Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 138476. [0] [1] [2] [3] [4] ... [1384]

Sequence yfffwxxjd0ylb

2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, 58781, more...

integer, strictly-monotonic, +, A025003 (multiple)

a(n)=composite(a(n-1))
a(0)=2
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence g2mm2we1holzd

-2, 3, -3, 4, 4, -7, 4, -1, -2, 2, 3, 1, -2, 2, -6, -1, 1, 5, -4, 2, -4, 4, -2, -1, 0, 5, -5, -1, 5, 2, -4, -5, 2, 6, 0, -4, -3, 8, -2, -6, 5, 3, -6, 6, 0, -6, 4, -2, -4, more...

integer, non-monotonic, +-, A095916 (multiple)

a(n)=Δ[de[π]]
π Pi=3.1415... (Pi)
de(a)=decimal expansion of a
Δ(a)=differences of a
n≥0
3 operations
DecimalConstant
a(n)=Δ[1+de[π]]
π Pi=3.1415... (Pi)
de(a)=decimal expansion of a
Δ(a)=differences of a
n≥0
5 operations
Arithmetic
a(n)=Δ[de[π]+sqrt(2)]
π Pi=3.1415... (Pi)
de(a)=decimal expansion of a
Δ(a)=differences of a
n≥0
6 operations
Power
a(n)=Δ[de[π]+ζ(2)]
π Pi=3.1415... (Pi)
de(a)=decimal expansion of a
ζ(n)=Riemann zeta
Δ(a)=differences of a
n≥0
6 operations
Prime
a(n)=Δ[de[π]+zetazero(0)]
π Pi=3.1415... (Pi)
de(a)=decimal expansion of a
zetazero(n)=non trivial zeros of Riemann zeta
Δ(a)=differences of a
n≥0
6 operations
Prime

Sequence ukvjh3i1jtzso

0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613, 100947, 134596, 177100, 230230, 296010, 376740, 475020, 593775, 736281, 906192, 1107568, 1344904, 1623160, 1947792, 2324784, 2760681, 3262623, 3838380, 4496388, 5245786, 6096454, 7059052, 8145060, 9366819, 10737573, 12271512, 13983816, more...

integer, monotonic, +, A000579 (multiple)

a(n)=C(n, 6)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric

Sequence 5olls4p14i11b

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398, 850668, 962598, 1086008, 1221759, 1370754, 1533939, 1712304, 1906884, more...

integer, monotonic, +, A000389 (multiple)

a(n)=C(n, 5)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric

Sequence fktfkr5w4eepp

0, 0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960, 40920, 46376, 52360, 58905, 66045, 73815, 82251, 91390, 101270, 111930, 123410, 135751, 148995, 163185, 178365, 194580, 211876, more...

integer, monotonic, +, A000332 (multiple)

a(n)=C(n, 4)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric

Sequence fvggmj41sayzg

0, 0, 1, 1, 2, 3, 3, 3, 4, 4, 4, more...

integer, monotonic, +, A080405 (weak, multiple)

a(n)=ω(catalan(n))
catalan(n)=the catalan numbers
ω(n)=number of distinct prime divisors of n
n≥0
3 operations
Prime

Sequence qpmqbompmh1hn

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976, 7778742049, more...

integer, monotonic, +, A000045 (multiple)

a(n)=a(n-1)+a(n-2)
a(0)=0
a(1)=1
n≥0
3 operations
Recursive
a(n)=2*a(n-1)-a(n-3)
a(0)=0
a(1)=1
a(2)=1
n≥0
5 operations
Recursive
a(n)=a(n-1)*pt(∑[n])+a(n-2)
a(0)=0
a(1)=1
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
7 operations
Combinatoric
a(n)=a(n-2)+C(a(n-1), a(n-1)-1)
a(0)=0
a(1)=1
C(n,k)=binomial coefficient
n≥0
7 operations
Combinatoric
a(n)=a(n-1)+μ(n²)+a(n-2)
a(0)=0
a(1)=1
μ(n)=Möbius function
n≥0
7 operations
Prime

Sequence e4emqpwkajic

0, 1, 3, 1, 4, 1, 3, 3, 200, 1, 3, 1, 10, 33, 1, 1, 2, 20, 5, 3, 4, 5, 2, 5, 1, 3, 1, 2, 3, 1, 71, 2, 1, 2, 3, 67, 1, 1, 2, 5, 1, 1, 3, 1, 7, 4, 14, 1, 1, 2, more...

integer, non-monotonic, +, A119719 (weak, multiple)

a(n)=contfrac[log2(γ)]
γ EulerGamma=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥0
3 operations
Power

Sequence tgii41lmod1ig

0, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700, 51166197843852, 194214400834356, 738494264901008, 2812744285440936, more...

integer, strictly-monotonic, +, A000245 (multiple)

a(n)=Δ[catalan(n)]
catalan(n)=the catalan numbers
Δ(a)=differences of a
n≥0
3 operations
Combinatoric
a(n)=Δ[catalan(n)+ζ(2)]
catalan(n)=the catalan numbers
ζ(n)=Riemann zeta
Δ(a)=differences of a
n≥0
6 operations
Prime
a(n)=Δ[catalan(n)+zetazero(0)]
catalan(n)=the catalan numbers
zetazero(n)=non trivial zeros of Riemann zeta
Δ(a)=differences of a
n≥0
6 operations
Prime
a(n)=Δ[xor(1, xor(1, catalan(n)))]
catalan(n)=the catalan numbers
xor(a,b)=bitwise exclusive or
Δ(a)=differences of a
n≥0
7 operations
Combinatoric
a(n)=Δ[and(Δ[-n], catalan(n))]
Δ(a)=differences of a
catalan(n)=the catalan numbers
and(a,b)=bitwise and
n≥0
7 operations
Combinatoric

Sequence rnjeoycpmd22

0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180, 16215, 17296, 18424, 19600, 20825, more...

integer, strictly-monotonic, +, A000292 (multiple)

a(n)=∑[∑[n]]
∑(a)=partial sums of a
n≥0
3 operations
Variable
a(n)=C(n, 3)
C(n,k)=binomial coefficient
n≥2
3 operations
Combinatoric
a(n)=∑[n+a(n-1)]
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[∑[n-1]]
∑(a)=partial sums of a
n≥1
5 operations
Arithmetic
a(n)=∑[∑[and(63, n)]]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
5 operations
Bitwise

Sequence y2ez2clazrrch

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370, 31395, 33511, 35720, 38024, 40425, more...

integer, strictly-monotonic, +, A000330 (multiple)

a(n)=∑[n²]
∑(a)=partial sums of a
n≥0
3 operations
Power
a(n)=n²+a(n-1)
a(0)=0
n≥0
4 operations
Recursive
a(n)=∑[Δ[C(n, 2)]²]
C(n,k)=binomial coefficient
Δ(a)=differences of a
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=∑[∑[2*n]-n]
∑(a)=partial sums of a
n≥0
7 operations
Arithmetic
a(n)=∑[∑[or(1, 1+a(n-1))]]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
7 operations
Recursive

Sequence 5r2rfdj35frlo

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649, more...

integer, strictly-monotonic, +, A000578 (multiple)

a(n)=n^3
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)²]
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
5 operations
Combinatoric
a(n)=Δ[n^3]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=root(tanh(log(sqrt(2))), n)
root(n,a)=the n-th root of a
n≥0
6 operations
Trigonometric
a(n)=n^∑[and(a(n-1), a(n-2))]
a(0)=1
a(1)=2
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence osuq1naihxlio

