Sequence Database

A database with 899757 machine generated integer and decimal sequences.

Displaying result 0-99 of total 862520. [0] [1] [2] [3] [4] ... [8625]

Sequence 42rfwqvyrnhlj

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, more...

integer, strictly-monotonic, +, A001477

a(n)=n
n≥0
1 operation
Variable
a(n)=1+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=n%50
n≥0
3 operations
Divisibility
a(n)=(2-1)*n
n≥0
5 operations
Arithmetic
a(n)=n^(2-1)
n≥0
5 operations
Power
a(n)=C(n, a(n-1))
a(0)=0
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=n-λ(n²)
λ(n)=Liouville's function
n≥1
5 operations
Prime

Sequence dgbv3olkf3toh

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, more...

integer, strictly-monotonic, -, A001489

a(n)=-n
n≥0
2 operations
Arithmetic
a(n)=a(n-1)-1
a(0)=0
n≥0
3 operations
Recursive
a(n)=(1-n)%n
n≥1
5 operations
Divisibility
a(n)=-sqrt(n*n)
n≥0
5 operations
Power
a(n)=λ(n²)-n
λ(n)=Liouville's function
n≥1
5 operations
Prime
a(n)=-C(n, -a(n-1))
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence cju2uijt3qnml

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0, 1.9459101491, 0.6931471806, 1.0986122887, 0, 2.3978952728, 0, 2.5649493575, 0, 0, 0.6931471806, 2.8332133441, 0, 2.9444389792, 0, 0, 0, 3.1354942159, 0, 1.6094379124, more...

decimal, non-monotonic, +

a(n)=Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
2 operations
Prime

Sequence shr3uhqxjwpwk

0, 0.6931471806, 1.0986122887, 1.3862943611, 1.6094379124, 1.7917594692, 1.9459101491, 2.0794415417, 2.1972245773, 2.302585093, 2.3978952728, 2.4849066498, 2.5649493575, 2.6390573296, 2.7080502011, 2.7725887222, 2.8332133441, 2.8903717579, 2.9444389792, 2.9957322736, 3.0445224377, 3.0910424534, 3.1354942159, 3.1780538303, 3.2188758249, more...

decimal, strictly-monotonic, +

a(n)=log(n)
n≥1
2 operations
Power
a(n)=log(lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
n≥1
5 operations
Prime

Sequence 2exstkxj4qg5b

0, 0.8414709848, 0.9092974268, 0.1411200081, -0.7568024953, -0.9589242747, -0.2794154982, 0.6569865987, 0.9893582466, 0.4121184852, -0.5440211109, -0.9999902066, -0.536572918, 0.4201670368, 0.9906073557, 0.6502878402, -0.2879033167, -0.9613974919, -0.7509872468, 0.1498772097, 0.9129452507, 0.8366556385, -0.0088513093, -0.8462204042, -0.905578362, more...

decimal, non-monotonic, +-

a(n)=sin(n)
n≥0
2 operations
Trigonometric

Sequence 4qkdjflcmk0wi

0, 1, 0.5403023059, 0.8575532158, 0.6542897905, 0.7934803587, 0.7013687736, 0.7639596829, 0.722102425, 0.7504177618, 0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, 0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, 0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, 0.7390182624, 0.7391301765, 0.7390547907, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=0
n≥0
2 operations
Trigonometric

Sequence ub3tktmvdthvj

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max factorization terms
n≥1
2 operations
Prime

Sequence tedqmvzugfstb

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, more...

integer, non-monotonic, +, A002487

a(n)=stern(n)
stern(n)=Stern-Brocot sequence
n≥0
2 operations
Recursive
a(n)=stern(lcm(n, 2))
lcm(a,b)=least common multiple
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility
a(n)=stern(sqrt(n*n))
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Power
a(n)=Ω(2^stern(n))
stern(n)=Stern-Brocot sequence
Ω(n)=max factorization terms
n≥0
5 operations
Prime

