403023059, -0.9899924966, more...

decimal, periodic-3, non-monotonic, +-

a(n)=cos(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Trigonometric

Sequence 40rlzteo3hxae

-0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, 1.5574077247, 1.5574077247, -0.1425465431, more...

decimal, periodic-3, non-monotonic, +-

a(n)=tan(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Trigonometric

Sequence 4oafitaxoswxc

0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-n%3
n≥0
4 operations
Divisibility
a(n)=a(n-1)-Δ(a(n-3))
a(0)=0
a(1)=1
a(2)=2
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=a(n-1)^(2+a(n-1))-1
a(0)=0
n≥0
7 operations
Power

Sequence 5scfu21dbmlfh

0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-n²%3
n≥0
5 operations
Divisibility
a(n)=a(n-1)-Δ(a(n-3))
a(0)=0
a(1)=1
a(2)=1
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=a(n-1)-Δ(sqrt(a(n-3)))
a(0)=0
a(1)=1
a(2)=1
Δ(a)=differences of a
n≥0
5 operations
Power

Sequence vyf4e5bqmb14j

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, more...

integer, periodic-3, non-monotonic, +, A022003

a(n)=cf(3+a(n-1))
a(0)=2
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=Δ(floor(n/3))
Δ(a)=differences of a
n≥0
5 operations
Arithmetic
a(n)=lcm(1+a(n-1), a(n-3))
a(0)=0
a(1)=0
a(2)=1
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=exp(a(n-1))*a(n-3)
a(0)=0
a(1)=0
a(2)=1
n≥0
4 operations
Power
a(n)=cos(a(n-1))*a(n-3)
a(0)=0
a(1)=0
a(2)=1
n≥0
4 operations
Trigonometric
a(n)=a(n-1)!*a(n-3)
a(0)=0
a(1)=0
a(2)=1
n≥0
4 operations
Combinatoric

Sequence gmholsdphph2e

0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, more...

integer, periodic-3, non-monotonic, +-, A102283

a(n)=-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
4 operations
Recursive
a(n)=Δ((n%3)!)
Δ(a)=differences of a
n≥0
5 operations
Combinatoric
a(n)=Δ(exp(a(n-1))*a(n-3))
a(0)=0
a(1)=0
a(2)=1
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(gcd(∑(a(n-1)), a(n-3)))
a(0)=0
a(1)=0
a(2)=1
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility
a(n)=floor(tan(exp(a(n-1))))
a(0)=0
n≥0
4 operations
Trigonometric

Sequence fmd0qr22ok4xo

0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=cf(3+a(n-1))
a(0)=1
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=Δ(round(n/3))
Δ(a)=differences of a
n≥0
5 operations
Arithmetic
a(n)=∑(n)%3
∑(a)=partial sums of a
n≥0
4 operations
Divisibility
a(n)=sqrt(cf(3+a(n-1)))
a(0)=1
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Power

Sequence br0yvzytgjhnp

0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=5-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
5 operations
Recursive
a(n)=(n%3)²
n≥0
4 operations
Divisibility
a(n)=(4^a(n-1))%8
a(0)=0
n≥0
5 operations
Power
a(n)=C(10, a(n-1))%6
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence gnips04qdmzye

0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=6-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
5 operations
Recursive
a(n)=round(exp(tan(a(n-1))))
a(0)=0
n≥0
4 operations
Trigonometric

Sequence utdsgmcjefybn

0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, 1.5574077247, -3.3805150062, 0, more...

decimal, periodic-3, non-monotonic, +-

a(n)=tan(round(exp(a(n-1))))
a(0)=0
n≥0
4 operations
Trigonometric

Sequence vewk1wioizx2

0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, more...

integer, periodic-3, non-monotonic, +-

a(n)=-a(n-1)-a(n-2)
a(0)=0
a(1)=2
n≥0
4 operations
Recursive
a(n)=Δ(gcd(∑(a(n-1)), 3))
a(0)=1
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence 25enlff45yqwc

0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, 0.8414709848, 0.8414709848, 0.1411200081, more...

decimal, periodic-3, non-monotonic, +

a(n)=sin(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Trigonometric

Sequence jsgfzthoxqscf

1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, more...

