Sequence Database

A database with 951925 machine generated integer and decimal sequences.

Displaying result 0-99 of total 582735. [0] [1] [2] [3] [4] ... [5827]

Sequence cju2uijt3qnml

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0, 1.9459101491, 0.6931471806, 1.0986122887, 0, 2.3978952728, 0, 2.5649493575, 0, 0, 0.6931471806, 2.8332133441, 0, 2.9444389792, 0, 0, 0, 3.1354942159, 0, 1.6094379124, more...

decimal, non-monotonic, +

a(n)=Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
2 operations
Prime

Sequence 2exstkxj4qg5b

0, 0.8414709848, 0.9092974268, 0.1411200081, -0.7568024953, -0.9589242747, -0.2794154982, 0.6569865987, 0.9893582466, 0.4121184852, -0.5440211109, -0.9999902066, -0.536572918, 0.4201670368, 0.9906073557, 0.6502878402, -0.2879033167, -0.9613974919, -0.7509872468, 0.1498772097, 0.9129452507, 0.8366556385, -0.0088513093, -0.8462204042, -0.905578362, more...

decimal, non-monotonic, +-

a(n)=sin(n)
n≥0
2 operations
Trigonometric
a(n)=sin(∑(a(n-1)!))
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=sin(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence 4qkdjflcmk0wi

0, 1, 0.5403023059, 0.8575532158, 0.6542897905, 0.7934803587, 0.7013687736, 0.7639596829, 0.722102425, 0.7504177618, 0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, 0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, 0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, 0.7390182624, 0.7391301765, 0.7390547907, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=0
n≥0
2 operations
Trigonometric

Sequence ub3tktmvdthvj

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max factorization terms
n≥1
2 operations
Prime

Sequence tedqmvzugfstb

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, more...

integer, non-monotonic, +, A002487

a(n)=stern(n)
stern(n)=Stern-Brocot sequence
n≥0
2 operations
Recursive
a(n)=stern(lcm(n, 2))
lcm(a,b)=least common multiple
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility
a(n)=stern(sqrt(n*n))
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Power
a(n)=stern(∑(a(n-1)!))
a(0)=0
∑(a)=partial sums of a
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Combinatoric
a(n)=stern(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Prime

Sequence tmed5fpgtxtqj

0, 1.5574077247, -2.1850398633, -0.1425465431, 1.1578212823, -3.3805150062, -0.2910061914, 0.8714479827, -6.7997114552, -0.4523156594, 0.6483608275, -225.9508464542, -0.6358599287, 0.4630211329, 7.2446066161, -0.8559934009, 0.300632242, 3.4939156455, -1.1373137123, 0.1515894706, 2.2371609442, -1.5274985276, 0.008851656, 1.5881530834, -2.1348966977, more...

decimal, non-monotonic, +-

a(n)=tan(n)
n≥0
2 operations
Trigonometric
a(n)=tan(∑(a(n-1)!))
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=tan(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence 3bmepyefoqlfp

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence 5as1ecrpxvlwn

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime

Sequence dqjfnt5tdtf1p

1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, more...

integer, periodic-2, non-monotonic, +-, A033999

a(n)=-a(n-1)
a(0)=1
n≥0
2 operations
Recursive
a(n)=(-1)^n
n≥0
4 operations
Power
a(n)=cos(π*n)
π=3.141...
n≥0
4 operations
Trigonometric
a(n)=-a(n-1)%2
a(0)=1
n≥0
4 operations
Divisibility
a(n)=-∏(Δ(-n))
Δ(a)=differences of a
∏(a)=partial products of a
n≥0
5 operations
Arithmetic
a(n)=Δ((2/a(n-1))!)
a(0)=1
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence 1hqdr2ehglqdd

1, 0.5403023059, -0.4161468365, -0.9899924966, -0.6536436209, 0.2836621855, 0.9601702867, 0.7539022543, -0.1455000338, -0.9111302619, -0.8390715291, 0.004425698, 0.8438539587, 0.9074467815, 0.1367372182, -0.7596879129, -0.9576594803, -0.2751633381, 0.6603167082, 0.9887046182, 0.4080820618, -0.5477292602, -0.9999608264, -0.5328330203, 0.4241790073, more...