0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409, 29241, 36100, 44100, 53361, 64009, 76176, 90000, 105625, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 314721, 354025, 396900, 443556, 494209, 549081, 608400, 672400, 741321, 815409, 894916, 980100, 1071225, 1168561, 1272384, 1382976, 1500625, more...

integer, strictly-monotonic, +, A000537 (multiple)

a(n)=∑[n]²
∑(a)=partial sums of a
n≥0
3 operations
Power
a(n)=C(n, 2)²
C(n,k)=binomial coefficient
n≥1
4 operations
Combinatoric
a(n)=n^3+a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=-∑[-n]*∑[n]
∑(a)=partial sums of a
n≥0
7 operations
Arithmetic
a(n)=root(1/2, C(n, 2))
C(n,k)=binomial coefficient
root(n,a)=the n-th root of a
n≥1
7 operations
Combinatoric

Sequence vyfjkf0hm0boh

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921, 1336336, 1500625, 1679616, 1874161, 2085136, 2313441, 2560000, 2825761, 3111696, 3418801, 3748096, 4100625, 4477456, 4879681, 5308416, 5764801, more...

integer, strictly-monotonic, +, A000583 (multiple)

a(n)=n^4
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)]^4
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=Δ[n^4]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=root(sinh(log(ϕ)), n)²
ϕ GoldenRatio=1.618... (Golden Ratio)
root(n,a)=the n-th root of a
n≥0
6 operations
Trigonometric
a(n)=root(sinh(log(ϕ)), n²)
ϕ GoldenRatio=1.618... (Golden Ratio)
root(n,a)=the n-th root of a
n≥0
6 operations
Trigonometric

Sequence fxhbvjqwj0lgo

0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, 161051, 248832, 371293, 537824, 759375, 1048576, 1419857, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 9765625, 11881376, 14348907, 17210368, 20511149, 24300000, 28629151, 33554432, 39135393, 45435424, 52521875, 60466176, 69343957, 79235168, 90224199, 102400000, 115856201, 130691232, 147008443, 164916224, 184528125, 205962976, 229345007, 254803968, 282475249, more...

integer, strictly-monotonic, +, A000584 (multiple)

a(n)=n^5
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)]^5
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=n^Δ[5+a(n-1)]
a(0)=1
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=root(tanh(log(ϕ))², n)
ϕ GoldenRatio=1.618... (Golden Ratio)
root(n,a)=the n-th root of a
n≥0
6 operations
Trigonometric
a(n)=n^(4+pt(∑[n]))
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
7 operations
Combinatoric

Sequence 0v2uojote5qlo

0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1000000, 1771561, 2985984, 4826809, 7529536, 11390625, 16777216, 24137569, 34012224, 47045881, 64000000, 85766121, 113379904, 148035889, 191102976, 244140625, 308915776, 387420489, 481890304, 594823321, 729000000, 887503681, 1073741824, 1291467969, 1544804416, 1838265625, 2176782336, 2565726409, 3010936384, 3518743761, 4096000000, 4750104241, 5489031744, 6321363049, 7256313856, 8303765625, 9474296896, 10779215329, 12230590464, 13841287201, more...

integer, strictly-monotonic, +, A001014 (multiple)

a(n)=n^6
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)]^6
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=n^Δ[6+a(n-1)]
a(0)=1
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=n^(5+pt(∑[n]))
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
7 operations
Combinatoric
a(n)=n^(5+gcd(a(n-1), a(n-2)))
a(0)=0
a(1)=1
gcd(a,b)=greatest common divisor
n≥0
7 operations
Recursive

Sequence emyfl40l3zik

0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424, 6103515625, 8031810176, 10460353203, 13492928512, 17249876309, 21870000000, 27512614111, 34359738368, 42618442977, 52523350144, 64339296875, 78364164096, 94931877133, 114415582592, 137231006679, 163840000000, 194754273881, 230539333248, 271818611107, 319277809664, 373669453125, 435817657216, 506623120463, 587068342272, 678223072849, more...

integer, strictly-monotonic, +, A001015 (multiple)

a(n)=n^7
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)]^7
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=n^or(7, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
or(a,b)=bitwise or
n≥0
6 operations
Prime
a(n)=n^Δ[7+a(n-1)]
a(0)=1
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=n^P(Δ[5*n])
Δ(a)=differences of a
P(n)=partition numbers
n≥0
7 operations
Combinatoric

Sequence 1ifvirtfnadnf

0, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881, 429981696, 815730721, 1475789056, 2562890625, 4294967296, 6975757441, 11019960576, 16983563041, 25600000000, 37822859361, 54875873536, 78310985281, 110075314176, 152587890625, 208827064576, 282429536481, 377801998336, 500246412961, 656100000000, 852891037441, 1099511627776, 1406408618241, 1785793904896, 2251875390625, 2821109907456, 3512479453921, 4347792138496, 5352009260481, 6553600000000, 7984925229121, 9682651996416, 11688200277601, 14048223625216, 16815125390625, 20047612231936, 23811286661761, 28179280429056, 33232930569601, more...

integer, strictly-monotonic, +, A001016 (multiple)

a(n)=n^8
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)]^8
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=n^Δ[8+a(n-1)]
a(0)=1
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=root(2-sinh(log(4)), n)
root(n,a)=the n-th root of a
n≥0
7 operations
Trigonometric
a(n)=n^(7+pt(∑[n]))
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
7 operations
Combinatoric

Sequence aykizzwbkkvhk

0, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000, 2357947691, 5159780352, 10604499373, 20661046784, 38443359375, 68719476736, 118587876497, 198359290368, 322687697779, 512000000000, 794280046581, 1207269217792, 1801152661463, 2641807540224, 3814697265625, 5429503678976, 7625597484987, 10578455953408, 14507145975869, 19683000000000, 26439622160671, 35184372088832, 46411484401953, 60716992766464, 78815638671875, 101559956668416, 129961739795077, 165216101262848, 208728361158759, 262144000000000, 327381934393961, 406671383849472, 502592611936843, 618121839509504, 756680642578125, 922190162669056, 1119130473102767, 1352605460594688, 1628413597910449, more...

integer, strictly-monotonic, +, A001017 (multiple)

a(n)=n^9
n≥0
3 operations
Power
a(n)=Δ[C(n, 2)]^9
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
6 operations
Combinatoric
a(n)=n^Δ[9+a(n-1)]
a(0)=1
Δ(a)=differences of a
n≥0
6 operations
Recursive
a(n)=n^(8+pt(∑[n]))
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
7 operations
Combinatoric
a(n)=n^composite(Δ[5*n])
Δ(a)=differences of a
composite(n)=nth composite number
n≥0
7 operations
Prime

Sequence jpvunvjdqy2l

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272, 1323, more...

integer, strictly-monotonic, +, A055998 (multiple)

a(n)=n+a(n-1)
a(0)=0
n≥2
3 operations
Recursive
a(n)=∑[n]-2
∑(a)=partial sums of a
n≥2
4 operations
Arithmetic
a(n)=∑[n%∑[n]]
∑(a)=partial sums of a
n≥2
5 operations
Divisibility
a(n)=∑[∑[gcd(n, a(n-1))]]
a(0)=0
gcd(a,b)=greatest common divisor
∑(a)=partial sums of a
n≥2
5 operations
Recursive
a(n)=∑[n]-root(3, 8)
∑(a)=partial sums of a
root(n,a)=the n-th root of a
n≥2
6 operations
Power