integer, periodic-3, non-monotonic, +-, A049347

a(n)=Δ(cf(3+a(n-1)))
a(0)=1
cf(a)=characteristic function of a (in range)
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=Δ(a(n-3))^-a(n-1)
a(0)=1
a(1)=0
a(2)=0
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=floor(tan(exp(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence wohxgcfc5rlnm

1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, more...

integer, periodic-3, non-monotonic, +-, A057078

a(n)=1-n%3
n≥0
5 operations
Divisibility
a(n)=-a(n-1)-a(n-2)
a(0)=1
a(1)=0
n≥0
4 operations
Recursive
a(n)=Δ(a(n-3)^a(n-1))
a(0)=0
a(1)=1
a(2)=1
Δ(a)=differences of a
n≥0
4 operations
Power
a(n)=Δ(a(n-1)!*a(n-3))
a(0)=0
a(1)=1
a(2)=1
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence b0yqgfcwojfsn

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, more...

integer, periodic-3, non-monotonic, +, A079978

a(n)=cf(3*n)
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Arithmetic
a(n)=cf(3+a(n-1))
a(0)=0
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Recursive
a(n)=cf(lcm(n, 3))
lcm(a,b)=least common multiple
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Divisibility
a(n)=sqrt(cf(3*n))
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Power
a(n)=cos(a(n-1))*a(n-3)
a(0)=1
a(1)=0
a(2)=0
n≥0
4 operations
Trigonometric
a(n)=a(n-1)!*a(n-3)
a(0)=1
a(1)=0
a(2)=0
n≥0
4 operations
Combinatoric

Sequence sdofblfi3tbio

1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, more...

integer, periodic-3, non-monotonic, +, A204418

a(n)=(a(n-1)-a(n-2))²
a(0)=1
a(1)=0
n≥0
4 operations
Recursive
a(n)=1-lcm(a(n-1), a(n-2))
a(0)=1
a(1)=0
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=(1-a(n-1))^a(n-2)
a(0)=1
a(1)=0
n≥0
5 operations
Power
a(n)=cf(∑(C(a(n-2), a(n-1))))
a(0)=0
a(1)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Combinatoric

Sequence c2x5xxy3tmqpk

1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, more...

integer, periodic-3, non-monotonic, +-, A061347

a(n)=-a(n-1)-a(n-2)
a(0)=1
a(1)=1
n≥0
4 operations
Recursive
a(n)=Δ(a(n-3)^a(n-1))
a(0)=0
a(1)=1
a(2)=2
Δ(a)=differences of a
n≥0
4 operations
Power
a(n)=Δ(gcd(∑(a(n-1)), a(n-3)))
a(0)=0
a(1)=1
a(2)=2
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility
a(n)=Δ(C(a(n-3), a(n-1)))
a(0)=1
a(1)=2
a(2)=3
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
4 operations
Combinatoric

Sequence tdzgawvza0vmf

1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, more...

integer, periodic-3, non-monotonic, +-, A131561

a(n)=-a(n-1)*a(n-2)
a(0)=1
a(1)=1
n≥0
4 operations
Recursive
a(n)=(1-a(n-1)-a(n-2))%2
a(0)=1
a(1)=1
n≥0
7 operations
Divisibility
a(n)=(1-a(n-1)-a(n-2))^a(n-1)
a(0)=1
a(1)=1
n≥0
7 operations
Power

Sequence kiyhwinqedr1e

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=(a(n-1)-a(n-2))²
a(0)=1
a(1)=1
n≥0
4 operations
Recursive
a(n)=1-lcm(a(n-1), a(n-2))
a(0)=1
a(1)=1
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=(1-a(n-1))^a(n-2)
a(0)=1
a(1)=1
n≥0
5 operations
Power
a(n)=lcm(a(n-1)!, Δ(a(n-3)))
a(0)=1
a(1)=2
a(2)=2
Δ(a)=differences of a
lcm(a,b)=least common multiple
n≥0
5 operations
Combinatoric

Sequence izvkdfmv2rhyl

1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, more...

integer, periodic-3, non-monotonic, +, A177702

a(n)=2/a(n-1)/a(n-2)
a(0)=1
a(1)=1
n≥0
5 operations
Recursive
a(n)=2/lcm(a(n-1), a(n-2))
a(0)=1
a(1)=1
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=(n%3)!
n≥0
4 operations
Combinatoric
a(n)=2^(2-a(n-1))/a(n-2)
a(0)=1
a(1)=1
n≥0
7 operations
Power