Sequence rgxae4yi3xabd

0, 1, 1.4142135624, 1.7320508076, 2, 2.2360679775, 2.4494897428, 2.6457513111, 2.8284271247, 3, 3.1622776602, 3.3166247904, 3.4641016151, 3.6055512755, 3.7416573868, 3.8729833462, 4, 4.1231056256, 4.2426406871, 4.3588989435, 4.472135955, 4.582575695, 4.6904157598, 4.7958315233, 4.8989794856, more...

decimal, strictly-monotonic, +

a(n)=sqrt(n)
n≥0
2 operations
Power
a(n)=sqrt(n%p(P(n)))
P(n)=Partition numbers
p(n)=nth prime
n≥0
6 operations
Prime

Sequence vtsqmvu022mjo

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, more...

integer, strictly-monotonic, +, A000217

a(n)=∑(n)
∑(a)=partial sums of a
n≥0
2 operations
Variable
a(n)=n+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=-∑(-n)
∑(a)=partial sums of a
n≥0
4 operations
Arithmetic
a(n)=∑(gcd(n, n²))
gcd(a,b)=greatest common divisor
∑(a)=partial sums of a
n≥0
5 operations
Divisibility
a(n)=∑(sqrt(n*n))
∑(a)=partial sums of a
n≥0
5 operations
Power
a(n)=∑(C(n, a(n-1)))
a(0)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=n%p(p(n))+a(n-1)
a(0)=0
p(n)=nth prime
n≥0
7 operations
Prime

Sequence arfihgdbhmbdh

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, more...

integer, strictly-monotonic, +, A000290

a(n)=n²
n≥0
2 operations
Arithmetic
a(n)=lcm(n, n²)
lcm(a,b)=least common multiple
n≥0
4 operations
Divisibility
a(n)=n^(1+1)
n≥0
5 operations
Power
a(n)=Δ(n²)+a(n-1)
a(0)=0
Δ(a)=differences of a
n≥0
5 operations
Recursive
a(n)=C(n, sqrt(a(n-1)))²
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=n*n%p(P(n))
P(n)=Partition numbers
p(n)=nth prime
n≥0
7 operations
Prime

Sequence tmed5fpgtxtqj

0, 1.5574077247, -2.1850398633, -0.1425465431, 1.1578212823, -3.3805150062, -0.2910061914, 0.8714479827, -6.7997114552, -0.4523156594, 0.6483608275, -225.9508464542, -0.6358599287, 0.4630211329, 7.2446066161, -0.8559934009, 0.300632242, 3.4939156455, -1.1373137123, 0.1515894706, 2.2371609442, -1.5274985276, 0.008851656, 1.5881530834, -2.1348966977, more...

decimal, non-monotonic, +-

a(n)=tan(n)
n≥0
2 operations
Trigonometric

Sequence 3bmepyefoqlfp

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence 5as1ecrpxvlwn

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime

Sequence 1hqdr2ehglqdd

1, 0.5403023059, -0.4161468365, -0.9899924966, -0.6536436209, 0.2836621855, 0.9601702867, 0.7539022543, -0.1455000338, -0.9111302619, -0.8390715291, 0.004425698, 0.8438539587, 0.9074467815, 0.1367372182, -0.7596879129, -0.9576594803, -0.2751633381, 0.6603167082, 0.9887046182, 0.4080820618, -0.5477292602, -0.9999608264, -0.5328330203, 0.4241790073, more...

decimal, non-monotonic, +-

a(n)=cos(n)
n≥0
2 operations
Trigonometric

Sequence cqtf2qnu2atkg

1, 0.5403023059, 0.8575532158, 0.6542897905, 0.7934803587, 0.7013687736, 0.7639596829, 0.722102425, 0.7504177618, 0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, 0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, 0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, 0.7390182624, 0.7391301765, 0.7390547907, 0.7391055719, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence ookxsojaep4fc

1, 0.8414709848, 0.7456241417, 0.6784304774, 0.627571832, 0.5871809966, 0.5540163908, 0.5261070755, 0.5021706763, 0.4813293553, 0.4629578985, 0.4465965934, 0.4318984333, 0.418595661, 0.406477765, 0.395376547, 0.3851557131, 0.3757034468, 0.3669270011, 0.3587486881, 0.351102859, 0.3439335943, 0.3371929169, 0.3308393911, 0.3248370136, more...