Sequence tt2iy1flb35ri

0, 21, 42, 63, 84, 105, 126, 147, 168, 189, 210, 231, 252, 273, 294, 315, 336, 357, 378, 399, 420, 441, 462, 483, 504, 525, 546, 567, 588, 609, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 987, 1008, 1029, more...

integer, strictly-monotonic, +, A008603 (multiple)

a(n)=21*n
n≥0
3 operations
Arithmetic

Sequence 4fh24pucsqwbg

0, 22, 44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, 352, 374, 396, 418, 440, 462, 484, 506, 528, 550, 572, 594, 616, 638, 660, 682, 704, 726, 748, 770, 792, 814, 836, 858, 880, 902, 924, 946, 968, 990, 1012, 1034, 1056, 1078, more...

integer, strictly-monotonic, +, A008604 (multiple)

a(n)=22*n
n≥0
3 operations
Arithmetic

Sequence sy011vio2uwwe

0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 870, 899, 928, 957, 986, 1015, 1044, 1073, 1102, 1131, 1160, 1189, 1218, 1247, 1276, 1305, 1334, 1363, 1392, 1421, more...

integer, strictly-monotonic, +, A195819 (multiple)

a(n)=29*n
n≥0
3 operations
Arithmetic

Sequence 55s24iysonvcg

0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840, 870, 900, 930, 960, 990, 1020, 1050, 1080, 1110, 1140, 1170, 1200, 1230, 1260, 1290, 1320, 1350, 1380, 1410, 1440, 1470, more...

integer, strictly-monotonic, +, A249674 (multiple)

a(n)=30*n
n≥0
3 operations
Arithmetic

Sequence a0myltfptmvab

0, 31, 62, 93, 124, 155, 186, 217, 248, 279, 310, 341, 372, 403, 434, 465, 496, 527, 558, 589, 620, 651, 682, 713, 744, 775, 806, 837, 868, 899, 930, 961, 992, 1023, 1054, 1085, 1116, 1147, 1178, 1209, 1240, 1271, 1302, 1333, 1364, 1395, 1426, 1457, 1488, 1519, more...

integer, strictly-monotonic, +, A135631 (multiple)

a(n)=31*n
n≥0
3 operations
Arithmetic

Sequence u0v13xu01nfah

0, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692, 1728, 1764, more...

integer, strictly-monotonic, +, A044102 (multiple)

a(n)=36*n
n≥0
3 operations
Arithmetic

Sequence dzqzj5xpgvhnh

0, 37, 74, 111, 148, 185, 222, 259, 296, 333, 370, 407, 444, 481, 518, 555, 592, 629, 666, 703, 740, 777, 814, 851, 888, 925, 962, 999, 1036, 1073, 1110, 1147, 1184, 1221, 1258, 1295, 1332, 1369, 1406, 1443, 1480, 1517, 1554, 1591, 1628, 1665, 1702, 1739, 1776, 1813, more...

integer, strictly-monotonic, +, A085959 (multiple)

a(n)=37*n
n≥0
3 operations
Arithmetic

Sequence plr1bymr50yvc

0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880, 1920, 1960, more...

integer, strictly-monotonic, +, A317095 (multiple)

a(n)=40*n
n≥0
3 operations
Arithmetic

Sequence zbmpekmlvbqz

0, 47, 94, 141, 188, 235, 282, 329, 376, 423, 470, 517, 564, 611, 658, 705, 752, 799, 846, 893, 940, 987, 1034, 1081, 1128, 1175, 1222, 1269, 1316, 1363, 1410, 1457, 1504, 1551, 1598, 1645, 1692, 1739, 1786, 1833, 1880, 1927, 1974, 2021, 2068, 2115, 2162, 47, 2256, 2303, more...

integer, non-monotonic, +, A004963 (multiple)

a(n)=lcm(n, 47)
lcm(a,b)=least common multiple
n≥0
3 operations
Divisibility

Sequence hs40dge3brqyj

0, 47, 94, 141, 188, 235, 282, 329, 376, 423, 470, 517, 564, 611, 658, 705, 752, 799, 846, 893, 940, 987, 1034, 1081, 1128, 1175, 1222, 1269, 1316, 1363, 1410, 1457, 1504, 1551, 1598, 1645, 1692, 1739, 1786, 1833, 1880, 1927, 1974, 2021, 2068, 2115, 2162, 2209, 2256, 2303, more...

integer, strictly-monotonic, +, A004963 (multiple)

a(n)=47*n
n≥0
3 operations
Arithmetic

Sequence vwrfgl21pmame

0, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, 720, 780, 840, 900, 960, 1020, 1080, 1140, 1200, 1260, 1320, 1380, 1440, 1500, 1560, 1620, 1680, 1740, 1800, 1860, 1920, 1980, 2040, 2100, 2160, 2220, 2280, 2340, 2400, 2460, 2520, 2580, 2640, 2700, 2760, 2820, 2880, 2940, more...

integer, strictly-monotonic, +, A169823 (multiple)

a(n)=60*n
n≥0
3 operations
Arithmetic

Sequence yqzbrgtlgc0wl

0, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344, 1408, 1472, 1536, 1600, 1664, 1728, 1792, 1856, 1920, 1984, 2048, 2112, 2176, 2240, 2304, 2368, 2432, 2496, 2560, 2624, 2688, 2752, 2816, 2880, 2944, 3008, 3072, 3136, more...

integer, strictly-monotonic, +, A152691 (multiple)

a(n)=64*n
n≥0
3 operations
Arithmetic

Sequence m51ivrtuqn0xl

0, 76, 152, 228, 304, 380, 456, 532, 608, 684, 760, 836, 912, 988, 1064, 1140, 1216, 1292, 1368, 1444, 1520, 1596, 1672, 1748, 1824, 1900, 1976, 2052, 2128, 2204, 2280, 2356, 2432, 2508, 2584, 2660, 2736, 2812, 2888, 2964, 3040, 3116, 3192, 3268, 3344, 3420, 3496, 3572, 3648, 3724, more...

integer, strictly-monotonic, +, A004924 (multiple)

a(n)=76*n
n≥0
3 operations
Arithmetic

Sequence txkmuesaztw4g

1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 0, 1, -1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, -1, 0, more...

integer, non-monotonic, +-, A071759 (weak, multiple)

a(n)=μ(P(n))
P(n)=partition numbers
μ(n)=Möbius function
n≥0
3 operations
Prime

Sequence it0jhqdeappbm

1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, more...

integer, non-monotonic, +-, A071759 (weak, multiple)

a(n)=λ(P(n))
P(n)=partition numbers
λ(n)=Liouville's function
n≥0
3 operations
Prime
a(n)=(-1)^Ω(P(n))
P(n)=partition numbers
Ω(n)=number of prime divisors of n
n≥0
6 operations
Prime
a(n)=μ(or(6, Ω(P(n))))
P(n)=partition numbers
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
6 operations
Prime

Sequence rjjphoxgo2rve

1, 1, 1, 4, 10, 1, 1, 128, 1, 10, 1, 1, 5, 16, 1, 2, 34, 1, 15, 3, 1, 4, 1, 3, 1, 1, 11, 1, 6, 1, 4, 2, 7, 3, 27, 3, 19, 11, 1, 1, 1, 1, 14, 1, 21, 1, 1, 4, 1, 7, more...