Sequence kmijsdzkmavci

1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, more...

integer, periodic-3, non-monotonic, +-, A132677

a(n)=-a(n-1)-a(n-2)
a(0)=1
a(1)=2
n≥0
4 operations
Recursive

Sequence s20d43opfaj5o

1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, more...

integer, periodic-3, non-monotonic, +, A069705

a(n)=(2*a(n-1))%7
a(0)=1
n≥0
5 operations
Divisibility
a(n)=7-a(n-1)-a(n-2)
a(0)=1
a(1)=2
n≥0
5 operations
Recursive
a(n)=2^(n%3)
n≥0
5 operations
Power
a(n)=floor(tan(a(n-1))²)
a(0)=1
n≥0
4 operations
Trigonometric

Sequence djdy3k4dtovbp

1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, 2.7182818285, 0.3678794412, 1, more...

decimal, periodic-3, non-monotonic, +

a(n)=exp(Δ(a(n-3)))/a(n-1)
a(0)=1
a(1)=2
a(2)=2
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=exp(floor(tan(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence 02ghfh3fqih2d

1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, 4.7465010457, 0.0340299246, 1, more...

decimal, periodic-3, non-monotonic, +

a(n)=exp(tan(round(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence 5iezyuksyx02l

1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, more...

integer, periodic-3, non-monotonic, +

a(n)=round(exp(tan(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence qyhc1wnz3xfz

1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, 0, 0, 1.0986122887, more...

decimal, periodic-3, non-monotonic, +

a(n)=log(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Power
a(n)=Λ(gcd(n, 3))
gcd(a,b)=greatest common divisor
Λ(n)=Von Mangoldt's function
n≥0
4 operations
Prime
a(n)=log(P(gcd(n, 3)))
gcd(a,b)=greatest common divisor
P(n)=Partition numbers
n≥0
5 operations
Combinatoric

Sequence pclxbehyne3wi

1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, 1, 1, 1.7320508076, more...

decimal, periodic-3, non-monotonic, +

a(n)=sqrt(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Power
a(n)=sqrt(P(gcd(n, 3)))
gcd(a,b)=greatest common divisor
P(n)=Partition numbers
n≥0
5 operations
Combinatoric
a(n)=sqrt(gpf(gcd(n, 3)))
gcd(a,b)=greatest common divisor
gpf(n)=greatest prime factor of n
n≥0
5 operations
Prime

Sequence mqy3ojxris5eg

2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, -3, 2, 1, more...

integer, periodic-3, non-monotonic, +-

a(n)=-a(n-1)-a(n-2)
a(0)=2
a(1)=1
n≥0
4 operations
Recursive

Sequence a45cnpvvueaal

2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, more...

integer, periodic-3, non-monotonic, +-

a(n)=-a(n-1)-a(n-2)
a(0)=2
a(1)=2
n≥0
4 operations
Recursive

Sequence thxwdz1vqkomn

2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 2, more...

integer, periodic-3, non-monotonic, +

a(n)=10-a(n-1)-a(n-2)
a(0)=2
a(1)=2
n≥0
5 operations
Recursive
a(n)=gcd(∑(a(n-1)), 6)
a(0)=2
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility
a(n)=gcd(∑(a(n-1)!), 6)
a(0)=2
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Combinatoric

Sequence urxesqgaen0tn

2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, -5, 2, 3, more...

integer, periodic-3, non-monotonic, +-

a(n)=-a(n-1)-a(n-2)
a(0)=2
a(1)=3
n≥0
4 operations
Recursive

Sequence jt03edsaekanm

2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, more...

integer, periodic-3, non-monotonic, +

a(n)=1+a(n-1)%3
a(0)=2
n≥0
5 operations
Divisibility
a(n)=6-a(n-1)-a(n-2)
a(0)=2
a(1)=3
n≥0
5 operations
Recursive
a(n)=ceil(abs(tan(a(n-1))))
a(0)=2
n≥0
4 operations
Trigonometric
a(n)=(1+a(n-1))^(a(n-2)%2)
a(0)=2
a(1)=3
n≥0
7 operations
Power
a(n)=Δ(∑(C(a(n-3), a(n-1))))
a(0)=1
a(1)=2
a(2)=3
C(n,k)=binomial coefficient
∑(a)=partial sums of a
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence gqoksgv142e5n

