Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 9994. [0] [1] [2] [3] [4] ... [99]

Sequence buqmnzuccjoq

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, constant, monotonic, A000004

a(n)=0
n≥0
1 operation
IntegerConstant

Sequence ieufhob1bssmo

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, more...

integer, strictly-monotonic, +, A001477

a(n)=n
n≥0
1 operation
Variable

Sequence iadyjauem3qtk

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, constant, monotonic, +, A000012

a(n)=1
n≥0
1 operation
IntegerConstant

Sequence yzr0sc03rsrvl

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, more...

integer, constant, monotonic, +, A007395

a(n)=2
n≥0
1 operation
IntegerConstant

Sequence 5bbyqmwoygs4k

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, more...

integer, constant, monotonic, +, A010701

a(n)=3
n≥0
1 operation
IntegerConstant

Sequence kf2qfuennqyen

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, more...

integer, constant, monotonic, +, A010709

a(n)=4
n≥0
1 operation
IntegerConstant

Sequence wxmohmj00ez4n

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, more...

integer, constant, monotonic, +, A010716

a(n)=5
n≥0
1 operation
IntegerConstant

Sequence o00l0aq5msrcd

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, more...

integer, constant, monotonic, +, A010722

a(n)=6
n≥0
1 operation
IntegerConstant

Sequence wnxkpzx1pjpic

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, more...

integer, constant, monotonic, +, A010727

a(n)=7
n≥0
1 operation
IntegerConstant

Sequence hsqghc5izw2nf

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, more...

integer, constant, monotonic, +, A010731

a(n)=8
n≥0
1 operation
IntegerConstant

Sequence btlvkni23nq3o

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, more...

integer, constant, monotonic, +, A010734

a(n)=9
n≥0
1 operation
IntegerConstant

Sequence recvdf0mekssj

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, more...

integer, constant, monotonic, +, A010692

a(n)=10
n≥0
1 operation
IntegerConstant

Sequence rznmspyeitcuj

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, more...

integer, constant, monotonic, +, A010850

a(n)=11
n≥0
1 operation
IntegerConstant

Sequence 2de2nfq5y5ayd

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, more...

integer, constant, monotonic, +, A010851

a(n)=12
n≥0
1 operation
IntegerConstant

Sequence c5d4dq0klaatb

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, more...

integer, constant, monotonic, +, A010852

a(n)=13
n≥0
1 operation
IntegerConstant

Sequence tv20zzxok02i

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, more...

integer, constant, monotonic, +, A010853

a(n)=14
n≥0
1 operation
IntegerConstant

Sequence p0uyreelabprd

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, more...

integer, constant, monotonic, +, A010854

a(n)=15
n≥0
1 operation
IntegerConstant

Sequence zsz0pnk2ulrxl

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, more...

integer, constant, monotonic, +, A010855

a(n)=16
n≥0
1 operation
IntegerConstant

Sequence ubpd4wahw0tvo

17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, more...

integer, constant, monotonic, +, A010856

a(n)=17
n≥0
1 operation
IntegerConstant

Sequence i0o1vec42p1xh

18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, more...

integer, constant, monotonic, +, A010857

a(n)=18
n≥0
1 operation
IntegerConstant

Sequence 3dddzysbkcvul

19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, more...

integer, constant, monotonic, +, A010858

a(n)=19
n≥0
1 operation
IntegerConstant

Sequence uwfqium1nhwde

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, more...

integer, constant, monotonic, +, A010859

a(n)=20
n≥0
1 operation
IntegerConstant

Sequence 2xixgig1sc3qc

21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, more...

integer, constant, monotonic, +, A010860

a(n)=21
n≥0
1 operation
IntegerConstant

Sequence kj05x5if2vkec

22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, more...

integer, constant, monotonic, +, A010861

a(n)=22
n≥0
1 operation
IntegerConstant

Sequence vxyxsbelj3djn

23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, more...

integer, constant, monotonic, +, A010862

a(n)=23
n≥0
1 operation
IntegerConstant

Sequence pycrcfgzqimvl

24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, more...

integer, constant, monotonic, +, A010863

a(n)=24
n≥0
1 operation
IntegerConstant

Sequence rx4ssneeoqm0i

25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, more...