decimal, non-monotonic, +-

a(n)=cos(n)
n≥0
2 operations
Trigonometric
a(n)=cos(∑(a(n-1)!))
a(0)=0
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=cos(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence cqtf2qnu2atkg

1, 0.5403023059, 0.8575532158, 0.6542897905, 0.7934803587, 0.7013687736, 0.7639596829, 0.722102425, 0.7504177618, 0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, 0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, 0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, 0.7390182624, 0.7391301765, 0.7390547907, 0.7391055719, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence 1r0kz5stvechb

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric
a(n)=pt(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
4 operations
Prime

Sequence apkm4drbhxu1k

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence 2q1rtmulmg2m

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence xbfbc31orn4v

1, 1.5574077247, 74.6859333988, -0.8635188549, -1.1698563551, -2.3590377342, 0.994329619, 1.5381535569, 30.623773508, -1.0136018143, -1.6050123678, 29.2146517707, 1.3701487455, 4.9167999905, -4.8237768261, 8.9404801577, -0.5260857889, -0.580671062, -0.6561279832, -0.7699191877, -0.9695115437, -1.4576737055, -8.8022251344, 0.7177699669, 0.8731301134, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence okvxpoucbqnai

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime

Sequence 1ouwsby2jnaal

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime

Sequence f01q4ekd0c3wl

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime

Sequence 4rlzjihdzbx0j

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence 4iryxtunrx2ge

2, -2.1850398633, 1.4179285755, 6.4905666027, 0.2104062939, 0.2135672329, 0.2168745891, 0.2203400038, 0.2239764545, 0.2277984593, 0.2318223191, 0.2360664093, 0.2405515319, 0.2453013428, 0.2503428748, 0.2557071833, 0.2614301483, 0.2675534819, 0.2741260035, 0.2812052743, 0.2888597143, 0.29717138, 0.3062396633, 0.3161862901, 0.3271621997, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence xw3as224tu2qo

2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, more...

integer, periodic-2, non-monotonic, +-

a(n)=-a(n-1)
a(0)=2
n≥0
2 operations
Recursive
a(n)=round(tan(a(n-1)))
a(0)=2
n≥0
3 operations
Trigonometric
a(n)=-a(n-1)%3
a(0)=2
n≥0
4 operations
Divisibility
a(n)=(1-2)^n*2
n≥0
7 operations
Power
a(n)=∏(-C(a(n-1), 2))
a(0)=2
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
5 operations
Combinatoric

Sequence ojnucwmtgnshp

2, -0.4161468365, 0.9146533259, 0.6100652997, 0.819610608, 0.6825058579, 0.7759946131, 0.713724734, 0.7559287136, 0.7276347923, 0.7467496017, 0.7339005972, 0.7425675503, 0.7367348584, 0.7406662639, 0.7380191412, 0.7398027782, 0.7386015286, 0.7394108086, 0.7388657151, 0.7392329181, 0.7389855755, 0.7391521928, 0.7390399594, 0.7391155621, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence yv3fppyevpgxk

3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, more...

integer, periodic-2, non-monotonic, +-, A174971

a(n)=-a(n-1)
a(0)=3
n≥0
2 operations
Recursive
a(n)=∏((-1)^a(n-1))
a(0)=3
∏(a)=partial products of a
n≥0
5 operations
Power
a(n)=-a(n-1)%4
a(0)=3
n≥0
4 operations
Divisibility
a(n)=∏(-C(a(n-1), 3))
a(0)=3
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
5 operations
Combinatoric

Sequence cipt1qehehon

3, -0.9899924966, 0.5486961336, 0.8532053115, 0.6575716719, 0.7914787497, 0.7027941118, 0.7630391878, 0.7227389048, 0.7499969197, 0.7316909685, 0.744045682, 0.7357345683, 0.7413379612, 0.7375657269, 0.7401077701, 0.7383958864, 0.7395492426, 0.738772424, 0.7392957418, 0.7389432484, 0.7391807011, 0.7390207542, 0.7391284982, 0.7390559213, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence zefx4n0mxnbln