integer, non-monotonic, +, A276272 (weak, multiple)

a(n)=contfrac[atan(61)]
contfrac(a)=continued fraction of a
n≥0
3 operations
Trigonometric

Sequence j4i5dglg43wdc

1, 1, 2, 10, 140, 5880, 776160, 332972640, 476150875200, 2315045555222400, more...

integer, monotonic, +, A003046 (weak, multiple)

a(n)=∏[catalan(n)]
catalan(n)=the catalan numbers
∏(a)=partial products of a
n≥0
3 operations
Combinatoric
a(n)=∏[sqrt(floor(catalan(n)²))]
catalan(n)=the catalan numbers
∏(a)=partial products of a
n≥0
6 operations
Combinatoric
a(n)=∏[exp(abs(log(catalan(n))))]
catalan(n)=the catalan numbers
∏(a)=partial products of a
n≥0
6 operations
Combinatoric
a(n)=∏[xor(1, xor(1, catalan(n)))]
catalan(n)=the catalan numbers
xor(a,b)=bitwise exclusive or
∏(a)=partial products of a
n≥0
7 operations
Combinatoric
a(n)=∏[and(Δ[-n], catalan(n))]
Δ(a)=differences of a
catalan(n)=the catalan numbers
and(a,b)=bitwise and
∏(a)=partial products of a
n≥0
7 operations
Combinatoric

Sequence y5ybwgud1kkde

1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, more...

integer, periodic-9, non-monotonic, +, A139378 (weak, multiple)

a(n)=gcd(n, 9)
gcd(a,b)=greatest common divisor
n≥1
3 operations
Divisibility

Sequence 3zl5wlabkmp1n

1, 1, 4, 9, 25, 49, 121, 225, 484, 900, 1764, 3136, 5929, 10201, 18225, 30976, 53361, 88209, 148225, 240100, 393129, 627264, 1004004, 1575025, 2480625, 3833764, 5934096, 9060100, 13823524, 20839225, 31404816, 46812964, 69705801, 102880449, 151536100, 221503689, 323172529, 468159769, 676780225, 972504225, 1394126244, 1987643889, 2827474276, 4001954121, 5651280625, 7944869956, 11142491364, 15563560516, 21689336529, 30110925625, more...

integer, monotonic, +, A001255 (multiple)

a(n)=P(n)²
P(n)=partition numbers
n≥0
3 operations
Combinatoric
a(n)=root(1/2, P(n))
P(n)=partition numbers
root(n,a)=the n-th root of a
n≥0
6 operations
Combinatoric
a(n)=exp(2*log(P(n)))
P(n)=partition numbers
n≥0
6 operations
Combinatoric
a(n)=P(Δ[C(n, 2)])²
C(n,k)=binomial coefficient
Δ(a)=differences of a
P(n)=partition numbers
n≥0
6 operations
Combinatoric
a(n)=(P(n)%p(P(n)))²
P(n)=partition numbers
p(n)=nth prime
n≥0
7 operations
Prime

Sequence vvqqpe4xettz

1, 2, -1, 3, -4, 7, -11, 18, -29, 47, -76, 123, -199, 322, -521, 843, -1364, 2207, -3571, 5778, -9349, 15127, -24476, 39603, -64079, 103682, -167761, 271443, -439204, 710647, -1149851, 1860498, -3010349, 4870847, -7881196, 12752043, -20633239, 33385282, -54018521, 87403803, -141422324, 228826127, -370248451, 599074578, -969323029, 1568397607, -2537720636, 4106118243, -6643838879, 10749957122, more...

integer, non-monotonic, +-, A061084 (multiple)

a(n)=a(n-2)-a(n-1)
a(0)=1
a(1)=2
n≥0
3 operations
Recursive
a(n)=a(n-2)*pt(∑[n])-a(n-1)
a(0)=1
a(1)=2
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
7 operations
Combinatoric
a(n)=or(char[n!], a(n-2))-a(n-1)
a(0)=1
a(1)=2
char(a)=characteristic function of a (in range)
or(a,b)=bitwise or
n≥2
7 operations
Combinatoric
a(n)=μ(n²)-a(n-1)+a(n-2)
a(0)=1
a(1)=2
μ(n)=Möbius function
n≥0
7 operations
Prime

Sequence 1ph533bwhi5sb

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501, 540635, 646193, 770947, 918220, 1091745, more...

integer, strictly-monotonic, +, A000070 (multiple)

a(n)=∑[P(n)]
P(n)=partition numbers
∑(a)=partial sums of a
n≥0
3 operations
Combinatoric
a(n)=∑[exp(abs(log(P(n))))]
P(n)=partition numbers
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=∑[sqrt(floor(P(n)²))]
P(n)=partition numbers
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=∑[xor(1, xor(1, P(n)))]
P(n)=partition numbers
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥0
7 operations
Combinatoric
a(n)=∑[and(Δ[-n], P(n))]
Δ(a)=differences of a
P(n)=partition numbers
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
7 operations
Combinatoric

Sequence kmjchbq0ismd

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 34359738368, 68719476736, 137438953472, 274877906944, 549755813888, 1099511627776, 2199023255552, 4398046511104, 8796093022208, 17592186044416, 35184372088832, 70368744177664, 140737488355328, 281474976710656, 562949953421312, more...

integer, strictly-monotonic, +, A000079 (multiple)

a(n)=2^n
n≥0
3 operations
Power
a(n)=2*a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=lcm(2*a(n-1), 2)
a(0)=1
lcm(a,b)=least common multiple
n≥0
5 operations
Recursive
a(n)=2*a(n-2)+a(n-1)
a(0)=1
a(1)=2
n≥0
5 operations
Recursive
a(n)=xor(3*a(n-1), a(n-1))
a(0)=1
xor(a,b)=bitwise exclusive or
n≥0
5 operations
Recursive

Sequence choaxjzc4rxhh

1, 2, 4, 9, 23, 65, 197, 626, 2056, 6918, 23714, 82500, 290512, 1033412, 3707852, 13402697, 48760367, 178405157, 656043857, 2423307047, 8987427467, 33453694487, 124936258127, 467995871777, 1757900019101, 6619846420553, 24987199492705, 94520750408709, 358268702159069, 1360510918810437, more...

integer, strictly-monotonic, +, A014137 (multiple)

a(n)=∑[catalan(n)]
catalan(n)=the catalan numbers
∑(a)=partial sums of a
n≥0
3 operations
Combinatoric
a(n)=∑[xor(1, xor(1, catalan(n)))]
catalan(n)=the catalan numbers
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥0
7 operations
Combinatoric
a(n)=∑[and(Δ[-n], catalan(n))]
Δ(a)=differences of a
catalan(n)=the catalan numbers
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
7 operations
Combinatoric
a(n)=a(n-1)+catalan(Δ[C(n, 2)])
a(0)=1
C(n,k)=binomial coefficient
Δ(a)=differences of a
catalan(n)=the catalan numbers
n≥1
7 operations
Combinatoric
a(n)=∑[(4-6/n)*a(n-1)]
a(0)=1
∑(a)=partial sums of a
n≥1
8 operations
Recursive

Sequence vjhgwyynp2okp

1, 2, 4, 12, 24, 96, 192, 768, 2304, 9216, 18432, 110592, 221184, 884736, 3538944, 17694720, 35389440, 212336640, 424673280, 2548039680, 10192158720, 40768634880, 81537269760, 652298158080, 1956894474240, 7827577896960, 31310311587840, 187861869527040, 375723739054080, 3005789912432640, more...

