Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 53086. [0] [1] [2] [3] [4] ... [530]

Sequence buqmnzuccjoq

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, constant, monotonic, A000004

a(n)=0
n≥0
1 operation
IntegerConstant

Sequence ieufhob1bssmo

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, more...

integer, strictly-monotonic, +, A001477

a(n)=n
n≥0
1 operation
Variable

Sequence iadyjauem3qtk

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, constant, monotonic, +, A000012

a(n)=1
n≥0
1 operation
IntegerConstant

Sequence 2t4ucxg0nyj3n

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, more...

integer, strictly-monotonic, +, A000027

a(n)=n
n≥1
1 operation
Variable

Sequence yzr0sc03rsrvl

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, more...

integer, constant, monotonic, +, A007395

a(n)=2
n≥0
1 operation
IntegerConstant

Sequence a32ve4bexvtrk

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, more...

integer, strictly-monotonic, +, A020725

a(n)=n
n≥2
1 operation
Variable

Sequence 5bbyqmwoygs4k

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, more...

integer, constant, monotonic, +, A010701

a(n)=3
n≥0
1 operation
IntegerConstant

Sequence kf2qfuennqyen

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, more...

integer, constant, monotonic, +, A010709

a(n)=4
n≥0
1 operation
IntegerConstant

Sequence wxmohmj00ez4n

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, more...

integer, constant, monotonic, +, A010716

a(n)=5
n≥0
1 operation
IntegerConstant

Sequence o00l0aq5msrcd

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, more...

integer, constant, monotonic, +, A010722

a(n)=6
n≥0
1 operation
IntegerConstant

Sequence wnxkpzx1pjpic

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, more...

integer, constant, monotonic, +, A010727

a(n)=7
n≥0
1 operation
IntegerConstant

Sequence hsqghc5izw2nf

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, more...

integer, constant, monotonic, +, A010731

a(n)=8
n≥0
1 operation
IntegerConstant

Sequence btlvkni23nq3o

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, more...

integer, constant, monotonic, +, A010734

a(n)=9
n≥0
1 operation
IntegerConstant

Sequence recvdf0mekssj

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, more...

integer, constant, monotonic, +, A010692

a(n)=10
n≥0
1 operation
IntegerConstant

Sequence rznmspyeitcuj

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, more...

integer, constant, monotonic, +, A010850

a(n)=11
n≥0
1 operation
IntegerConstant

Sequence 2de2nfq5y5ayd

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, more...

integer, constant, monotonic, +, A010851

a(n)=12
n≥0
1 operation
IntegerConstant

Sequence c5d4dq0klaatb

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, more...

integer, constant, monotonic, +, A010852

a(n)=13
n≥0
1 operation
IntegerConstant

Sequence tv20zzxok02i

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, more...

integer, constant, monotonic, +, A010853

a(n)=14
n≥0
1 operation
IntegerConstant

Sequence p0uyreelabprd

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, more...

integer, constant, monotonic, +, A010854

a(n)=15
n≥0
1 operation
IntegerConstant

Sequence zsz0pnk2ulrxl

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, more...

integer, constant, monotonic, +, A010855

a(n)=16
n≥0
1 operation
IntegerConstant

Sequence ubpd4wahw0tvo

17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, more...

integer, constant, monotonic, +, A010856

a(n)=17
n≥0
1 operation
IntegerConstant

Sequence i0o1vec42p1xh

18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, more...

integer, constant, monotonic, +, A010857

a(n)=18
n≥0
1 operation
IntegerConstant

Sequence 3dddzysbkcvul

19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, more...

integer, constant, monotonic, +, A010858

a(n)=19
n≥0
1 operation
IntegerConstant

Sequence uwfqium1nhwde

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, more...

integer, constant, monotonic, +, A010859

a(n)=20
n≥0
1 operation
IntegerConstant

Sequence 2xixgig1sc3qc

21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, more...

integer, constant, monotonic, +, A010860

a(n)=21
n≥0
1 operation
IntegerConstant

Sequence kj05x5if2vkec

22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, more...

integer, constant, monotonic, +, A010861

a(n)=22
n≥0
1 operation
IntegerConstant

Sequence vxyxsbelj3djn

23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, more...

integer, constant, monotonic, +, A010862

a(n)=23
n≥0
1 operation
IntegerConstant

Sequence pycrcfgzqimvl

24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, more...