integer, constant, monotonic, +, A010864

a(n)=25
n≥0
1 operation
IntegerConstant

Sequence 111hihrwi55zg

26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, more...

integer, constant, monotonic, +, A010865

a(n)=26
n≥0
1 operation
IntegerConstant

Sequence 5s55voppvn40l

27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, more...

integer, constant, monotonic, +, A010866

a(n)=27
n≥0
1 operation
IntegerConstant

Sequence 4elkzht0vsaem

28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, more...

integer, constant, monotonic, +, A010867

a(n)=28
n≥0
1 operation
IntegerConstant

Sequence 43kcfehp1u4go

29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, more...

integer, constant, monotonic, +, A010868

a(n)=29
n≥0
1 operation
IntegerConstant

Sequence b3lj02yi20csd

30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, more...

integer, constant, monotonic, +, A010869

a(n)=30
n≥0
1 operation
IntegerConstant

Sequence egpz4l2kc35df

31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, more...

integer, constant, monotonic, +, A010870

a(n)=31
n≥0
1 operation
IntegerConstant

Sequence kc5z1yjhbkprc

32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, more...

integer, constant, monotonic, +, A010871

a(n)=32
n≥0
1 operation
IntegerConstant

Sequence chlwqr3gc4xno

91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, more...

integer, constant, monotonic, +, A103847

a(n)=91
n≥0
1 operation
IntegerConstant

Sequence h3123yhmxvs1g

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, more...

integer, strictly-monotonic, -, A001489

a(n)=-n
n≥0
2 operations
Arithmetic

Sequence ncilpddnshefo

0, 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, 2, 4, 21, 2, 405, 2, 1, 33, 1, 2, 8, 2, 29, 1, 4, 4, 4, 4, 1, 9, 3, 1, 4, 1, 1, 2, 26, 1, 8, more...

integer, non-monotonic, +, A065645

a(n)=contfrac[TwinPrime]
TwinPrime=0.6601... (Twin Prime)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence brsi1x4psomni

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max distinct factors of n
n≥1
2 operations
Prime
a(n)=log(sqrt(exp(Ω(n²))))
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=Ω(n*p(n))-1
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence 2co2c3vr2pedl

0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65, 1, 4, 7, 11, 1, 399, 2, 1, 3, 2, 1, 2, 1, 5, 3, 2, more...

integer, non-monotonic, +, A002852

a(n)=contfrac[γ]
γ=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence f0hiz4pasazlk

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, more...

integer, non-monotonic, +, A002487

a(n)=stern(n)
stern(n)=Stern-Brocot sequence
n≥0
2 operations
Recursive

Sequence g3fycrmfjmnxl

0, 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, 1, 1, 1, 1, 7, 1, 4, 2, 15, 1, 2, 1, 1, 4, 1, 3, 3, 5, 4, 1, 1, 1, 4, 3, 1, 38, 1, 2, 4, more...

integer, non-monotonic, +, A019474

a(n)=contfrac[W1]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[log(W1)]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
3 operations
Power

Sequence 5ey1pvojvkhlg

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, more...

integer, strictly-monotonic, +, A000217

a(n)=∑[n]
∑(a)=partial sums of a
n≥0
2 operations
Variable
a(n)=n+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=-∑[-n]
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑[C(n, a(n-1))]
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=∑[and(n, -1)]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥0
5 operations
Bitwise

Sequence hr1xwu5kzwtrb

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, more...

integer, strictly-monotonic, +, A000290

a(n)=n²
n≥0
2 operations
Power
a(n)=Δ[n²]+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=C(n, sqrt(a(n-1)))²
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=∑[2*n]-n
∑(a)=partial sums of a
n≥0
6 operations
Arithmetic
a(n)=∑[or(1, 1+a(n-1))]
a(0)=0
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
6 operations
Recursive

Sequence 2e2pf0fazbckl

0, 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 1, 1, 1, 6, 1, 12, 1, 4, 7, 1, 1, 2, 5, 1, 5, 9, 1, more...

integer, non-monotonic, +, A014538

a(n)=contfrac[G]
G=0.9159... (Catalans)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence jsxfs42lrpw3p