integer, strictly-monotonic, +, A066843 (multiple)

a(n)=∏[τ(n)]
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥1
3 operations
Prime
a(n)=∏[and(15, τ(n))]
τ(n)=number of divisors of n
and(a,b)=bitwise and
∏(a)=partial products of a
n≥1
5 operations
Prime
a(n)=lcm(a(n-1)*τ(n), 2)
a(0)=1
τ(n)=number of divisors of n
lcm(a,b)=least common multiple
n≥1
6 operations
Prime
a(n)=∏[Ω(2^τ(n))]
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
∏(a)=partial products of a
n≥1
6 operations
Prime
a(n)=∏[sqrt(floor(τ(n)²))]
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥1
6 operations
Prime

Sequence yquxgtzi25ljk

1, 2, 5, 7, 7, 11, 13, 13, 17, 19, 19, more...

integer, monotonic, +, A093413 (weak, multiple)

a(n)=gpf(catalan(n))
catalan(n)=the catalan numbers
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence lcjxinejhrj5l

1, 2, 6, 12, 60, 120, 840, 1680, 5040, 10080, 110880, 221760, 2882880, 5765760, 17297280, 34594560, 588107520, 1176215040, 22348085760, 44696171520, 134088514560, 268177029120, 6168071669760, 12336143339520, 61680716697600, 123361433395200, 370084300185600, 740168600371200, more...

integer, strictly-monotonic, +, A072486 (multiple)

a(n)=∏[lpf(n)]
lpf(n)=least prime factor of n
∏(a)=partial products of a
n≥1
3 operations
Prime
a(n)=∏[and(31, lpf(n))]
lpf(n)=least prime factor of n
and(a,b)=bitwise and
∏(a)=partial products of a
n≥1
5 operations
Prime
a(n)=∏[gcd(n, lpf(n))]
lpf(n)=least prime factor of n
gcd(a,b)=greatest common divisor
∏(a)=partial products of a
n≥1
5 operations
Prime
a(n)=∏[gpf(lpf(n)²)]
lpf(n)=least prime factor of n
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥1
5 operations
Prime
a(n)=∏[rad(lpf(n)²)]
lpf(n)=least prime factor of n
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥1
5 operations
Prime

Sequence x1hlaoxf5mj4p

1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 9979200, 129729600, 1816214400, 27243216000, 54486432000, 926269344000, 5557616064000, 105594705216000, 1055947052160000, more...

integer, strictly-monotonic, +, A072938 (multiple)

a(n)=∏[rad(n)]
rad(n)=square free kernel of n
∏(a)=partial products of a
n≥1
3 operations
Prime
a(n)=∏[and(31, rad(n))]
rad(n)=square free kernel of n
and(a,b)=bitwise and
∏(a)=partial products of a
n≥1
5 operations
Prime
a(n)=∏[gcd(n, rad(n))]
rad(n)=square free kernel of n
gcd(a,b)=greatest common divisor
∏(a)=partial products of a
n≥1
5 operations
Prime
a(n)=lcm(a(n-1)*rad(n), 2)
a(0)=1
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
n≥1
6 operations
Prime
a(n)=∏[or(lpf(n), rad(n))]
lpf(n)=least prime factor of n
rad(n)=square free kernel of n
or(a,b)=bitwise or
∏(a)=partial products of a
n≥1
6 operations
Prime

Sequence mwh1dukeiz1ff

1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413, 1202604, 3269017, 8886110, 24154952, 65659969, 178482300, 485165195, 1318815734, 3584912846, 9744803446, 26489122129, 72004899337, 195729609428, 532048240601, 1446257064291, 3931334297144, 10686474581524, 29048849665247, 78962960182680, 214643579785916, 583461742527454, 1586013452313430, 4311231547115195, more...

integer, strictly-monotonic, +, A000149 (multiple)

a(n)=floor(exp(n))
n≥0
3 operations
Power
a(n)=a(n-1)-Δ[ceil(-exp(n))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive

Sequence sey1afpn43kbc

1, 3, 5, 15, 11, 77, 22, 176, 101, 385, 77, 3718, 135, 1575, 1575, 6842, 385, 31185, 627, 53174, 8349, 17977, 1575, 966467, 6842, 53174, 37338, 526823, 5604, 5392783, 8349, 1505499, 147273, 386155, 147273, 64112359, 26015, 966467, 526823, 56634173, 53174, 118114304, 75175, 26543660, 12132164, 5392783, 147273, 2841940500, 614154, 82010177, more...

integer, non-monotonic, +, A272024 (multiple)

a(n)=P(σ(n))
σ(n)=divisor sum of n
P(n)=partition numbers
n≥1
3 operations
Prime

Sequence hl5tuq5k0h54i

1, 3, 6, 11, 18, 29, 44, 66, 96, 138, 194, 271, 372, 507, 683, 914, 1211, 1596, 2086, 2713, 3505, 4507, 5762, 7337, 9295, 11731, 14741, 18459, 23024, 28628, 35470, 43819, 53962, 66272, 81155, 99132, 120769, 146784, 177969, 215307, 259890, 313064, 376325, 451500, 540634, 646192, 770946, 918219, 1091744, 1295970, more...

integer, strictly-monotonic, +, A026905 (multiple)

a(n)=∑[P(n)]
P(n)=partition numbers
∑(a)=partial sums of a
n≥1
3 operations
Combinatoric
a(n)=∑[exp(abs(log(P(n))))]
P(n)=partition numbers
∑(a)=partial sums of a
n≥1
6 operations
Combinatoric
a(n)=∑[sqrt(floor(P(n)²))]
P(n)=partition numbers
∑(a)=partial sums of a
n≥1
6 operations
Combinatoric
a(n)=∑[xor(1, xor(1, P(n)))]
P(n)=partition numbers
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥1
7 operations
Combinatoric
a(n)=∑[and(Δ[-n], P(n))]
Δ(a)=differences of a
P(n)=partition numbers
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥1
7 operations
Combinatoric

Sequence gohltjc2pndkk

1, 3, 6, 14, 44, 194, 1182, 9548, 99524, more...

integer, strictly-monotonic, +, A257320 (multiple)

a(n)=σ(p(a(n-1)))
a(0)=1
p(n)=nth prime
σ(n)=divisor sum of n
n≥0
3 operations
Prime
a(n)=2+φ(p(a(n-1)))
a(0)=1
p(n)=nth prime
ϕ(n)=number of relative primes (Euler's totient)
n≥0
5 operations
Prime
a(n)=stern(agc(a(n-1)))+p(a(n-1))
a(0)=1
agc(n)=number of factorizations into prime powers (abelian group count)
stern(n)=Stern-Brocot sequence
p(n)=nth prime
n≥0
6 operations
Prime
a(n)=2+φ(p(lcm(Ω(n), a(n-1))))
a(0)=1
Ω(n)=number of prime divisors of n
lcm(a,b)=least common multiple
p(n)=nth prime
ϕ(n)=number of relative primes (Euler's totient)
n≥1
8 operations
Prime