integer, constant, monotonic, +, A010863

a(n)=24
n≥0
1 operation
IntegerConstant

Sequence rx4ssneeoqm0i

25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, more...

integer, constant, monotonic, +, A010864

a(n)=25
n≥0
1 operation
IntegerConstant

Sequence 111hihrwi55zg

26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, more...

integer, constant, monotonic, +, A010865

a(n)=26
n≥0
1 operation
IntegerConstant

Sequence 5s55voppvn40l

27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, more...

integer, constant, monotonic, +, A010866

a(n)=27
n≥0
1 operation
IntegerConstant

Sequence 4elkzht0vsaem

28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, more...

integer, constant, monotonic, +, A010867

a(n)=28
n≥0
1 operation
IntegerConstant

Sequence 43kcfehp1u4go

29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, more...

integer, constant, monotonic, +, A010868

a(n)=29
n≥0
1 operation
IntegerConstant

Sequence b3lj02yi20csd

30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, more...

integer, constant, monotonic, +, A010869

a(n)=30
n≥0
1 operation
IntegerConstant

Sequence egpz4l2kc35df

31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, more...

integer, constant, monotonic, +, A010870

a(n)=31
n≥0
1 operation
IntegerConstant

Sequence kc5z1yjhbkprc

32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, more...

integer, constant, monotonic, +, A010871

a(n)=32
n≥0
1 operation
IntegerConstant

Sequence chlwqr3gc4xno

91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, more...

integer, constant, monotonic, +, A103847

a(n)=91
n≥0
1 operation
IntegerConstant

Sequence iyihmxgulgx5o

-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, more...

integer, strictly-monotonic, -, A001478

a(n)=-n
n≥1
2 operations
Arithmetic

Sequence h3123yhmxvs1g

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, more...

integer, strictly-monotonic, -, A001489

a(n)=-n
n≥0
2 operations
Arithmetic

Sequence fipryk4anujg

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, more...

integer, non-monotonic, +, A001221

a(n)=ω(n)
ω(n)=number of distinct prime divisors of n
n≥1
2 operations
Prime
a(n)=Ω(rad(n))
rad(n)=square free kernel of n
Ω(n)=number of prime divisors of n
n≥1
3 operations
Prime
a(n)=and(3, ω(n))
ω(n)=number of distinct prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=log2(τ(rad(n)))
rad(n)=square free kernel of n
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=Ω(rad(n))%4
rad(n)=square free kernel of n
Ω(n)=number of prime divisors of n
n≥1
5 operations
Prime

Sequence ncilpddnshefo

0, 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, 2, 4, 21, 2, 405, 2, 1, 33, 1, 2, 8, 2, 29, 1, 4, 4, 4, 4, 1, 9, 3, 1, 4, 1, 1, 2, 26, 1, 8, more...

integer, non-monotonic, +, A065645

a(n)=contfrac[TwinPrime]
TwinPrime=0.6601... (Twin Prime)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*TwinPrime-TwinPrime]
TwinPrime=0.6601... (Twin Prime)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, TwinPrime^3)]
TwinPrime=0.6601... (Twin Prime)
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
6 operations
Power

Sequence brsi1x4psomni

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=number of prime divisors of n
n≥1
2 operations
Prime
a(n)=floor(log(π^Ω(n)))
π Pi=3.1415... (Pi)
Ω(n)=number of prime divisors of n
n≥1
6 operations
Prime
a(n)=floor(log2(P(Ω(n²))))
Ω(n)=number of prime divisors of n
P(n)=partition numbers
n≥1
6 operations
Prime
a(n)=and(7, Ω(-(1-n)))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥2
7 operations
Prime
a(n)=Ω(n*p(n))-1
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence 2co2c3vr2pedl

0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65, 1, 4, 7, 11, 1, 399, 2, 1, 3, 2, 1, 2, 1, 5, 3, 2, more...

integer, non-monotonic, +, A002852

a(n)=contfrac[γ]
γ EulerGamma=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*γ-γ]
γ EulerGamma=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, 0)-γ]
root(n,a)=the n-th root of a
γ EulerGamma=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥0
6 operations
Power
a(n)=contfrac[μ(n²)-γ]
μ(n)=Möbius function
γ EulerGamma=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥2
6 operations
Prime
a(n)=contfrac[γ*pt(ω(n))]
γ EulerGamma=0.5772... (Euler Gamma)
ω(n)=number of distinct prime divisors of n
pt(n)=Pascals triangle by rows
contfrac(a)=continued fraction of a
n≥1
6 operations
Prime