0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, more...

integer, non-monotonic, +, A048296

a(n)=contfrac[Artins]
Artins=0.3739... (Artins)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence kusc5pibufhkj

0, 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, 1, 5, 19, 1, 5, 1, 1, 1, 1, 1, 12, 12, 9, 1, 8, 4, 10, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, more...

integer, non-monotonic, +, A230767

a(n)=contfrac[Mertens]
Mertens=0.2614... (Mertens)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence 4cpzl0cv2iyxp

0, 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, 2, 2, 1, 1, 2, 1, 4, 39, 4, 4, 5, 2, 1, 1, 87, 16, 1, 2, 1, 2, 1, 1, 3, 1, 8, 1, 3, 1, 1, more...

integer, non-monotonic, +, A030168

a(n)=contfrac[CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence t1zgct2gyon3m

0, 7, 2, 8, 1, 5, 8, 4, 5, 4, 8, 3, 6, 7, 6, 7, 2, 4, 8, 6, 0, 5, 8, 6, 3, 7, 5, 8, 7, 4, 9, 0, 1, 3, 1, 9, 1, 3, 7, 7, 3, 6, 3, 3, 8, 3, 3, 4, 3, 3, more...

integer, non-monotonic, +, A082633

a(n)=de[Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence ruhaqit5bcw0k

0, 13, 1, 2, 1, 2, 1, 74, 1, 10, 1, 9, 2, 1, 3, 1, 4, 1, 6, 1, 1, 2, 84, 1, 108, 1, 20, 22, 2, 2, 1, 2, 2, 1, 7, 1, 66, 2, 1, 1, 2, 5, 1, 1, 2, 1, 1, 59, 1, 2, more...

integer, non-monotonic, +, A066036

a(n)=contfrac[Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence jf1vodtk3fpuj

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence sxgqtfmeezvbp

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime
a(n)=(-1)^Ω(n)
Ω(n)=max distinct factors of n
n≥1
5 operations
Prime
a(n)=μ(or(6, Ω(n)))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence tdb3tixo3q50e

1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, more...

integer, periodic-2, non-monotonic, +-, A033999

a(n)=-a(n-1)
a(0)=1
n≥0
2 operations
Recursive

Sequence lalqvjgjzo0ro

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric

Sequence pvurlm0y53im

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence gv5wnaqfuuoao

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=φ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence dps4an1f0bv5f

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525, more...

integer, monotonic, +, A000041

a(n)=P(n)
P(n)=partition numbers
n≥0
2 operations
Combinatoric

Sequence jlpqc0m0fwl2i

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304, more...

integer, monotonic, +, A000108

a(n)=catalan(n)
catalan(n)=the catalan numbers
n≥0
2 operations
Combinatoric

Sequence fgxbahcl0w5q

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, more...

integer, monotonic, +, A000142

a(n)=n!
n≥0
2 operations
Combinatoric
a(n)=n*a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=∏[C(n, a(n-1))]
a(0)=1
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=lcm(n!, a(n-1))
a(0)=1
lcm(a,b)=least common multiple
n≥0
4 operations
Combinatoric
a(n)=n*lcm(a(n-1), a(n-2))
a(0)=1
a(1)=1
lcm(a,b)=least common multiple
n≥0
5 operations
Recursive

Sequence btuzaf21som1g

1, 1, 5, 4, 2, 305, 1, 8, 2, 1, 4, 6, 14, 3, 1, 13, 5, 1, 7, 23, 1, 16, 4, 1, 1, 1, 1, 1, 2, 17, 1, 3, 1, 1, 1, 29, 1, 6, 1, 3, 1, 1, 1, 1, 3, 2, 5, 1, 63, 2, more...

integer, non-monotonic, +, A019712

a(n)=contfrac[Tribonacci]
Tribonacci=1.8392... (Tribonacci)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence k0beacn12pjwc

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime
a(n)=Ω(floor(2^τ(n)))
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=τ(n*p(n))/2
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence gekakw1rgdk0j