decimal, strictly-monotonic, +

a(n)=sin(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence 1r0kz5stvechb

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric
a(n)=pt(∑(μ(abs(a(n-1)))))
a(0)=2
μ(n)=Möbius function
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence apkm4drbhxu1k

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence 2q1rtmulmg2m

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence zu20zaw4iq45h

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525, more...

integer, monotonic, +, A000041

a(n)=P(n)
P(n)=Partition numbers
n≥0
2 operations
Combinatoric
a(n)=P(n%p(1+n))
p(n)=nth prime
P(n)=Partition numbers
n≥0
7 operations
Prime

Sequence itkew3s5ydcwb

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, more...

integer, monotonic, +, A000108

a(n)=catalan(n)
n≥0
2 operations
Combinatoric

Sequence co5f4i13hchai

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, more...

integer, monotonic, +, A000142

a(n)=n*a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=n!
n≥0
2 operations
Combinatoric
a(n)=lcm(n, n*a(n-1))
a(0)=1
lcm(a,b)=least common multiple
n≥0
5 operations
Divisibility
a(n)=n^(2-1)*a(n-1)
a(0)=1
n≥0
7 operations
Power
a(n)=Ω(2^n)*a(n-1)
a(0)=1
Ω(n)=max factorization terms
n≥0
6 operations
Prime

Sequence xbfbc31orn4v

1, 1.5574077247, 74.6859333988, -0.8635188549, -1.1698563551, -2.3590377342, 0.994329619, 1.5381535569, 30.623773508, -1.0136018143, -1.6050123678, 29.2146517707, 1.3701487455, 4.9167999905, -4.8237768261, 8.9404801577, -0.5260857889, -0.580671062, -0.6561279832, -0.7699191877, -0.9695115437, -1.4576737055, -8.8022251344, 0.7177699669, 0.8731301134, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence okvxpoucbqnai

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime

Sequence 1ouwsby2jnaal

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime

Sequence f01q4ekd0c3wl

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime

Sequence 3sjiabcajvvtd

1, 2.7182818285, 7.3890560989, 20.0855369232, 54.5981500331, 148.4131591026, 403.4287934927, 1096.6331584285, 2980.9579870417, 8103.0839275754, 22026.4657948067, 59874.1417151978, 162754.7914190039, 442413.3920089205, 1202604.2841647768, 3269017.3724721107, 8886110.520507872, 24154952.7535753, 65659969.13733051, 178482300.96318725, 485165195.4097903, 1318815734.4832146, 3584912846.131592, 9744803446.248903, 26489122129.84347, more...

decimal, strictly-monotonic, +

a(n)=exp(n)
n≥0
2 operations
Power
a(n)=exp(C(n, log(a(n-1))))
a(0)=1
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=exp(n%p(P(n)))
P(n)=Partition numbers
p(n)=nth prime
n≥0
6 operations
Prime

Sequence 4rlzjihdzbx0j

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence ruijxnqgy4eab

1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, more...

integer, strictly-monotonic, +, A018252

a(n)=composite(n)
composite(n)=nth composite number
n≥1
2 operations
Prime

Sequence rgmqt44o3fqsk

1.6449340668, 1.2020569032, 1.0823232337, 1.0369277551, 1.017343062, 1.0083492774, 1.0040773562, 1.0020083928, 1.0009945751, 1.0004941886, 1.0002460866, 1.0001227133, 1.0000612481, 1.0000305882, 1.0000152823, 1.0000076372, 1.0000038173, 1.0000019082, 1.000000954, 1, 1, 1, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=ζ(n)
ζ(n)=Riemann Zeta
n≥0
2 operations
Prime

Sequence 4iryxtunrx2ge

2, -2.1850398633, 1.4179285755, 6.4905666027, 0.2104062939, 0.2135672329, 0.2168745891, 0.2203400038, 0.2239764545, 0.2277984593, 0.2318223191, 0.2360664093, 0.2405515319, 0.2453013428, 0.2503428748, 0.2557071833, 0.2614301483, 0.2675534819, 0.2741260035, 0.2812052743, 0.2888597143, 0.29717138, 0.3062396633, 0.3161862901, 0.3271621997, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence ojnucwmtgnshp