4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, more...

integer, periodic-2, non-monotonic, +-

a(n)=-a(n-1)
a(0)=4
n≥0
2 operations
Recursive
a(n)=-a(n-1)%5
a(0)=4
n≥0
4 operations
Divisibility
a(n)=log(Δ(n))-a(n-1)
a(0)=4
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=∏(-C(a(n-1), 4))
a(0)=4
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
5 operations
Combinatoric
a(n)=∏(floor(sin(a(n-1))))
a(0)=4
∏(a)=partial products of a
n≥0
4 operations
Trigonometric

Sequence wzn14sh15egsc

4, -0.7568024953, -0.6866002607, -0.6339114733, -0.5923008211, -0.5582713944, -0.5297208351, -0.5052924561, -0.4840633697, -0.4653795417, -0.4487620117, -0.4338504581, -0.4203676381, -0.4080961118, -0.396862511, -0.3865266117, -0.3769735599, -0.3681082271, -0.3598510343, -0.3521348129, -0.3449024095, -0.3381048356, -0.3316998193, -0.3256506605, -0.3199253171, more...

decimal, non-monotonic, +-

a(n)=sin(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence wgjphbpzpi4jd

4, -0.6536436209, 0.7938734492, 0.7010885251, 0.7641404872, 0.7219773353, 0.7505004357, 0.7313476609, 0.7442750118, 0.7355792307, 0.7414422043, 0.7374953302, 0.7401551092, 0.7383639616, 0.7395707309, 0.7387579417, 0.7393054938, 0.7389366777, 0.7391851265, 0.7390177729, 0.7391305063, 0.7390545686, 0.7391057216, 0.7390712645, 0.7390944753, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence j2minw3fxn4xb

4, 1.1578212823, 2.2822044502, -1.1601196382, -2.2965489606, 1.1270177622, 2.1034705609, -1.6963098104, 7.9253896577, -13.9802177389, -6.3190857462, -0.0359158703, -0.0359313215, -0.0359467927, -0.0359622838, -0.035977795, -0.0359933263, -0.0360088777, -0.0360244493, -0.0360400411, -0.0360556532, -0.0360712855, -0.0360869382, -0.0361026113, -0.0361183049, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence s1ae2qzrjrsul

5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, 5, -5, more...

integer, periodic-2, non-monotonic, +-

a(n)=-a(n-1)
a(0)=5
n≥0
2 operations
Recursive
a(n)=-a(n-1)%6
a(0)=5
n≥0
4 operations
Divisibility
a(n)=∏((-1)^a(n-1))
a(0)=5
∏(a)=partial products of a
n≥0
5 operations
Power
a(n)=∏(-C(a(n-1), 5))
a(0)=5
C(n,k)=binomial coefficient
∏(a)=partial products of a
n≥0
5 operations
Combinatoric
a(n)=∏(floor(sin(a(n-1))))
a(0)=5
∏(a)=partial products of a
n≥0
4 operations
Trigonometric

Sequence lvz2na1niytjn

5, -3.3805150062, -0.2435748198, -0.2485089388, -0.2537542469, -0.2593447991, -0.2653200961, -0.271726255, -0.2786175037, -0.2860581081, -0.2941248901, -0.3029105609, -0.3125282017, -0.3231173902, -0.334852733, -0.3479560093, -0.3627138747, -0.3795044015, -0.3988381736, -0.4214243829, -0.4482820782, -0.4809380349, -0.5218037029, -0.5749593143, -0.6479877239, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence 04rth1zuoysyk

5, -0.9589242747, -0.8185741445, -0.7301723379, -0.6669980469, -0.6186301966, -0.5799197623, -0.5479568192, -0.5209442774, -0.4976993782, -0.4774052861, -0.4594761256, -0.4434786271, -0.4290841753, -0.4160381744, -0.4041397633, -0.393227969, -0.383172007, -0.3738643292, -0.3652155428, -0.3571506298, -0.3496060903, -0.3425277529, -0.335869075, -0.329589809, more...