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, lpf(n))
lpf(n)=least prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=gpf(lpf(n)²)
lpf(n)=least prime factor of n
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=exp(Λ(lpf(n)))
lpf(n)=least prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence qxbjop1xs1vff

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, gpf(n))
gpf(n)=greatest prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=lpf(gpf(n)²)
gpf(n)=greatest prime factor of n
lpf(n)=least prime factor of n
n≥1
4 operations
Prime
a(n)=exp(Λ(gpf(n)))
gpf(n)=greatest prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
a(n)=floor(sqrt(floor(gpf(n)²)))
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence r0cho0bzrtaxc

1, 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, 3, 12, 1, 2, 2, 1, 1, 15, 1, 1, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, more...

integer, non-monotonic, +, A074269

a(n)=contfrac[Backhouse]
Backhouse=1.456... (Backhouse)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence pqpjig3sq3dmp

1, 2, 8, 2, 4, 2, 7, 1, 2, 9, 1, 0, 0, 6, 2, 2, 6, 3, 6, 8, 7, 5, 3, 4, 2, 5, 6, 8, 8, 6, 9, 7, 9, 1, 7, 2, 7, 7, 6, 7, 6, 8, 8, 9, 2, 7, 3, 2, 5, 0, more...

integer, non-monotonic, +, A074962

a(n)=de[GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 5jttb1vusgdqd

1, 3, 1, 1, 5, 1, 1, 1, 3, 12, 4, 1, 271, 1, 1, 2, 7, 1, 35, 6, 1, 9, 4, 2, 1, 1, 2, 1, 1, 2, 15, 3, 1, 24, 2, 39, 1, 3, 1, 2, 2, 5, 1, 2, 2, 1, 3, 3, 1, 3, more...

integer, non-monotonic, +, A087501

a(n)=contfrac[GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence n55c2fon5zb

1, 3, 3, 2, 5, 8, 2, 2, 7, 5, 7, 3, 3, 2, 2, 0, 8, 8, 1, 7, 6, 5, 8, 2, 8, 7, 7, 6, 0, 7, 1, 0, 2, 7, 7, 4, 8, 8, 3, 8, 4, 5, 9, 4, 8, 9, 0, 4, 2, 4, more...

integer, non-monotonic, +, A083343

a(n)=de[B3]
B3=1.3325... (Mertens B3)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence sbudzke0snrw

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence ax4hv2yzrhzsf

1, 4, 5, 6, 0, 7, 4, 9, 4, 8, 5, 8, 2, 6, 8, 9, 6, 7, 1, 3, 9, 9, 5, 9, 5, 3, 5, 1, 1, 1, 6, 5, 4, 3, 5, 5, 7, 6, 5, 3, 1, 7, 8, 3, 7, 4, 8, 4, 7, 1, more...

integer, non-monotonic, +, A072508

a(n)=de[Backhouse]
Backhouse=1.456... (Backhouse)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence kbpwb2bxbeqcf

1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, more...

integer, strictly-monotonic, +, A018252

a(n)=composite(n)
composite(n)=nth composite number
n≥1
2 operations
Prime

Sequence wqwhagpwcscgc

1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, more...

integer, non-monotonic, +, A001622

a(n)=de[ϕ]
ϕ=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[sqrt(1+ϕ)]
ϕ=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*ϕ]
ϕ=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence e2tkwlio5ubrf

1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, more...

integer, non-monotonic, +, A112302

a(n)=de[QR]
QR=1.6616... (Quadratic Recurrence)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 5ikbvw505eq1k

1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, more...

integer, non-monotonic, +, A058265

a(n)=de[Tribonacci]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence dodcahtwj3i1g

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, more...

integer, non-monotonic, +, A003417

a(n)=contfrac[e]
e=2.7182... (Euler e)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[root(log(2), 2)]
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
5 operations
Power

Sequence wt1tbgmgmbojn

2, 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 1, 1, 90, 2, 1, 12, 1, 1, 1, 1, 5, 2, 6, 1, 6, 3, 1, 1, 2, 5, 2, 1, 2, 1, 1, 4, 1, 2, 2, more...

integer, non-monotonic, +, A002211

a(n)=contfrac[Khintchine]
Khintchine=2.6854... (Khintchine)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence ke34fnlkrp1fn