2, -0.4161468365, 0.9146533259, 0.6100652997, 0.819610608, 0.6825058579, 0.7759946131, 0.713724734, 0.7559287136, 0.7276347923, 0.7467496017, 0.7339005972, 0.7425675503, 0.7367348584, 0.7406662639, 0.7380191412, 0.7398027782, 0.7386015286, 0.7394108086, 0.7388657151, 0.7392329181, 0.7389855755, 0.7391521928, 0.7390399594, 0.7391155621, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence jqii0dprii4oh

2, 0.9092974268, 0.7890723436, 0.7097000402, 0.6516062636, 0.6064643449, 0.5699658928, 0.5396033335, 0.513795727, 0.4914864221, 0.4719368868, 0.4546123016, 0.4391140265, 0.425137712, 0.4124462388, 0.4008516296, 0.3902026038, 0.3803757974, 0.371269433, 0.3627986674, 0.3548921142, 0.3474892044, 0.3405381563, 0.3339943931, 0.3278192983, more...

decimal, strictly-monotonic, +

a(n)=sin(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence pgkjursh1b3nl

2, 1.4142135624, 1.189207115, 1.0905077327, 1.0442737824, 1.0218971487, 1.0108892861, 1.0054299011, 1.0027112751, 1.0013547199, 1.0006771307, 1.0003385081, 1.0001692397, 1.0000846163, 1.0000423072, 1.0000211534, 1.0000105766, 1.0000052883, 1.0000026442, 1.0000013221, 1.000000661, 1, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=sqrt(a(n-1))
a(0)=2
n≥0
2 operations
Power

Sequence tilu3ymww05gg

2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +, A007497

a(n)=σ(a(n-1))
a(0)=2
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence g0520hmlubygj

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, more...

integer, strictly-monotonic, +, A000040

a(n)=p(n)
p(n)=nth prime
n≥1
2 operations
Prime

Sequence xojyybe3trmub

2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, more...

integer, strictly-monotonic, +, A025003

a(n)=composite(a(n-1))
a(0)=2
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence hfwl31yaewfw

2, 4, 16, 256, 65536, 4294967296, more...

integer, strictly-monotonic, +, A001146

a(n)=a(n-1)²
a(0)=2
n≥0
2 operations
Recursive
a(n)=a(n-1)^(1+1)
a(0)=2
n≥0
5 operations
Power
a(n)=lcm(a(n-1), 2)²
a(0)=2
lcm(a,b)=least common multiple
n≥0
4 operations
Divisibility
a(n)=(λ(n)*a(n-1))²
a(0)=2
λ(n)=Liouville's function
n≥0
5 operations
Prime
a(n)=lcm(pt(n), a(n-1)²)
a(0)=2
pt(n)=Pascals triangle by rows
lcm(a,b)=least common multiple
n≥0
5 operations
Combinatoric

Sequence cipt1qehehon

3, -0.9899924966, 0.5486961336, 0.8532053115, 0.6575716719, 0.7914787497, 0.7027941118, 0.7630391878, 0.7227389048, 0.7499969197, 0.7316909685, 0.744045682, 0.7357345683, 0.7413379612, 0.7375657269, 0.7401077701, 0.7383958864, 0.7395492426, 0.738772424, 0.7392957418, 0.7389432484, 0.7391807011, 0.7390207542, 0.7391284982, 0.7390559213, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence f5d3psoseblzm

3, -0.1425465431, -0.1435199478, -0.1445135418, -0.1455280322, -0.1465641612, -0.1476227084, -0.1487044935, -0.1498103785, -0.1509412708, -0.1520981265, -0.1532819535, -0.1544938154, -0.1557348355, -0.1570062008, -0.1583091672, -0.1596450646, -0.1610153025, -0.1624213762, -0.1638648737, -0.1653474832, -0.1668710016, -0.1684373433, -0.1700485502, -0.1717068034, more...