2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, more...

integer, periodic-3, non-monotonic, +

a(n)=(2*a(n-1))%7
a(0)=2
n≥0
5 operations
Divisibility
a(n)=2^(a(n-1)%4)
a(0)=2
n≥0
5 operations
Power
a(n)=floor(tan(a(n-1))²)
a(0)=2
n≥0
4 operations
Trigonometric

Sequence i4d4mf13x0zvl

3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=1+a(n-1)%3
a(0)=3
n≥0
5 operations
Divisibility
a(n)=ceil(abs(tan(a(n-1))))
a(0)=3
n≥0
4 operations
Trigonometric

Sequence mbpttxlg5hmse

3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=gcd(∑(n), 3)
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility

Sequence yafvuujl03hsi

3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, 9, 3, 3, more...

integer, periodic-3, non-monotonic, +

a(n)=gcd(∑(a(n-1)), 9)
a(0)=3
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility

Sequence 3pd12b2qd5f1l

4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=(2*a(n-1))%7
a(0)=4
n≥0
5 operations
Divisibility
a(n)=2^(a(n-1)%4)
a(0)=4
n≥0
5 operations
Power
a(n)=floor(tan(a(n-1))²)
a(0)=4
n≥0
4 operations
Trigonometric

Sequence tzalywcensg4i

5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, 1, 5, 0, more...

integer, periodic-3, non-monotonic, +

a(n)=round(exp(tan(a(n-1))))
a(0)=5
n≥0
4 operations
Trigonometric

Sequence pniflp1d2ugni

6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, 1, 6, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=gcd(n, 3)!
gcd(a,b)=greatest common divisor
n≥0
4 operations
Combinatoric

Sequence x4rzgl3giahxj

9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, 1, 9, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=gcd(n, 3)²
gcd(a,b)=greatest common divisor
n≥0
4 operations
Divisibility
a(n)=gcd(n^3, 9)
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power

Sequence crzsxd1qrto3o

20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, 2.7182818285, 2.7182818285, 20.0855369232, more...

decimal, periodic-3, non-monotonic, +

a(n)=exp(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
4 operations
Power
a(n)=exp(P(gcd(n, 3)))
gcd(a,b)=greatest common divisor
P(n)=Partition numbers
n≥0
5 operations
Combinatoric
a(n)=exp(gpf(gcd(n, 3)))
gcd(a,b)=greatest common divisor
gpf(n)=greatest prime factor of n
n≥0
5 operations
Prime

Sequence 2oze11d2rbx0n

30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, 21.0220396388, 21.0220396388, 30.4248761259, more...

decimal, periodic-3, non-monotonic, +

a(n)=Z(gcd(n, 3))
gcd(a,b)=greatest common divisor
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence ey4mhcfble20b

-30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, -21.0220396388, -21.0220396388, -30.4248761259, more...

decimal, periodic-3, non-monotonic, -

a(n)=-Z(gcd(n, 3))
gcd(a,b)=greatest common divisor
Z(n)=non trivial zeros of Zeta
n≥0
5 operations
Prime

Sequence brzugwoz0zdod

-20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, -2.7182818285, -2.7182818285, -20.0855369232, more...

decimal, periodic-3, non-monotonic, -

a(n)=-exp(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power

Sequence lkefubwe0x4si

-17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, 0, 17.3672550947, -17.3672550947, more...

decimal, periodic-3, non-monotonic, +-

a(n)=Δ(exp(gcd(n, 3)))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Power

Sequence ntt2ujgi4rhmm

-10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, -8, -10, -9, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-10
n≥0
5 operations
Divisibility

Sequence qg3mckckktbaj

-9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, 0, 9.4028364871, -9.4028364871, more...

decimal, periodic-3, non-monotonic, +-

a(n)=Δ(Z(gcd(n, 3)))
gcd(a,b)=greatest common divisor
Z(n)=non trivial zeros of Zeta
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence j1xybfuktbnke