Sequence f0hiz4pasazlk

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, more...

integer, non-monotonic, +, A002487

a(n)=stern(n)
stern(n)=Stern-Brocot sequence
n≥0
2 operations
Recursive
a(n)=stern(n-1)%p(n)
stern(n)=Stern-Brocot sequence
p(n)=nth prime
n≥1
7 operations
Prime

Sequence g3fycrmfjmnxl

0, 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, 1, 1, 1, 1, 7, 1, 4, 2, 15, 1, 2, 1, 1, 4, 1, 3, 3, 5, 4, 1, 1, 1, 4, 3, 1, 38, 1, 2, 4, more...

integer, non-monotonic, +, A019474

a(n)=contfrac[W1]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[log(W1)]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
3 operations
Power
a(n)=contfrac[2*W1-W1]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic

Sequence 5ey1pvojvkhlg

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, more...

integer, strictly-monotonic, +, A000217

a(n)=∑[n]
∑(a)=partial sums of a
n≥0
2 operations
Variable
a(n)=C(n, 2)
C(n,k)=binomial coefficient
n≥1
3 operations
Combinatoric
a(n)=n+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=∑[n-1]
∑(a)=partial sums of a
n≥1
4 operations
Arithmetic
a(n)=∑[and(63, n)]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
4 operations
Bitwise

Sequence hr1xwu5kzwtrb

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, more...

integer, strictly-monotonic, +, A000290

a(n)=n²
n≥0
2 operations
Power
a(n)=n*and(63, n)
and(a,b)=bitwise and
n≥0
5 operations
Bitwise
a(n)=n*n%50
n≥0
5 operations
Divisibility
a(n)=Δ[C(n, 2)]²
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
5 operations
Combinatoric
a(n)=Δ[n²]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive

Sequence 2e2pf0fazbckl

0, 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 1, 1, 1, 6, 1, 12, 1, 4, 7, 1, 1, 2, 5, 1, 5, 9, 1, more...

integer, non-monotonic, +, A014538

a(n)=contfrac[G]
G CatalansConstant=0.9159... (Catalans)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*G-G]
G CatalansConstant=0.9159... (Catalans)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, G^3)]
G CatalansConstant=0.9159... (Catalans)
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
6 operations
Power

Sequence jsxfs42lrpw3p

0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, more...

integer, non-monotonic, +, A048296

a(n)=contfrac[Artins]
Artins=0.3739... (Artins)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*Artins-Artins]
Artins=0.3739... (Artins)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, Artins^3)]
Artins=0.3739... (Artins)
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
6 operations
Power

Sequence kusc5pibufhkj

0, 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, 1, 5, 19, 1, 5, 1, 1, 1, 1, 1, 12, 12, 9, 1, 8, 4, 10, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, more...

integer, non-monotonic, +, A230767

a(n)=contfrac[Mertens]
Mertens=0.2614... (Mertens)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*Mertens-Mertens]
Mertens=0.2614... (Mertens)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, Mertens^3)]
Mertens=0.2614... (Mertens)
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
6 operations
Power

Sequence 4cpzl0cv2iyxp

0, 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, 2, 2, 1, 1, 2, 1, 4, 39, 4, 4, 5, 2, 1, 1, 87, 16, 1, 2, 1, 2, 1, 1, 3, 1, 8, 1, 3, 1, 1, more...

integer, non-monotonic, +, A030168

a(n)=contfrac[CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*CopelandErdős-CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, CopelandErdős^3)]
CopelandErdős=0.2357... (Copeland-Erdős)
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
6 operations
Power

Sequence t1zgct2gyon3m

0, 7, 2, 8, 1, 5, 8, 4, 5, 4, 8, 3, 6, 7, 6, 7, 2, 4, 8, 6, 0, 5, 8, 6, 3, 7, 5, 8, 7, 4, 9, 0, 1, 3, 1, 9, 1, 3, 7, 7, 3, 6, 3, 3, 8, 3, 3, 4, 3, 3, more...

integer, non-monotonic, +, A082633

a(n)=de[Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=9-de[1-Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, Stieltjes^3)]
Stieltjes=0.0728... (Stieltjes gamma(1))
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence ruhaqit5bcw0k