decimal, strictly-monotonic, +-

a(n)=tan(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence gleh5nbimgvvn

3, 0.1411200081, 0.1406520768, 0.1401887818, 0.1397300469, 0.1392757977, 0.1388259614, 0.1383804669, 0.1379392448, 0.137502227, 0.1370693472, 0.1366405402, 0.1362157427, 0.1357948923, 0.1353779282, 0.134964791, 0.1345554222, 0.134149765, 0.1337477635, 0.133349363, 0.13295451, 0.1325631521, 0.1321752379, 0.1317907173, 0.1314095408, more...

decimal, strictly-monotonic, +

a(n)=sin(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence wljobzm1aopbp

3, 1.7320508076, 1.316074013, 1.1472026904, 1.0710754831, 1.0349277671, 1.0173139963, 1.0086198473, 1.0043006757, 1.0021480308, 1.0010734393, 1.0005365757, 1.0002682519, 1.0001341169, 1.0000670562, 1.0000335275, 1.0000167636, 1.0000083818, 1.0000041909, 1.0000020954, 1.0000010477, 1.0000005239, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=sqrt(a(n-1))
a(0)=3
n≥0
2 operations
Power

Sequence iejmrcau0ouom

3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +

a(n)=σ(a(n-1))
a(0)=3
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence bu00c0ai1qhqh

3, 5, 11, 31, 127, 709, 5381, 52711, 648391, more...

integer, strictly-monotonic, +

a(n)=p(a(n-1))
a(0)=3
p(n)=nth prime
n≥0
2 operations
Prime

Sequence mbnayqzaowaup

3, 6, 10, 16, 25, 36, 51, 70, 94, 124, 161, 207, 262, 328, 407, 502, 614, 746, 900, 1080, 1288, 1529, 1808, 2127, 2494, 2915, 3393, 3939, 4556, 5253, 6040, 6930, 7931, 9056, 10322, 11729, 13308, 15067, 17031, 19208, 21637, 24340, 27330, 30633, 34296, 38344, 42820, 47742, 53166, more...

integer, strictly-monotonic, +, A025004

a(n)=composite(a(n-1))
a(0)=3
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence lpylbs2ffxw3k

3, 9, 81, 6561, 43046721, more...

integer, strictly-monotonic, +, A011764

a(n)=a(n-1)²
a(0)=3
n≥0
2 operations
Recursive
a(n)=a(n-1)^(1+1)
a(0)=3
n≥0
5 operations
Power
a(n)=lcm(a(n-1), 3)²
a(0)=3
lcm(a,b)=least common multiple
n≥0
4 operations
Divisibility
a(n)=9^Ω(a(n-1))
a(0)=3
Ω(n)=max factorization terms
n≥0
4 operations
Prime

Sequence wzn14sh15egsc

4, -0.7568024953, -0.6866002607, -0.6339114733, -0.5923008211, -0.5582713944, -0.5297208351, -0.5052924561, -0.4840633697, -0.4653795417, -0.4487620117, -0.4338504581, -0.4203676381, -0.4080961118, -0.396862511, -0.3865266117, -0.3769735599, -0.3681082271, -0.3598510343, -0.3521348129, -0.3449024095, -0.3381048356, -0.3316998193, -0.3256506605, -0.3199253171, more...

decimal, non-monotonic, +-

a(n)=sin(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence wgjphbpzpi4jd

4, -0.6536436209, 0.7938734492, 0.7010885251, 0.7641404872, 0.7219773353, 0.7505004357, 0.7313476609, 0.7442750118, 0.7355792307, 0.7414422043, 0.7374953302, 0.7401551092, 0.7383639616, 0.7395707309, 0.7387579417, 0.7393054938, 0.7389366777, 0.7391851265, 0.7390177729, 0.7391305063, 0.7390545686, 0.7391057216, 0.7390712645, 0.7390944753, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence j2minw3fxn4xb

4, 1.1578212823, 2.2822044502, -1.1601196382, -2.2965489606, 1.1270177622, 2.1034705609, -1.6963098104, 7.9253896577, -13.9802177389, -6.3190857462, -0.0359158703, -0.0359313215, -0.0359467927, -0.0359622838, -0.035977795, -0.0359933263, -0.0360088777, -0.0360244493, -0.0360400411, -0.0360556532, -0.0360712855, -0.0360869382, -0.0361026113, -0.0361183049, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence 5ftd13eri3ehl