2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +, A007497

a(n)=σ(a(n-1))
a(0)=2
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence 3adjjx2yzeaxh

2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, more...

integer, non-monotonic, +, A033308

a(n)=de[CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 3obzf0s451s5l

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, more...

integer, strictly-monotonic, +, A000040

a(n)=p(n)
p(n)=nth prime
n≥1
2 operations
Prime
a(n)=gpf(floor(2*p(n)))
p(n)=nth prime
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence vwnaql1adya0i

2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, more...

integer, strictly-monotonic, +, A025003

a(n)=composite(a(n-1))
a(0)=2
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence n11quy32pwigm

2, 6, 1, 4, 9, 7, 2, 1, 2, 8, 4, 7, 6, 4, 2, 7, 8, 3, 7, 5, 5, 4, 2, 6, 8, 3, 8, 6, 0, 8, 6, 9, 5, 8, 5, 9, 0, 5, 1, 5, 6, 6, 6, 4, 8, 2, 6, 1, 1, 9, more...

integer, non-monotonic, +, A077761

a(n)=de[Mertens]
Mertens=0.2614... (Mertens)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 1w02asgugejep

2, 6, 8, 5, 4, 5, 2, 0, 0, 1, 0, 6, 5, 3, 0, 6, 4, 4, 5, 3, 0, 9, 7, 1, 4, 8, 3, 5, 4, 8, 1, 7, 9, 5, 6, 9, 3, 8, 2, 0, 3, 8, 2, 2, 9, 3, 9, 9, 4, 4, more...

integer, non-monotonic, +, A002210

a(n)=de[Khintchine]
Khintchine=2.6854... (Khintchine)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence idcen5jpa2zpc

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, more...

integer, non-monotonic, +, A001113

a(n)=de[e]
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[root(log(2), 2)]
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*e]
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence lbpnhcgrw2aym

3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, more...

integer, periodic-2, non-monotonic, +-, A174971

a(n)=-a(n-1)
a(0)=3
n≥0
2 operations
Recursive

Sequence xecz0440luoph

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, more...

integer, non-monotonic, +, A000796

a(n)=de[π]
π=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[acos(-1)]
de(a)=decimal expansion of a
n≥0
4 operations
Trigonometric
a(n)=de[exp(abs(log(π)))]
π=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*π]
π=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence nh2klcrdlym2h

3, 4, 0, 5, 3, 7, 3, 2, 9, 5, 5, 0, 9, 9, 9, 1, 4, 2, 8, 2, 6, 2, 7, 3, 1, 8, 4, 4, 3, 2, 9, 0, 2, 8, 9, 6, 7, 1, 0, 6, 0, 8, 2, 1, 7, 1, 2, 4, 3, 0, more...

integer, non-monotonic, +, A086230

a(n)=de[Pólya_D3]
Pólya_D3=0.3405... (Pólya random walk 3D)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence tlhn5ayr44tyj

3, 6, 10, 16, 25, 36, 51, 70, 94, 124, 161, 207, 262, 328, 407, 502, 614, 746, 900, 1080, 1288, 1529, 1808, 2127, 2494, 2915, 3393, 3939, 4556, 5253, 6040, 6930, 7931, 9056, 10322, 11729, 13308, 15067, 17031, 19208, 21637, 24340, 27330, 30633, 34296, 38344, 42820, 47742, 53166, more...

integer, strictly-monotonic, +, A025004

a(n)=composite(a(n-1))
a(0)=3
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence evxmhr5g4b0go

3, 7, 3, 9, 5, 5, 8, 1, 3, 6, 1, 9, 2, 0, 2, 2, 8, 8, 0, 5, 4, 7, 2, 8, 0, 5, 4, 3, 4, 6, 4, 1, 6, 4, 1, 5, 1, 1, 1, 6, 2, 9, 2, 4, 8, 6, 0, 6, 1, 5, more...

integer, non-monotonic, +, A005596

a(n)=de[Artins]
Artins=0.3739... (Artins)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence dc212nwugb3uj

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, more...