0, 13, 1, 2, 1, 2, 1, 74, 1, 10, 1, 9, 2, 1, 3, 1, 4, 1, 6, 1, 1, 2, 84, 1, 108, 1, 20, 22, 2, 2, 1, 2, 2, 1, 7, 1, 66, 2, 1, 1, 2, 5, 1, 1, 2, 1, 1, 59, 1, 2, more...

integer, non-monotonic, +, A066036

a(n)=contfrac[Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[2*Stieltjes-Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[root(3, Stieltjes^3)]
Stieltjes=0.0728... (Stieltjes gamma(1))
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
6 operations
Power

Sequence jf1vodtk3fpuj

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime
a(n)=-μ(n*p(n))
p(n)=nth prime
μ(n)=Möbius function
n≥1
6 operations
Prime
a(n)=floor(rad(n)/n)*λ(n)
rad(n)=square free kernel of n
λ(n)=Liouville's function
n≥1
8 operations
Prime

Sequence sxgqtfmeezvbp

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime
a(n)=(-1)^Ω(n)
Ω(n)=number of prime divisors of n
n≥1
5 operations
Prime
a(n)=μ(2-λ(n))
λ(n)=Liouville's function
μ(n)=Möbius function
n≥1
5 operations
Prime
a(n)=-λ(n*p(n))
p(n)=nth prime
λ(n)=Liouville's function
n≥1
6 operations
Prime
a(n)=or(1, λ(-(1-n)))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥2
7 operations
Prime

Sequence tdb3tixo3q50e

1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, more...

integer, periodic-2, non-monotonic, +-, A033999

a(n)=-a(n-1)
a(0)=1
n≥0
2 operations
Recursive

Sequence lalqvjgjzo0ro

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric
a(n)=pt(n-1)%p(n)
pt(n)=Pascals triangle by rows
p(n)=nth prime
n≥1
7 operations
Prime

Sequence pvurlm0y53im

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime
a(n)=and(7, agc(-(1-n)))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥1
7 operations
Prime

Sequence gv5wnaqfuuoao

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=φ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence dps4an1f0bv5f

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525, more...

integer, monotonic, +, A000041

a(n)=P(n)
P(n)=partition numbers
n≥0
2 operations
Combinatoric

Sequence jlpqc0m0fwl2i

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304, more...

integer, monotonic, +, A000108

a(n)=catalan(n)
catalan(n)=the catalan numbers
n≥0
2 operations
Combinatoric
a(n)=(4-6/n)*a(n-1)
a(0)=1
n≥1
7 operations
Recursive

Sequence btuzaf21som1g

1, 1, 5, 4, 2, 305, 1, 8, 2, 1, 4, 6, 14, 3, 1, 13, 5, 1, 7, 23, 1, 16, 4, 1, 1, 1, 1, 1, 2, 17, 1, 3, 1, 1, 1, 29, 1, 6, 1, 3, 1, 1, 1, 1, 3, 2, 5, 1, 63, 2, more...

integer, non-monotonic, +, A019712

a(n)=contfrac[Tribonacci]
Tribonacci=1.8392... (Tribonacci)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[exp(abs(log(Tribonacci)))]
Tribonacci=1.8392... (Tribonacci)
contfrac(a)=continued fraction of a
n≥0
5 operations
Power
a(n)=contfrac[2*Tribonacci-Tribonacci]
Tribonacci=1.8392... (Tribonacci)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic

Sequence k0beacn12pjwc

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime
a(n)=Ω(2^τ(n))
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
n≥1
5 operations
Prime
a(n)=τ(n*p(n))/2
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence gekakw1rgdk0j

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, lpf(n))
lpf(n)=least prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=gpf(lpf(n)²)
lpf(n)=least prime factor of n
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=rad(lpf(n)²)
lpf(n)=least prime factor of n
rad(n)=square free kernel of n
n≥1
4 operations
Prime
a(n)=exp(Λ(lpf(n)))
lpf(n)=least prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence qxbjop1xs1vff

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, gpf(n))
gpf(n)=greatest prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=lpf(gpf(n)²)
gpf(n)=greatest prime factor of n
lpf(n)=least prime factor of n
n≥1
4 operations
Prime
a(n)=rad(gpf(n)²)
gpf(n)=greatest prime factor of n
rad(n)=square free kernel of n
n≥1
4 operations
Prime
a(n)=exp(Λ(gpf(n)))
gpf(n)=greatest prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence kye0kkdccizxf