4, 2, 1.4142135624, 1.189207115, 1.0905077327, 1.0442737824, 1.0218971487, 1.0108892861, 1.0054299011, 1.0027112751, 1.0013547199, 1.0006771307, 1.0003385081, 1.0001692397, 1.0000846163, 1.0000423072, 1.0000211534, 1.0000105766, 1.0000052883, 1.0000026442, 1.0000013221, 1.000000661, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=sqrt(a(n-1))
a(0)=4
n≥0
2 operations
Power

Sequence ayvitaowqzc3k

4, 5, 7, 15, 176, more...

integer, strictly-monotonic, +, A072215

a(n)=P(a(n-1))
a(0)=4
P(n)=Partition numbers
n≥0
2 operations
Combinatoric
a(n)=P(Ω(2^a(n-1)))
a(0)=4
Ω(n)=max factorization terms
P(n)=Partition numbers
n≥0
5 operations
Prime

Sequence jzj0xqhwtvxnn

4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +

a(n)=σ(a(n-1))
a(0)=4
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence zb4ixodewtb2j

4, 7, 17, 59, 277, 1787, 15299, 167449, 2269733, more...

integer, strictly-monotonic, +, A057450

a(n)=p(a(n-1))
a(0)=4
p(n)=nth prime
n≥0
2 operations
Prime

Sequence u5twwkxrj3hgo

4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, more...

integer, strictly-monotonic, +

a(n)=composite(a(n-1))
a(0)=4
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence vusq2s4v30qyc

4, 16, 256, 65536, 4294967296, more...

integer, strictly-monotonic, +

a(n)=a(n-1)²
a(0)=4
n≥0
2 operations
Recursive
a(n)=a(n-1)^(1+1)
a(0)=4
n≥0
5 operations
Power
a(n)=lcm(a(n-1), 2)²
a(0)=4
lcm(a,b)=least common multiple
n≥0
4 operations
Divisibility
a(n)=lcm(pt(n), a(n-1)²)
a(0)=4
pt(n)=Pascals triangle by rows
lcm(a,b)=least common multiple
n≥0
5 operations
Combinatoric
a(n)=(λ(n)*a(n-1))²
a(0)=4
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence lvz2na1niytjn

5, -3.3805150062, -0.2435748198, -0.2485089388, -0.2537542469, -0.2593447991, -0.2653200961, -0.271726255, -0.2786175037, -0.2860581081, -0.2941248901, -0.3029105609, -0.3125282017, -0.3231173902, -0.334852733, -0.3479560093, -0.3627138747, -0.3795044015, -0.3988381736, -0.4214243829, -0.4482820782, -0.4809380349, -0.5218037029, -0.5749593143, -0.6479877239, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence 04rth1zuoysyk

5, -0.9589242747, -0.8185741445, -0.7301723379, -0.6669980469, -0.6186301966, -0.5799197623, -0.5479568192, -0.5209442774, -0.4976993782, -0.4774052861, -0.4594761256, -0.4434786271, -0.4290841753, -0.4160381744, -0.4041397633, -0.393227969, -0.383172007, -0.3738643292, -0.3652155428, -0.3571506298, -0.3496060903, -0.3425277529, -0.335869075, -0.329589809, more...

decimal, non-monotonic, +-

a(n)=sin(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence n501uhtzii0cn

5, 0.2836621855, 0.9600369303, 0.5734897327, 0.840012681, 0.667453383, 0.785400536, 0.7071051035, 0.760245687, 0.7246667299, 0.7487203836, 0.7325605057, 0.743464438, 0.7361281031, 0.7410737901, 0.7377440895, 0.7399878116, 0.7384767772, 0.7394947924, 0.7388091199, 0.739271031, 0.7389598975, 0.7391694877, 0.7390283084, 0.7391234099, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence dy55hjjdbdsfl