-9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, -7, -9, -8, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-9
n≥0
5 operations
Divisibility

Sequence odvtmtsfvkh5f

-9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, -1, -9, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(n, 3)²
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence gxdmok3i5xw4n

-8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, -6, -8, -7, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-8
n≥0
5 operations
Divisibility

Sequence ul35dpcqtw1ek

-8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, 8, -8, 0, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ(gcd(n, 3)²)
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence upsp1ufaq35cg

-7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, -9, -7, -9, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-10
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence oz25vjcgavoll

-7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, -5, -7, -6, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-7
n≥0
5 operations
Divisibility

Sequence uc4wwoxtqggkf

-6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, -8, -6, -8, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-9
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence a2piertpkqx1m

-6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, -4, -6, -5, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-6
n≥0
5 operations
Divisibility

Sequence oypf4141xux3p

-6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, -1, -6, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(n, 3)!
gcd(a,b)=greatest common divisor
n≥0
5 operations
Combinatoric

Sequence d02yqxlzkiujg

-5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, -7, -5, -7, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-8
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence pe0macknhso4e

-5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, -3, -5, -4, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-5
n≥0
5 operations
Divisibility

Sequence 3lg1mfomv3x2e

-5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, 5, -5, 0, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ(gcd(n, 3)!)
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence w0vqmb00eh1kg

-4, -7, -1, -4, -7, -1, -4, -7, -1, -4, -7, -1, -4, -7, -1, -4, -7, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-∏(a(n-1))%9
a(0)=4
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence lcktmfio4ypem

-4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, -6, -4, -6, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-7
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence f0iwlb4mdmyie

-4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, -2, -4, -3, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-4
n≥0
5 operations
Divisibility

Sequence 3ypu3o4j3tpop

-4, -2, -1, -4, -2, -1, -4, -2, -1, -4, -2, -1, -4, -2, -1, -4, -2, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-∏(a(n-1))%7
a(0)=4
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence 110vr0doton4j

-4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, 0, -4, -2, more...

integer, periodic-3, non-monotonic, -

a(n)=-∑(a(n-1))%6
a(0)=4
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

Sequence ixvgvicuekohh

-3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, -2.1415926536, -1.1415926536, -3.1415926536, more...

decimal, periodic-3, non-monotonic, -

a(n)=n%3-π
π=3.141...
n≥0
5 operations
Divisibility

Sequence sh4gnvar31mfk

-3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, 0, -3, -6, more...

integer, periodic-3, non-monotonic, -

a(n)=-∑(a(n-1))%9
a(0)=3
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

Sequence u3uixrubnhh0i

-3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, -5, -3, -5, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-6
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence feuv0hcacjgfp

-3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, -9, -3, -3, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(∑(a(n-1)), 9)
a(0)=3
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence 0obw3q44wco1f

-3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, -1, -3, -2, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-3
n≥0
5 operations
Divisibility

Sequence gsxj4duilmt4j

-3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(∑(n), 3)
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence 434yyhb2nbotl

-2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, -4, -2, -4, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-5
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence jcad0phxe2xgi

-2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, -2, -4, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-∏(a(n-1))%7
a(0)=2
∏(a)=partial products of a
n≥0
5 operations
Divisibility

Sequence p0enh5kkeel3l

-2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, 0, -2, -4, more...

integer, periodic-3, non-monotonic, -

a(n)=-∑(a(n-1))%6
a(0)=2
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

Sequence hfjh5neopw12p

-2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, -6, -2, -2, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(∑(a(n-1)), 6)
a(0)=2
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence to3l5ftfdwe2p

-2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, 0, -2, -2, more...

integer, periodic-3, non-monotonic, -

a(n)=∑(Δ(gcd(n, 3)))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

Sequence obyynbowya4d

-2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, 0, -2, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=n%3-2
n≥0
5 operations
Divisibility

Sequence h0jy0ny0hxm4j

-2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, more...

integer, periodic-3, non-monotonic, -

a(n)=1-gcd(n, 3)
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence 40ifhmuqcopxh

-2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, -2, 2, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ(gcd(∑(n), 3))
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence ggp3slcxavvan

-1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, -1, -1, -1.7320508076, more...