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, more...

integer, non-monotonic, +, A007947

a(n)=rad(n)
rad(n)=square free kernel of n
n≥1
2 operations
Prime
a(n)=gcd(n, rad(n))
rad(n)=square free kernel of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=rad(n*p(n))/p(n)
p(n)=nth prime
rad(n)=square free kernel of n
n≥1
8 operations
Prime

Sequence r0cho0bzrtaxc

1, 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, 3, 12, 1, 2, 2, 1, 1, 15, 1, 1, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, more...

integer, non-monotonic, +, A074269

a(n)=contfrac[Backhouse]
Backhouse=1.456... (Backhouse)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[exp(abs(log(Backhouse)))]
Backhouse=1.456... (Backhouse)
contfrac(a)=continued fraction of a
n≥0
5 operations
Power
a(n)=contfrac[2*Backhouse-Backhouse]
Backhouse=1.456... (Backhouse)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic

Sequence pqpjig3sq3dmp

1, 2, 8, 2, 4, 2, 7, 1, 2, 9, 1, 0, 0, 6, 2, 2, 6, 3, 6, 8, 7, 5, 3, 4, 2, 5, 6, 8, 8, 6, 9, 7, 9, 1, 7, 2, 7, 7, 6, 7, 6, 8, 8, 9, 2, 7, 3, 2, 5, 0, more...

integer, non-monotonic, +, A074962

a(n)=de[GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[exp(abs(log(GlaisherKinkelin)))]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence 5jttb1vusgdqd

1, 3, 1, 1, 5, 1, 1, 1, 3, 12, 4, 1, 271, 1, 1, 2, 7, 1, 35, 6, 1, 9, 4, 2, 1, 1, 2, 1, 1, 2, 15, 3, 1, 24, 2, 39, 1, 3, 1, 2, 2, 5, 1, 2, 2, 1, 3, 3, 1, 3, more...

integer, non-monotonic, +, A087501

a(n)=contfrac[GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[exp(abs(log(GlaisherKinkelin)))]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
contfrac(a)=continued fraction of a
n≥0
5 operations
Power
a(n)=contfrac[2*GlaisherKinkelin-GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic

Sequence n55c2fon5zb

1, 3, 3, 2, 5, 8, 2, 2, 7, 5, 7, 3, 3, 2, 2, 0, 8, 8, 1, 7, 6, 5, 8, 2, 8, 7, 7, 6, 0, 7, 1, 0, 2, 7, 7, 4, 8, 8, 3, 8, 4, 5, 9, 4, 8, 9, 0, 4, 2, 4, more...

integer, non-monotonic, +, A083343

a(n)=de[B3]
B3=1.3325... (Mertens B3)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[exp(abs(log(B3)))]
B3=1.3325... (Mertens B3)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[1/(10/B3)]
B3=1.3325... (Mertens B3)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence sbudzke0snrw

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence ax4hv2yzrhzsf

1, 4, 5, 6, 0, 7, 4, 9, 4, 8, 5, 8, 2, 6, 8, 9, 6, 7, 1, 3, 9, 9, 5, 9, 5, 3, 5, 1, 1, 1, 6, 5, 4, 3, 5, 5, 7, 6, 5, 3, 1, 7, 8, 3, 7, 4, 8, 4, 7, 1, more...

integer, non-monotonic, +, A072508

a(n)=de[Backhouse]
Backhouse=1.456... (Backhouse)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[exp(abs(log(Backhouse)))]
Backhouse=1.456... (Backhouse)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[1/(10/Backhouse)]
Backhouse=1.456... (Backhouse)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence kbpwb2bxbeqcf

1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, more...

integer, strictly-monotonic, +, A018252

a(n)=composite(n)
composite(n)=nth composite number
n≥1
2 operations
Prime

Sequence wqwhagpwcscgc

1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, more...

integer, non-monotonic, +, A001622

a(n)=de[ϕ]
ϕ GoldenRatio=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[sqrt(1+ϕ)]
ϕ GoldenRatio=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*ϕ]
ϕ GoldenRatio=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[μ(n²)-ϕ]
μ(n)=Möbius function
ϕ GoldenRatio=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥2
6 operations
Prime
a(n)=de[ϕ*pt(ω(n))]
ϕ GoldenRatio=1.618... (Golden Ratio)
ω(n)=number of distinct prime divisors of n
pt(n)=Pascals triangle by rows
de(a)=decimal expansion of a
n≥1
6 operations
Prime