5, 2.2360679775, 1.4953487812, 1.222844545, 1.105823017, 1.0515811985, 1.0254663322, 1.0126531154, 1.0063066707, 1.0031483792, 1.0015729525, 1.0007861672, 1.0003930064, 1.0001964839, 1.0000982371, 1.0000491174, 1.0000245584, 1.0000122791, 1.0000061395, 1.0000030698, 1.0000015349, 1.0000007674, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=sqrt(a(n-1))
a(0)=5
n≥0
2 operations
Power

Sequence 0xuugesife4dh

5, 6, 12, 28, 56, 120, 360, 1170, 3276, 10192, 24738, 61440, more...

integer, strictly-monotonic, +, A051572

a(n)=σ(a(n-1))
a(0)=5
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence 4hswfjdgkyzcc

5, 9, 15, 24, 35, 50, 69, 93, 123, 160, 206, 261, 327, 406, 501, 612, 744, 898, 1078, 1286, 1527, 1806, 2125, 2492, 2913, 3390, 3936, 4553, 5250, 6036, 6926, 7926, 9051, 10316, 11723, 13302, 15060, 17022, 19198, 21627, 24328, 27317, 30619, 34281, 38326, 42802, 47722, 53143, more...

integer, strictly-monotonic, +, A025005

a(n)=composite(a(n-1))
a(0)=5
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence 2o2bxc0brjsgp

5, 11, 31, 127, 709, 5381, 52711, 648391, more...

integer, strictly-monotonic, +

a(n)=p(a(n-1))
a(0)=5
p(n)=nth prime
n≥0
2 operations
Prime

Sequence j0zl4idyr4khi

14.1347251417, 21.0220396388, 25.0108575801, 30.4248761259, 32.9350615877, 37.5861781588, 40.9187190121, 43.3270732809, 48.0051508812, 49.7738324777, 52.9703214777, 56.4462476971, 59.3470440026, 60.8317785246, 65.1125440481, 67.0798105295, 69.5464017112, 72.0671576745, 75.7046906991, 77.1448400689, 79.3373750202, 82.9103808541, 84.7354929805, 87.4252746131, 88.8091112076, more...

decimal, strictly-monotonic, +

a(n)=Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
2 operations
Prime

Sequence ikl4uyt21biag

-99, -98, -97, -96, -95, -94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, more...

integer, strictly-monotonic, -

a(n)=n-99
n≥0
3 operations
Arithmetic

Sequence kefdagazmgjvm

-98, -97, -96, -95, -94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, more...

integer, strictly-monotonic, -

a(n)=n-98
n≥0
3 operations
Arithmetic

Sequence px3oxhxobkosb

-97, -96, -95, -94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, more...

integer, strictly-monotonic, -

a(n)=n-97
n≥0
3 operations
Arithmetic

Sequence i433ic2ut114d

-96, -95, -94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, more...

integer, strictly-monotonic, -

a(n)=n-96
n≥0
3 operations
Arithmetic

Sequence i4y4ximneyamj

-95, -94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, more...

integer, strictly-monotonic, -

a(n)=n-95
n≥0
3 operations
Arithmetic

Sequence 5kaivzz523seb

-94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, more...

integer, strictly-monotonic, -

a(n)=n-94
n≥0
3 operations
Arithmetic

Sequence wok4c1c2phxjk

-93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, more...

integer, strictly-monotonic, -

a(n)=n-93
n≥0
3 operations
Arithmetic

Sequence ndkr1z2bwk4k

-92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, more...

integer, strictly-monotonic, -

a(n)=n-92
n≥0
3 operations
Arithmetic

Sequence tcydknqlkfb4c

-91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, more...

integer, strictly-monotonic, -

a(n)=n-91
n≥0
3 operations
Arithmetic

Sequence kmgamj3l42rx

-90, -89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, more...

integer, strictly-monotonic, -

a(n)=n-90
n≥0
3 operations
Arithmetic

Sequence 1vyayb21r4nbo

-89, -88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, more...

integer, strictly-monotonic, -

a(n)=n-89
n≥0
3 operations
Arithmetic

Sequence 21wd12qxlpbhh

-88, -87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, more...

integer, strictly-monotonic, -

a(n)=n-88
n≥0
3 operations
Arithmetic

Sequence g2swviphfqcb

-87, -86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, more...