Sequence dev2jr0ru2rab

1, 3, 7, 20, 55, 148, 403, 1097, 2981, 8103, 22026, 59874, 162755, 442413, 1202604, 3269017, 8886111, 24154953, 65659969, 178482301, 485165195, 1318815734, 3584912846, 9744803446, 26489122130, 72004899337, 195729609429, 532048240602, 1446257064291, 3931334297144, 10686474581524, 29048849665247, 78962960182681, 214643579785916, 583461742527455, 1586013452313431, 4311231547115195, more...

integer, strictly-monotonic, +, A000227 (multiple)

a(n)=round(exp(n))
n≥0
3 operations
Power
a(n)=a(n-1)-Δ[round(-exp(n))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive

Sequence ovqncte3hs5ok

1, 3, 8, 21, 55, 149, 404, 1097, 2981, 8104, 22027, 59875, 162755, 442414, 1202605, 3269018, 8886111, 24154953, 65659970, 178482301, 485165196, 1318815735, 3584912847, 9744803447, 26489122130, 72004899338, 195729609429, 532048240602, 1446257064292, 3931334297145, 10686474581525, 29048849665248, 78962960182681, 214643579785917, 583461742527455, 1586013452313431, 4311231547115195, more...

integer, strictly-monotonic, +, A001671 (multiple)

a(n)=ceil(exp(n))
n≥0
3 operations
Power
a(n)=a(n-1)-Δ[floor(-exp(n))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive

Sequence ha52u55eguwde

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370, 31395, 33511, 35720, 38024, 40425, 42925, more...

integer, strictly-monotonic, +, A109678 (multiple)

a(n)=∑[n²]
∑(a)=partial sums of a
n≥1
3 operations
Power
a(n)=n²+a(n-1)
a(0)=1
n≥1
4 operations
Recursive
a(n)=∑[n/(1/n)]
∑(a)=partial sums of a
n≥1
6 operations
Arithmetic
a(n)=∑[(n*λ(n))²]
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
6 operations
Prime
a(n)=∑[Δ[C(n, 2)]²]
C(n,k)=binomial coefficient
Δ(a)=differences of a
∑(a)=partial sums of a
n≥1
6 operations
Combinatoric

Sequence r54q2nnufwvxb

1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643, 2801, 5467, more...

integer, non-monotonic, +, A065764 (multiple)

a(n)=σ(n²)
σ(n)=divisor sum of n
n≥1
3 operations
Prime
a(n)=or(1, σ((1+n)²))
σ(n)=divisor sum of n
or(a,b)=bitwise or
n≥0
7 operations
Prime

Sequence fhcehlsrbsyjo

1, 9, 16, 49, 36, 144, 64, 225, 169, 324, 144, 784, 196, 576, 576, 961, 324, 1521, 400, 1764, 1024, 1296, 576, 3600, 961, 1764, 1600, 3136, 900, 5184, 1024, 3969, 2304, 2916, 2304, 8281, 1444, 3600, 3136, 8100, 1764, 9216, 1936, 7056, 6084, 5184, 2304, 15376, 3249, 8649, more...

integer, non-monotonic, +, A072861 (multiple)

a(n)=σ(n)²
σ(n)=divisor sum of n
n≥1
3 operations
Prime
a(n)=root(1/2, σ(n))
σ(n)=divisor sum of n
root(n,a)=the n-th root of a
n≥1
6 operations
Prime
a(n)=exp(2*log(σ(n)))
σ(n)=divisor sum of n
n≥1
6 operations
Prime
a(n)=sqrt(abs(σ(n)^4))
σ(n)=divisor sum of n
n≥1
6 operations
Prime
a(n)=σ(lcm(n, rad(n)))²
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
σ(n)=divisor sum of n
n≥1
6 operations
Prime

Sequence u2m3kx21yh4fi

1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A285198 (weak, multiple)

a(n)=C(9, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(10/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence ajhxlmhyo3n5e

1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010926 (weak, multiple)

a(n)=C(10, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(11/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence bblnuylbxwbep

1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010927 (weak, multiple)

a(n)=C(11, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(12/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence fcg2b1yig1ccg

1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010928 (multiple)

a(n)=C(12, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(13/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence g1hlczogpdxmh

1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010929 (multiple)

a(n)=C(13, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(14/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence fso05d0kftqni

1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010930 (multiple)

a(n)=C(14, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(15/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 0mkqpzd0bf35k

1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010931 (multiple)

a(n)=C(15, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(16/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence omb5hhenve4ak

1, 16, 36, 64, 81, 100, 144, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2304, 2401, 2500, 2601, 2704, 2916, 3025, 3136, 3249, 3364, 3600, 3844, 3969, 4096, 4225, 4356, 4624, 4761, more...

integer, strictly-monotonic, +, A062312 (multiple)

a(n)=composite(n)²
composite(n)=nth composite number
n≥1
3 operations
Prime
a(n)=root(1/2, composite(n))
composite(n)=nth composite number
root(n,a)=the n-th root of a
n≥1
6 operations
Prime
a(n)=exp(2*log(composite(n)))
composite(n)=nth composite number
n≥1
6 operations
Prime
a(n)=sqrt(abs(composite(n)^4))
composite(n)=nth composite number
n≥1
6 operations
Prime
a(n)=composite(lcm(n, gpf(n)))²
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
composite(n)=nth composite number
n≥1
6 operations
Prime

Sequence eqhb0am3ydlyb

1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010932 (multiple)

a(n)=C(16, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(17/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence prmxiu1xkjepf

1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010933 (multiple)

a(n)=C(17, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(18/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence bmag1onc2lmrh

1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010934 (multiple)

a(n)=C(18, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(19/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence ua3xff1ejjfi

1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 92378, 75582, 50388, 27132, 11628, 3876, 969, 171, 19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010935 (multiple)

a(n)=C(19, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(20/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence shtf3ueuahvkh

1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756, 167960, 125970, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010936 (multiple)

a(n)=C(20, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(21/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence wfbk0vzwu0nrh

1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010937 (multiple)

a(n)=C(21, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(22/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence jszptrmfxckjd

1, 22, 231, 1540, 7315, 26334, 74613, 170544, 319770, 497420, 646646, 705432, 646646, 497420, 319770, 170544, 74613, 26334, 7315, 1540, 231, 22, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010938 (multiple)

a(n)=C(22, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(23/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 4qctaeamivkqo

1, 23, 253, 1771, 8855, 33649, 100947, 245157, 490314, 817190, 1144066, 1352078, 1352078, 1144066, 817190, 490314, 245157, 100947, 33649, 8855, 1771, 253, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010939 (multiple)

a(n)=C(23, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(24/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 32rwmu1b1kgdj

1, 24, 47, 70, 93, 116, 139, 162, 185, 208, 231, 254, 277, 300, 323, 346, 369, 392, 415, 438, 461, 484, 507, 530, 553, 576, 599, 622, 645, 668, 691, 714, 737, 760, 783, 806, 829, 852, 875, 898, 921, 944, 967, 990, 1013, 1036, 1059, 1082, 1105, 1128, more...

integer, strictly-monotonic, +, A215148 (multiple)

a(n)=23+a(n-1)
a(0)=1
n≥0
3 operations
Recursive

Sequence ve4yoou0uj5eg

1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010940 (multiple)

a(n)=C(24, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(25/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence cez4xxq5t2hmm

1, 25, 300, 2300, 12650, 53130, 177100, 480700, 1081575, 2042975, 3268760, 4457400, 5200300, 5200300, 4457400, 3268760, 2042975, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010941 (multiple)

a(n)=C(25, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(26/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence bfikxznrceqmk