Sequence e2tkwlio5ubrf

1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, more...

integer, non-monotonic, +, A112302

a(n)=de[QR]
QR=1.6616... (Quadratic Recurrence)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[exp(abs(log(QR)))]
QR=1.6616... (Quadratic Recurrence)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[1/(10/QR)]
QR=1.6616... (Quadratic Recurrence)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence 5ikbvw505eq1k

1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, more...

integer, non-monotonic, +, A058265

a(n)=de[Tribonacci]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[exp(abs(log(Tribonacci)))]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[cosh(log(Tribonacci²))]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
5 operations
Trigonometric
a(n)=de[1/(10/Tribonacci)]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[1/tanh(log(Tribonacci))]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
6 operations
Trigonometric

Sequence dodcahtwj3i1g

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, more...

integer, non-monotonic, +, A003417

a(n)=contfrac[e]
e=2.7182... (Euler e)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[root(log(2), 2)]
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
5 operations
Power
a(n)=contfrac[2*e-e]
e=2.7182... (Euler e)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic
a(n)=contfrac[μ(n²)-e]
μ(n)=Möbius function
e=2.7182... (Euler e)
contfrac(a)=continued fraction of a
n≥2
6 operations
Prime
a(n)=contfrac[e*pt(ω(n))]
e=2.7182... (Euler e)
ω(n)=number of distinct prime divisors of n
pt(n)=Pascals triangle by rows
contfrac(a)=continued fraction of a
n≥1
6 operations
Prime

Sequence wt1tbgmgmbojn

2, 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 1, 1, 90, 2, 1, 12, 1, 1, 1, 1, 5, 2, 6, 1, 6, 3, 1, 1, 2, 5, 2, 1, 2, 1, 1, 4, 1, 2, 2, more...

integer, non-monotonic, +, A002211

a(n)=contfrac[Khintchine]
Khintchine=2.6854... (Khintchine)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[exp(abs(log(Khintchine)))]
Khintchine=2.6854... (Khintchine)
contfrac(a)=continued fraction of a
n≥0
5 operations
Power
a(n)=contfrac[2*Khintchine-Khintchine]
Khintchine=2.6854... (Khintchine)
contfrac(a)=continued fraction of a
n≥0
6 operations
Arithmetic

Sequence grnispsljhtnh

2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, more...

integer, non-monotonic, +, A092028

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥2
2 operations
Prime
a(n)=gcd(2*n, lpf(n²))
lpf(n)=least prime factor of n
gcd(a,b)=greatest common divisor
n≥2
7 operations
Prime

Sequence 2kvsx1zpjt1xg

2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, 122880, 393192, more...

integer, strictly-monotonic, +, A007497

a(n)=σ(a(n-1))
a(0)=2
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence 3adjjx2yzeaxh

2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, more...

integer, non-monotonic, +, A033308

a(n)=de[CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=9-de[1-CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, CopelandErdős^3)]
CopelandErdős=0.2357... (Copeland-Erdős)
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence 3obzf0s451s5l

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, more...

integer, strictly-monotonic, +, A000040

a(n)=p(n)
p(n)=nth prime
n≥1
2 operations
Prime
a(n)=lpf(p(n)²)
p(n)=nth prime
lpf(n)=least prime factor of n
n≥1
4 operations
Prime
a(n)=gpf(p(n)²)
p(n)=nth prime
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=rad(p(n)²)
p(n)=nth prime
rad(n)=square free kernel of n
n≥1
4 operations
Prime
a(n)=xor(1, xor(1, p(1+n)))
p(n)=nth prime
xor(a,b)=bitwise exclusive or
n≥0
8 operations
Prime

Sequence yfffwxxjd0ylb

2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, 58781, more...

integer, strictly-monotonic, +, A025003 (multiple)

a(n)=composite(a(n-1))
a(0)=2
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence n11quy32pwigm