decimal, non-monotonic, +-

a(n)=sin(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence n501uhtzii0cn

5, 0.2836621855, 0.9600369303, 0.5734897327, 0.840012681, 0.667453383, 0.785400536, 0.7071051035, 0.760245687, 0.7246667299, 0.7487203836, 0.7325605057, 0.743464438, 0.7361281031, 0.7410737901, 0.7377440895, 0.7399878116, 0.7384767772, 0.7394947924, 0.7388091199, 0.739271031, 0.7389598975, 0.7391694877, 0.7390283084, 0.7391234099, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence 0qsgvcq5webbi

-13.4636851994, 2.5879002655, 1.8817209493, 1.6916881673, 1.6184721971, 1.5863858136, 1.5714641226, 1.5643091081, 1.560819947, 1.5591018811, 1.558251022, 1.5578281619, 1.5576175513, 1.5575125102, 1.5574600756, 1.5574338863, 1.5574208009, 1.5574142613, 1.5574109925, 1.5574093584, 1.5574085415, 1.557408133, 1.5574079288, 1.5574078267, 1.5574077757, more...

decimal, non-monotonic, +-

a(n)=tan(ζ(n))
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence viu0v4gm0l3ue

-10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, -10, 10, more...

integer, periodic-2, non-monotonic, +-

a(n)=Δ(-a(n-1))
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Recursive
a(n)=Δ(-a(n-1)%6)
a(0)=5
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence rvojsavfhwjfm

-8.3805150062, 3.1369401865, -0.004934119, -0.0052453081, -0.0055905523, -0.005975297, -0.0064061589, -0.0068912487, -0.0074406044, -0.008066782, -0.0087856707, -0.0096176409, -0.0105891885, -0.0117353428, -0.0131032763, -0.0147578654, -0.0167905269, -0.0193337721, -0.0225862093, -0.0268576953, -0.0326559567, -0.040865668, -0.0531556114, -0.0730284096, -0.1090463287, more...

decimal, non-monotonic, +-

a(n)=Δ(tan(a(n-1)))
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence rjx3jnke3h2di

-8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, -8, 8, more...

integer, periodic-2, non-monotonic, +-

a(n)=Δ(-a(n-1))
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Recursive
a(n)=Δ(-a(n-1)%5)
a(0)=4
Δ(a)=differences of a
n≥0
5 operations
Divisibility
a(n)=Δ(-a(n-1))^3
a(0)=1
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=-Δ(C(9, a(n-1)))
a(0)=1
C(n,k)=binomial coefficient
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

Sequence z5c1husulxmtf

-6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, -6, 6, more...

integer, periodic-2, non-monotonic, +-

a(n)=Δ(-a(n-1))
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Recursive
a(n)=Δ(-a(n-1)%4)
a(0)=3
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence uduo3x1mqjrpg

-5.9589242747, 0.1403501302, 0.0884018065, 0.063174291, 0.0483678503, 0.0387104343, 0.0319629431, 0.0270125418, 0.0232448992, 0.0202940922, 0.0179291605, 0.0159974985, 0.0143944518, 0.0130460009, 0.0118984111, 0.0109117942, 0.010055962, 0.0093076778, 0.0086487864, 0.008064913, 0.0075445395, 0.0070783375, 0.0066586779, 0.006279266, 0.0059348659, more...

decimal, non-monotonic, +-

a(n)=Δ(sin(a(n-1)))
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence 0cxzfuizjseci

-4.7568024953, 0.0702022346, 0.0526887874, 0.0416106522, 0.0340294266, 0.0285505593, 0.024428379, 0.0212290864, 0.018683828, 0.01661753, 0.0149115536, 0.0134828201, 0.0122715263, 0.0112336007, 0.0103358994, 0.0095530518, 0.0088653328, 0.0082571928, 0.0077162215, 0.0072324033, 0.0067975739, 0.0064050164, 0.0060491588, 0.0057253434, 0.005429649, more...