1, 26, 325, 2600, 14950, 65780, 230230, 657800, 1562275, 3124550, 5311735, 7726160, 9657700, 10400600, 9657700, 7726160, 5311735, 3124550, 1562275, 657800, 230230, 65780, 14950, 2600, 325, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010942 (multiple)

a(n)=C(26, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(27/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 4c3yb02q5ownc

1, 27, 351, 2925, 17550, 80730, 296010, 888030, 2220075, 4686825, 8436285, 13037895, 17383860, 20058300, 20058300, 17383860, 13037895, 8436285, 4686825, 2220075, 888030, 296010, 80730, 17550, 2925, 351, 27, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010943 (multiple)

a(n)=C(27, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(28/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence jd2jm2m05no1j

1, 28, 378, 3276, 20475, 98280, 376740, 1184040, 3108105, 6906900, 13123110, 21474180, 30421755, 37442160, 40116600, 37442160, 30421755, 21474180, 13123110, 6906900, 3108105, 1184040, 376740, 98280, 20475, 3276, 378, 28, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010944 (multiple)

a(n)=C(28, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(29/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence jz5chuufiz5ed

1, 29, 406, 3654, 23751, 118755, 475020, 1560780, 4292145, 10015005, 20030010, 34597290, 51895935, 67863915, 77558760, 77558760, 67863915, 51895935, 34597290, 20030010, 10015005, 4292145, 1560780, 475020, 118755, 23751, 3654, 406, 29, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010945 (multiple)

a(n)=C(29, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(30/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence oz0gzovbwumxm

1, 30, 435, 4060, 27405, 142506, 593775, 2035800, 5852925, 14307150, 30045015, 54627300, 86493225, 119759850, 145422675, 155117520, 145422675, 119759850, 86493225, 54627300, 30045015, 14307150, 5852925, 2035800, 593775, 142506, 27405, 4060, 435, 30, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010946 (multiple)

a(n)=C(30, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(31/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence eajp31mrcotyp

1, 31, 465, 4495, 31465, 169911, 736281, 2629575, 7888725, 20160075, 44352165, 84672315, 141120525, 206253075, 265182525, 300540195, 300540195, 265182525, 206253075, 141120525, 84672315, 44352165, 20160075, 7888725, 2629575, 736281, 169911, 31465, 4495, 465, 31, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010947 (multiple)

a(n)=C(31, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(32/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 35ncnpb1i0ryg

1, 32, 496, 4960, 35960, 201376, 906192, 3365856, 10518300, 28048800, 64512240, 129024480, 225792840, 347373600, 471435600, 565722720, 601080390, 565722720, 471435600, 347373600, 225792840, 129024480, 64512240, 28048800, 10518300, 3365856, 906192, 201376, 35960, 4960, 496, 32, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010948 (multiple)

a(n)=C(32, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(33/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence rqvqa31uev21

1, 33, 528, 5456, 40920, 237336, 1107568, 4272048, 13884156, 38567100, 92561040, 193536720, 354817320, 573166440, 818809200, 1037158320, 1166803110, 1166803110, 1037158320, 818809200, 573166440, 354817320, 193536720, 92561040, 38567100, 13884156, 4272048, 1107568, 237336, 40920, 5456, 528, 33, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010949 (multiple)

a(n)=C(33, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(34/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 525cgq0dg4dtb

1, 34, 561, 5984, 46376, 278256, 1344904, 5379616, 18156204, 52451256, 131128140, 286097760, 548354040, 927983760, 1391975640, 1855967520, 2203961430, 2333606220, 2203961430, 1855967520, 1391975640, 927983760, 548354040, 286097760, 131128140, 52451256, 18156204, 5379616, 1344904, 278256, 46376, 5984, 561, 34, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010950 (multiple)

a(n)=C(34, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(35/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence zljntardfijsb

1, 35, 595, 6545, 52360, 324632, 1623160, 6724520, 23535820, 70607460, 183579396, 417225900, 834451800, 1476337800, 2319959400, 3247943160, 4059928950, 4537567650, 4537567650, 4059928950, 3247943160, 2319959400, 1476337800, 834451800, 417225900, 183579396, 70607460, 23535820, 6724520, 1623160, 324632, 52360, 6545, 595, 35, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010951 (multiple)

a(n)=C(35, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(36/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 4eegr43mj2rml

1, 36, 630, 7140, 58905, 376992, 1947792, 8347680, 30260340, 94143280, 254186856, 600805296, 1251677700, 2310789600, 3796297200, 5567902560, 7307872110, 8597496600, 9075135300, 8597496600, 7307872110, 5567902560, 3796297200, 2310789600, 1251677700, 600805296, 254186856, 94143280, 30260340, 8347680, 1947792, 376992, 58905, 7140, 630, 36, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010952 (multiple)

a(n)=C(36, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(37/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence httszmbq50g3g

1, 37, 666, 7770, 66045, 435897, 2324784, 10295472, 38608020, 124403620, 348330136, 854992152, 1852482996, 3562467300, 6107086800, 9364199760, 12875774670, 15905368710, 17672631900, 17672631900, 15905368710, 12875774670, 9364199760, 6107086800, 3562467300, 1852482996, 854992152, 348330136, 124403620, 38608020, 10295472, 2324784, 435897, 66045, 7770, 666, 37, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010953 (multiple)

a(n)=C(37, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(38/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence dem5zjuys33bk

1, 38, 703, 8436, 73815, 501942, 2760681, 12620256, 48903492, 163011640, 472733756, 1203322288, 2707475148, 5414950296, 9669554100, 15471286560, 22239974430, 28781143380, 33578000610, 35345263800, 33578000610, 28781143380, 22239974430, 15471286560, 9669554100, 5414950296, 2707475148, 1203322288, 472733756, 163011640, 48903492, 12620256, 2760681, 501942, 73815, 8436, 703, 38, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010954 (multiple)

a(n)=C(38, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(39/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 5wusip0vtx0pp

1, 39, 741, 9139, 82251, 575757, 3262623, 15380937, 61523748, 211915132, 635745396, 1676056044, 3910797436, 8122425444, 15084504396, 25140840660, 37711260990, 51021117810, 62359143990, 68923264410, 68923264410, 62359143990, 51021117810, 37711260990, 25140840660, 15084504396, 8122425444, 3910797436, 1676056044, 635745396, 211915132, 61523748, 15380937, 3262623, 575757, 82251, 9139, 741, 39, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010955 (multiple)

a(n)=C(39, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(40/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence ykjknjhidymrb

1, 40, 780, 9880, 91390, 658008, 3838380, 18643560, 76904685, 273438880, 847660528, 2311801440, 5586853480, 12033222880, 23206929840, 40225345056, 62852101650, 88732378800, 113380261800, 131282408400, 137846528820, 131282408400, 113380261800, 88732378800, 62852101650, 40225345056, 23206929840, 12033222880, 5586853480, 2311801440, 847660528, 273438880, 76904685, 18643560, 3838380, 658008, 91390, 9880, 780, 40, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010956 (multiple)

a(n)=C(40, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(41/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence a154fo3mf1jjm