2, 6, 1, 4, 9, 7, 2, 1, 2, 8, 4, 7, 6, 4, 2, 7, 8, 3, 7, 5, 5, 4, 2, 6, 8, 3, 8, 6, 0, 8, 6, 9, 5, 8, 5, 9, 0, 5, 1, 5, 6, 6, 6, 4, 8, 2, 6, 1, 1, 9, more...

integer, non-monotonic, +, A077761

a(n)=de[Mertens]
Mertens=0.2614... (Mertens)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[2*5*Mertens]
Mertens=0.2614... (Mertens)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, Mertens^3)]
Mertens=0.2614... (Mertens)
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence 1w02asgugejep

2, 6, 8, 5, 4, 5, 2, 0, 0, 1, 0, 6, 5, 3, 0, 6, 4, 4, 5, 3, 0, 9, 7, 1, 4, 8, 3, 5, 4, 8, 1, 7, 9, 5, 6, 9, 3, 8, 2, 0, 3, 8, 2, 2, 9, 3, 9, 9, 4, 4, more...

integer, non-monotonic, +, A002210

a(n)=de[Khintchine]
Khintchine=2.6854... (Khintchine)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[exp(abs(log(Khintchine)))]
Khintchine=2.6854... (Khintchine)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[1/(10/Khintchine)]
Khintchine=2.6854... (Khintchine)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence idcen5jpa2zpc

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, more...

integer, non-monotonic, +, A001113

a(n)=de[e]
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[root(log(2), 2)]
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*e]
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[μ(n²)-e]
μ(n)=Möbius function
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥2
6 operations
Prime
a(n)=de[e*pt(ω(n))]
e=2.7182... (Euler e)
ω(n)=number of distinct prime divisors of n
pt(n)=Pascals triangle by rows
de(a)=decimal expansion of a
n≥1
6 operations
Prime

Sequence lbpnhcgrw2aym

3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, more...

integer, periodic-2, non-monotonic, +-, A174971

a(n)=-a(n-1)
a(0)=3
n≥0
2 operations
Recursive

Sequence xecz0440luoph

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, more...

integer, non-monotonic, +, A000796

a(n)=de[π]
π Pi=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[acos(-1)]
de(a)=decimal expansion of a
n≥0
4 operations
Trigonometric
a(n)=de[asin(1)/5]
de(a)=decimal expansion of a
n≥0
5 operations
Trigonometric
a(n)=de[4*atan(1)]
de(a)=decimal expansion of a
n≥0
5 operations
Trigonometric
a(n)=de[4*acot(1)]
de(a)=decimal expansion of a
n≥0
5 operations
Trigonometric

Sequence nh2klcrdlym2h

3, 4, 0, 5, 3, 7, 3, 2, 9, 5, 5, 0, 9, 9, 9, 1, 4, 2, 8, 2, 6, 2, 7, 3, 1, 8, 4, 4, 3, 2, 9, 0, 2, 8, 9, 6, 7, 1, 0, 6, 0, 8, 2, 1, 7, 1, 2, 4, 3, 0, more...

integer, non-monotonic, +, A086230

a(n)=de[Pólya_D3]
Pólya_D3=0.3405... (Pólya random walk 3D)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=9-de[1-Pólya_D3]
Pólya_D3=0.3405... (Pólya random walk 3D)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, Pólya_D3^3)]
Pólya_D3=0.3405... (Pólya random walk 3D)
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence 13qthgpnz5e1k

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, more...

integer, strictly-monotonic, +, A065091

a(n)=p(n)
p(n)=nth prime
n≥2
2 operations
Prime
a(n)=gpf(p(n)²)
p(n)=nth prime
gpf(n)=greatest prime factor of n
n≥2
4 operations
Prime
a(n)=or(1, p(abs(1+n)))
p(n)=nth prime
or(a,b)=bitwise or
n≥1
7 operations
Prime

Sequence g35e4pg4lumme

3, 6, 10, 16, 25, 36, 51, 70, 94, 124, 161, 207, 262, 328, 407, 502, 614, 746, 900, 1080, 1288, 1529, 1808, 2127, 2494, 2915, 3393, 3939, 4556, 5253, 6040, 6930, 7931, 9056, 10322, 11729, 13308, 15067, 17031, 19208, 21637, 24340, 27330, 30633, 34296, 38344, 42820, 47742, 53166, 59146, more...

integer, strictly-monotonic, +, A025004

a(n)=composite(a(n-1))
a(0)=3
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence evxmhr5g4b0go