integer, non-monotonic, +, A001203

a(n)=contfrac[π]
π=3.1415... (Pi)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[acos(-1)]
contfrac(a)=continued fraction of a
n≥0
4 operations
Trigonometric
a(n)=contfrac[exp(abs(log(π)))]
π=3.1415... (Pi)
contfrac(a)=continued fraction of a
n≥0
5 operations
Power

Sequence u5xe2d4xly4jg

3, 9, 81, 6561, 43046721, 1853020188851841, more...

integer, strictly-monotonic, +, A011764

a(n)=a(n-1)²
a(0)=3
n≥0
2 operations
Recursive

Sequence zlrqnubjy5rce

4, 7, 17, 59, 277, 1787, 15299, 167449, 2269733, more...

integer, strictly-monotonic, +, A057450

a(n)=p(a(n-1))
a(0)=4
p(n)=nth prime
n≥0
2 operations
Prime
a(n)=or(1, p(a(n-1)))
a(0)=4
p(n)=nth prime
or(a,b)=bitwise or
n≥0
4 operations
Prime

Sequence qvvnqvlyivqen

5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, more...

integer, non-monotonic, +, A030178

a(n)=de[W1]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[log(W1)]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
3 operations
Power

Sequence tz5ztfhojkiqe

5, 6, 12, 28, 56, 120, 360, 1170, 3276, 10192, 24738, 61440, more...

integer, strictly-monotonic, +, A051572

a(n)=σ(a(n-1))
a(0)=5
σ(n)=divisor sum of n
n≥0
2 operations
Prime
a(n)=lcm(σ(a(n-1)), 2)
a(0)=5
σ(n)=divisor sum of n
lcm(a,b)=least common multiple
n≥0
4 operations
Prime

Sequence knd2jdmkw4tcn

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, more...

integer, non-monotonic, +, A001620

a(n)=de[γ]
γ=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[2*5*γ]
γ=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[(γ/sqrt(γ))²]
γ=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence zx3q14kvhp2fe

5, 9, 15, 24, 35, 50, 69, 93, 123, 160, 206, 261, 327, 406, 501, 612, 744, 898, 1078, 1286, 1527, 1806, 2125, 2492, 2913, 3390, 3936, 4553, 5250, 6036, 6926, 7926, 9051, 10316, 11723, 13302, 15060, 17022, 19198, 21627, 24328, 27317, 30619, 34281, 38326, 42802, 47722, 53143, more...

integer, strictly-monotonic, +, A025005

a(n)=composite(a(n-1))
a(0)=5
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence jr31e1aueykgh

5, 25, 625, 390625, 152587890625, more...

integer, strictly-monotonic, +, A176594

a(n)=a(n-1)²
a(0)=5
n≥0
2 operations
Recursive

Sequence a5bupax2uvirg

6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, more...

integer, non-monotonic, +, A005597

a(n)=de[TwinPrime]
TwinPrime=0.6601... (Twin Prime)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence wetnjc3kfq5te

9, 1, 5, 9, 6, 5, 5, 9, 4, 1, 7, 7, 2, 1, 9, 0, 1, 5, 0, 5, 4, 6, 0, 3, 5, 1, 4, 9, 3, 2, 3, 8, 4, 1, 1, 0, 7, 7, 4, 1, 4, 9, 3, 7, 4, 2, 8, 1, 6, 7, more...

integer, non-monotonic, +, A006752

a(n)=de[G]
G=0.9159... (Catalans)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence gbdhxx2malh5m

-50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, more...

integer, strictly-monotonic, -, A256958

a(n)=n-50
n≥0
3 operations
Arithmetic

Sequence d20l2vp4fwhpl

-40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, more...

integer, strictly-monotonic, +-, A023482

a(n)=n-40
n≥0
3 operations
Arithmetic

Sequence okhjd5fknsksf

-39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, more...

integer, strictly-monotonic, +-, A023481

a(n)=n-39
n≥0
3 operations
Arithmetic

Sequence bkenn4041bycl

-38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, more...

integer, strictly-monotonic, +-, A023480

a(n)=n-38
n≥0
3 operations
Arithmetic

[0] [1] [2] [3] [4] ... [99]