1, 41, 820, 10660, 101270, 749398, 4496388, 22481940, 95548245, 350343565, 1121099408, 3159461968, 7898654920, 17620076360, 35240152720, 63432274896, 103077446706, 151584480450, 202112640600, 244662670200, 269128937220, 269128937220, 244662670200, 202112640600, 151584480450, 103077446706, 63432274896, 35240152720, 17620076360, 7898654920, 3159461968, 1121099408, 350343565, 95548245, 22481940, 4496388, 749398, 101270, 10660, 820, 41, 1, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010957 (multiple)

a(n)=C(41, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(42/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence shxf4cgsm4pfn

1, 42, 861, 11480, 111930, 850668, 5245786, 26978328, 118030185, 445891810, 1471442973, 4280561376, 11058116888, 25518731280, 52860229080, 98672427616, 166509721602, 254661927156, 353697121050, 446775310800, 513791607420, 538257874440, 513791607420, 446775310800, 353697121050, 254661927156, 166509721602, 98672427616, 52860229080, 25518731280, 11058116888, 4280561376, 1471442973, 445891810, 118030185, 26978328, 5245786, 850668, 111930, 11480, 861, 42, 1, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010958 (multiple)

a(n)=C(42, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(43/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence vgk2141akb4f

1, 43, 903, 12341, 123410, 962598, 6096454, 32224114, 145008513, 563921995, 1917334783, 5752004349, 15338678264, 36576848168, 78378960360, 151532656696, 265182149218, 421171648758, 608359048206, 800472431850, 960566918220, 1052049481860, 1052049481860, 960566918220, 800472431850, 608359048206, 421171648758, 265182149218, 151532656696, 78378960360, 36576848168, 15338678264, 5752004349, 1917334783, 563921995, 145008513, 32224114, 6096454, 962598, 123410, 12341, 903, 43, 1, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010959 (multiple)

a(n)=C(43, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(44/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence 5fien240x1mbb

1, 44, 946, 13244, 135751, 1086008, 7059052, 38320568, 177232627, 708930508, 2481256778, 7669339132, 21090682613, 51915526432, 114955808528, 229911617056, 416714805914, 686353797976, 1029530696964, 1408831480056, 1761039350070, 2012616400080, 2104098963720, 2012616400080, 1761039350070, 1408831480056, 1029530696964, 686353797976, 416714805914, 229911617056, 114955808528, 51915526432, 21090682613, 7669339132, 2481256778, 708930508, 177232627, 38320568, 7059052, 1086008, 135751, 13244, 946, 44, 1, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010960 (multiple)

a(n)=C(44, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(45/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence eka0w03orteqg

1, 45, 990, 14190, 148995, 1221759, 8145060, 45379620, 215553195, 886163135, 3190187286, 10150595910, 28760021745, 73006209045, 166871334960, 344867425584, 646626422970, 1103068603890, 1715884494940, 2438362177020, 3169870830126, 3773655750150, 4116715363800, 4116715363800, 3773655750150, 3169870830126, 2438362177020, 1715884494940, 1103068603890, 646626422970, 344867425584, 166871334960, 73006209045, 28760021745, 10150595910, 3190187286, 886163135, 215553195, 45379620, 8145060, 1221759, 148995, 14190, 990, 45, 1, 0, 0, 0, 0, more...

integer, non-monotonic, +, A010961 (multiple)

a(n)=C(45, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(46/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence gygyr4gxsk1kb

1, 46, 1035, 15180, 163185, 1370754, 9366819, 53524680, 260932815, 1101716330, 4076350421, 13340783196, 38910617655, 101766230790, 239877544005, 511738760544, 991493848554, 1749695026860, 2818953098830, 4154246671960, 5608233007146, 6943526580276, 7890371113950, 8233430727600, 7890371113950, 6943526580276, 5608233007146, 4154246671960, 2818953098830, 1749695026860, 991493848554, 511738760544, 239877544005, 101766230790, 38910617655, 13340783196, 4076350421, 1101716330, 260932815, 53524680, 9366819, 1370754, 163185, 15180, 1035, 46, 1, 0, 0, 0, more...

integer, non-monotonic, +, A010962 (multiple)

a(n)=C(46, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(47/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence f35mtpkpg32wi

1, 47, 1081, 16215, 178365, 1533939, 10737573, 62891499, 314457495, 1362649145, 5178066751, 17417133617, 52251400851, 140676848445, 341643774795, 751616304549, 1503232609098, 2741188875414, 4568648125690, 6973199770790, 9762479679106, 12551759587422, 14833897694226, 16123801841550, 16123801841550, 14833897694226, 12551759587422, 9762479679106, 6973199770790, 4568648125690, 2741188875414, 1503232609098, 751616304549, 341643774795, 140676848445, 52251400851, 17417133617, 5178066751, 1362649145, 314457495, 62891499, 10737573, 1533939, 178365, 16215, 1081, 47, 1, 0, 0, more...

integer, non-monotonic, +, A010963 (multiple)

a(n)=C(47, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(48/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence pdpog0g1lqldh

1, 48, 1128, 17296, 194580, 1712304, 12271512, 73629072, 377348994, 1677106640, 6540715896, 22595200368, 69668534468, 192928249296, 482320623240, 1093260079344, 2254848913647, 4244421484512, 7309837001104, 11541847896480, 16735679449896, 22314239266528, 27385657281648, 30957699535776, 32247603683100, 30957699535776, 27385657281648, 22314239266528, 16735679449896, 11541847896480, 7309837001104, 4244421484512, 2254848913647, 1093260079344, 482320623240, 192928249296, 69668534468, 22595200368, 6540715896, 1677106640, 377348994, 73629072, 12271512, 1712304, 194580, 17296, 1128, 48, 1, 0, more...

integer, non-monotonic, +, A010964 (multiple)

a(n)=C(48, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(49/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence ovd0gpqie2jwn

1, 49, 1176, 18424, 211876, 1906884, 13983816, 85900584, 450978066, 2054455634, 8217822536, 29135916264, 92263734836, 262596783764, 675248872536, 1575580702584, 3348108992991, 6499270398159, 11554258485616, 18851684897584, 28277527346376, 39049918716424, 49699896548176, 58343356817424, 63205303218876, 63205303218876, 58343356817424, 49699896548176, 39049918716424, 28277527346376, 18851684897584, 11554258485616, 6499270398159, 3348108992991, 1575580702584, 675248872536, 262596783764, 92263734836, 29135916264, 8217822536, 2054455634, 450978066, 85900584, 13983816, 1906884, 211876, 18424, 1176, 49, 1, more...

integer, non-monotonic, +, A017765 (multiple)

a(n)=C(49, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(50/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

Sequence e33ub5pqpdw5f

1, 50, 1225, 19600, 230300, 2118760, 15890700, 99884400, 536878650, 2505433700, 10272278170, 37353738800, 121399651100, 354860518600, 937845656300, 2250829575120, 4923689695575, 9847379391150, 18053528883775, 30405943383200, 47129212243960, 67327446062800, 88749815264600, 108043253365600, 121548660036300, 126410606437752, 121548660036300, 108043253365600, 88749815264600, 67327446062800, 47129212243960, 30405943383200, 18053528883775, 9847379391150, 4923689695575, 2250829575120, 937845656300, 354860518600, 121399651100, 37353738800, 10272278170, 2505433700, 536878650, 99884400, 15890700, 2118760, 230300, 19600, 1225, 50, more...

integer, non-monotonic, +, A017766 (multiple)

a(n)=C(50, n)
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=(51/n-1)*a(n-1)
a(0)=1
n≥0
7 operations
Recursive

[0] [1] [2] [3] [4] ... [1384]