3, 7, 3, 9, 5, 5, 8, 1, 3, 6, 1, 9, 2, 0, 2, 2, 8, 8, 0, 5, 4, 7, 2, 8, 0, 5, 4, 3, 4, 6, 4, 1, 6, 4, 1, 5, 1, 1, 1, 6, 2, 9, 2, 4, 8, 6, 0, 6, 1, 5, more...

integer, non-monotonic, +, A005596

a(n)=de[Artins]
Artins=0.3739... (Artins)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[2*5*Artins]
Artins=0.3739... (Artins)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, Artins^3)]
Artins=0.3739... (Artins)
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence dc212nwugb3uj

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, more...

integer, non-monotonic, +, A001203

a(n)=contfrac[π]
π Pi=3.1415... (Pi)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[acos(-1)]
contfrac(a)=continued fraction of a
n≥0
4 operations
Trigonometric
a(n)=contfrac[4*atan(1)]
contfrac(a)=continued fraction of a
n≥0
5 operations
Trigonometric
a(n)=contfrac[2*asin(1)]
contfrac(a)=continued fraction of a
n≥0
5 operations
Trigonometric
a(n)=contfrac[4*acot(1)]
contfrac(a)=continued fraction of a
n≥0
5 operations
Trigonometric

Sequence rlfgtfganx3zg

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, more...

integer, strictly-monotonic, +, A002808

a(n)=composite(n)
composite(n)=nth composite number
n≥2
2 operations
Prime

Sequence zlrqnubjy5rce

4, 7, 17, 59, 277, 1787, 15299, 167449, 2269733, more...

integer, strictly-monotonic, +, A057450

a(n)=p(a(n-1))
a(0)=4
p(n)=nth prime
n≥0
2 operations
Prime
a(n)=or(1, p(a(n-1)))
a(0)=4
p(n)=nth prime
or(a,b)=bitwise or
n≥0
4 operations
Prime

Sequence qvvnqvlyivqen

5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, more...

integer, non-monotonic, +, A030178

a(n)=de[W1]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[log(W1)]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
3 operations
Power
a(n)=de[2*5*W1]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence qg0muna442yzp

5, 6, 12, 28, 56, 120, 360, 1170, 3276, 10192, 24738, 61440, 196584, 491520, more...

integer, strictly-monotonic, +, A051572

a(n)=σ(a(n-1))
a(0)=5
σ(n)=divisor sum of n
n≥0
2 operations
Prime
a(n)=lcm(σ(a(n-1)), 2)
a(0)=5
σ(n)=divisor sum of n
lcm(a,b)=least common multiple
n≥0
4 operations
Prime

Sequence knd2jdmkw4tcn

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, more...

integer, non-monotonic, +, A001620

a(n)=de[γ]
γ EulerGamma=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[2*5*γ]
γ EulerGamma=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, 0)-γ]
root(n,a)=the n-th root of a
γ EulerGamma=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
6 operations
Power
a(n)=de[μ(n²)-γ]
μ(n)=Möbius function
γ EulerGamma=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥2
6 operations
Prime
a(n)=de[γ*pt(ω(n))]
γ EulerGamma=0.5772... (Euler Gamma)
ω(n)=number of distinct prime divisors of n
pt(n)=Pascals triangle by rows
de(a)=decimal expansion of a
n≥1
6 operations
Prime

Sequence luc35o34tpp3j

5, 9, 15, 24, 35, 50, 69, 93, 123, 160, 206, 261, 327, 406, 501, 612, 744, 898, 1078, 1286, 1527, 1806, 2125, 2492, 2913, 3390, 3936, 4553, 5250, 6036, 6926, 7926, 9051, 10316, 11723, 13302, 15060, 17022, 19198, 21627, 24328, 27317, 30619, 34281, 38326, 42802, 47722, 53143, 59121, 65681, more...

integer, strictly-monotonic, +, A025005

a(n)=composite(a(n-1))
a(0)=5
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence a5bupax2uvirg

6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, more...

integer, non-monotonic, +, A005597

a(n)=de[TwinPrime]
TwinPrime=0.6601... (Twin Prime)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[2*5*TwinPrime]
TwinPrime=0.6601... (Twin Prime)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[root(3, TwinPrime^3)]
TwinPrime=0.6601... (Twin Prime)
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
6 operations
Power

[0] [1] [2] [3] [4] ... [530]