integer, strictly-monotonic, -

a(n)=n-87
n≥0
3 operations
Arithmetic

Sequence vcfoojtevz1ei

-86, -85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, more...

integer, strictly-monotonic, -

a(n)=n-86
n≥0
3 operations
Arithmetic

Sequence zcw1inwnhtxce

-85, -84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, more...

integer, strictly-monotonic, -

a(n)=n-85
n≥0
3 operations
Arithmetic

Sequence qhq3axmq1kckp

-84, -83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, more...

integer, strictly-monotonic, -

a(n)=n-84
n≥0
3 operations
Arithmetic

Sequence ami1fkuvrr0wf

-83, -82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, more...

integer, strictly-monotonic, -

a(n)=n-83
n≥0
3 operations
Arithmetic

Sequence dej1m5nu5k3vm

-82, -81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, more...

integer, strictly-monotonic, -

a(n)=n-82
n≥0
3 operations
Arithmetic

Sequence alhqki0movgjm

-81, -80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, more...

integer, strictly-monotonic, -

a(n)=n-81
n≥0
3 operations
Arithmetic
a(n)=n-3^4
n≥0
5 operations
Power

Sequence vdd3lco20ehmc

-80, -79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, more...

integer, strictly-monotonic, -

a(n)=n-80
n≥0
3 operations
Arithmetic

Sequence 1wgz1pj1rfjvp

-79, -78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, more...

integer, strictly-monotonic, -

a(n)=n-79
n≥0
3 operations
Arithmetic

Sequence 5ppzpdvy12s1n

-78, -77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, more...

integer, strictly-monotonic, -

a(n)=n-78
n≥0
3 operations
Arithmetic

Sequence 31okgwulmj5kb

-77, -76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, more...

integer, strictly-monotonic, -

a(n)=n-77
n≥0
3 operations
Arithmetic

Sequence atanqnkghyycf

-76, -75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, more...

integer, strictly-monotonic, -

a(n)=n-76
n≥0
3 operations
Arithmetic

Sequence j53qzpglfv2ue

-75, -74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, more...

integer, strictly-monotonic, -

a(n)=n-75
n≥0
3 operations
Arithmetic

Sequence pdz44ykbdhrwm

-74, -73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, more...

integer, strictly-monotonic, -

a(n)=n-74
n≥0
3 operations
Arithmetic

Sequence mrcnljjbpbfcf

-73, -72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, more...

integer, strictly-monotonic, -

a(n)=n-73
n≥0
3 operations
Arithmetic

Sequence 3tg2xcgfmnjjb

-72, -71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, more...

integer, strictly-monotonic, -

a(n)=n-72
n≥0
3 operations
Arithmetic

Sequence dwl0xbwnbqlrd

-71, -70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, more...

integer, strictly-monotonic, -

a(n)=n-71
n≥0
3 operations
Arithmetic

Sequence wpajowlg1wznb

-70, -69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, more...

integer, strictly-monotonic, -

a(n)=n-70
n≥0
3 operations
Arithmetic

Sequence fivlatjmqq1ao

-69, -68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, more...

integer, strictly-monotonic, -

a(n)=n-69
n≥0
3 operations
Arithmetic

Sequence dvhfkshhvte2g

-68, -67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, more...

integer, strictly-monotonic, -

a(n)=n-68
n≥0
3 operations
Arithmetic

Sequence 4fkiru5tvwwvo

-67, -66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, more...

integer, strictly-monotonic, -

a(n)=n-67
n≥0
3 operations
Arithmetic

Sequence fx52nhsjcbmkl

-66, -65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, more...

integer, strictly-monotonic, -

a(n)=n-66
n≥0
3 operations
Arithmetic

Sequence tpvztdvjoknhl

-65, -64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, more...

integer, strictly-monotonic, -

a(n)=n-65
n≥0
3 operations
Arithmetic

Sequence rahwt5kgrmkke

-64, -63, -62, -61, -60, -59, -58, -57, -56, -55, -54, -53, -52, -51, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, more...

integer, strictly-monotonic, -

a(n)=n-64
n≥0
3 operations
Arithmetic
a(n)=n-2^6
n≥0
5 operations
Power

[0] [1] [2] [3] [4] ... [8625]