decimal, periodic-3, non-monotonic, -

a(n)=-sqrt(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power

Sequence ivxrc2lwvkzej

-1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, 0, 0, -1.0986122887, more...

decimal, periodic-3, non-monotonic, -

a(n)=-log(gcd(n, 3))
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power
a(n)=-Λ(gcd(n, 3))
gcd(a,b)=greatest common divisor
Λ(n)=Von Mangoldt's function
n≥0
5 operations
Prime

Sequence l0tibywolru2c

-1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, 0, 1.0986122887, -1.0986122887, more...

decimal, periodic-3, non-monotonic, +-

a(n)=Δ(log(gcd(n, 3)))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(Λ(gcd(n, 3)))
gcd(a,b)=greatest common divisor
Λ(n)=Von Mangoldt's function
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence hunmgofu25vce

-1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, 5, -1, -4, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ(-a(n-1)-a(n-2))
a(0)=2
a(1)=1
Δ(a)=differences of a
n≥0
5 operations
Recursive

Sequence mfrlxorlecblk

-1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, -3, -1, -3, more...

integer, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-4
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence pekqqmyjbqc4h

-1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, more...

integer, periodic-3, non-monotonic, -

a(n)=-∑(a(n-1))%3
a(0)=1
∑(a)=partial sums of a
n≥0
5 operations
Divisibility

Sequence nadpxmo0gjezg

-1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, -3, -1, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-gcd(∑(a(n-1)), 3)
a(0)=1
∑(a)=partial sums of a
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence slzsuazxir2zh

-1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-(n%3)!
n≥0
5 operations
Combinatoric

Sequence zalpr2iogghvc

-1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ(-n%3)
Δ(a)=differences of a
n≥0
5 operations
Divisibility
a(n)=Δ(-a(n-1)-a(n-2))
a(0)=1
a(1)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=-Δ(a(n-3)^a(n-1))
a(0)=0
a(1)=1
a(2)=2
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=-Δ(C(a(n-3), a(n-1)))
a(0)=1
a(1)=2
a(2)=3
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence md4l0fwksj3un

-1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, more...

integer, periodic-3, non-monotonic, -

a(n)=-cf(3*n)
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Arithmetic
a(n)=-cf(3+a(n-1))
a(0)=0
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Recursive
a(n)=-cf(lcm(n, 3))
lcm(a,b)=least common multiple
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Divisibility

Sequence lfmhgivqtd54h

-1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, more...

integer, periodic-3, non-monotonic, +-

a(n)=n%3-1
n≥0
5 operations
Divisibility
a(n)=Δ(cf(3*n))
cf(a)=characteristic function of a (in range)
Δ(a)=differences of a
n≥0
5 operations
Arithmetic
a(n)=Δ(cf(3+a(n-1)))
a(0)=0
cf(a)=characteristic function of a (in range)
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=Δ(exp(a(n-1))*a(n-3))
a(0)=1
a(1)=0
a(2)=0
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(a(n-1)!*a(n-3))
a(0)=1
a(1)=0
a(2)=0
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence brkuro3cyeujf

-1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, more...

integer, periodic-3, non-monotonic, +-

a(n)=Δ((a(n-1)-a(n-2))²)
a(0)=1
a(1)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive

Sequence k2zfclyorjzvh

-1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, more...

integer, periodic-3, non-monotonic, +-

a(n)=2-gcd(n, 3)
gcd(a,b)=greatest common divisor
n≥0
5 operations
Divisibility

Sequence cccidtmheufbl

-0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, 0, 0.7320508076, -0.7320508076, more...

decimal, periodic-3, non-monotonic, +-

a(n)=Δ(sqrt(gcd(n, 3)))
gcd(a,b)=greatest common divisor
Δ(a)=differences of a
n≥0
5 operations
Power

Sequence ut21vzvfzucue

-0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, more...

decimal, periodic-3, non-monotonic, -

a(n)=gcd(n, 3)-π
gcd(a,b)=greatest common divisor
π=3.141...
n≥0
5 operations
Divisibility

Sequence sqqo3lgvw1zsb

0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, -3, 0, -6, more...

integer, periodic-3, non-monotonic, -

a(n)=(a(n-1)-6)%9
a(0)=0
n≥0
5 operations
Divisibility

[0] [1] [2] [3] [4] ... [6]