decimal, non-monotonic, +-

a(n)=Δ(sin(a(n-1)))
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence l34us1g43vo0d

-4.7163378145, 0.6763747448, -0.3865471976, 0.2665229483, -0.1725592979, 0.117947153, -0.0782954325, 0.0531405835, -0.0355789571, 0.0240536538, -0.0161598779, 0.0109039323, -0.0073363349, 0.004945687, -0.0033297006, 0.0022437221, -0.0015110344, 0.0010180152, -0.0006856725, 0.0004619111, -0.0003111335, 0.0002095902, -0.0001411793, 0.0000951015, -0.0000640609, more...

decimal, non-monotonic, +-

a(n)=Δ(cos(a(n-1)))
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence fpjdpo5wzyibk

-4.6536436209, 1.4475170701, -0.0927849241, 0.0630519621, -0.0421631518, 0.0285231003, -0.0191527747, 0.0129273509, -0.008695781, 0.0058629736, -0.0039468741, 0.0026597791, -0.0017911476, 0.0012067693, -0.0008127892, 0.0005475521, -0.0003688161, 0.0002484488, -0.0001673536, 0.0001127334, -0.0000759377, 0.0000511529, -0.0000344571, 0.0000232108, -0.000015635, more...

decimal, non-monotonic, +-

a(n)=Δ(cos(a(n-1)))
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence iwqfxsd0uyksm

-4.1850398633, 3.6029684388, 5.0726380272, -6.2801603088, 0.003160939, 0.0033073562, 0.0034654146, 0.0036364508, 0.0038220048, 0.0040238597, 0.0042440902, 0.0044851226, 0.0047498109, 0.005041532, 0.0053643085, 0.0057229651, 0.0061233336, 0.0065725216, 0.0070792708, 0.0076544399, 0.0083116658, 0.0090682833, 0.0099466268, 0.0109759096, 0.012194998, more...

decimal, non-monotonic, +-

a(n)=Δ(tan(a(n-1)))
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence lbuerrhp4pn2e

-4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, more...

integer, periodic-2, non-monotonic, +-

a(n)=Δ(-a(n-1))
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Recursive
a(n)=Δ(-a(n-1)%3)
a(0)=2
Δ(a)=differences of a
n≥0
5 operations
Divisibility
a(n)=Δ(round(tan(a(n-1))))
a(0)=2
Δ(a)=differences of a
n≥0
4 operations
Trigonometric

Sequence o3rftac2wqz0m

-3.9899924966, 1.5386886302, 0.3045091779, -0.1956336396, 0.1339070777, -0.0886846379, 0.060245076, -0.040300283, 0.0272580149, -0.0183059512, 0.0123547134, -0.0083111137, 0.005603393, -0.0037722343, 0.0025420431, -0.0017118837, 0.0011533562, -0.0007768186, 0.0005233178, -0.0003524934, 0.0002374528, -0.000159947, 0.000107744, -0.0000725768, 0.000048889, more...

decimal, non-monotonic, +-

a(n)=Δ(cos(a(n-1)))
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence wes01lyrtgwpn

-3.3805150062, -0.133526407, -0.7820605685, -0.1788079555, -1.221283743, -3.3641048356, -0.1267822828, -0.7299533973, -0.0111445822, -0.0557783429, -0.2860424411, -5.5655054868, -0.8117924865, -0.2744539896, -4.2421397079, more...

decimal, non-monotonic, -

a(n)=tan(∏(a(n-1)))
a(0)=5
∏(a)=partial products of a
n≥0
3 operations
Trigonometric
a(n)=tan(∏(gpf(a(n-1))))
a(0)=5
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥0
4 operations
Prime

Sequence 210vjiuaymrlk

-3.3805150062, 0.6483608275, -0.8559934009, 2.2371609442, -0.133526407, -6.4053311966, 0.4738147204, -1.1172149309, 1.6197751905, -0.271900612, -45.1830879105, 0.3200403894, -1.4700382577, 1.2219599181, -0.4207009506, 9.0036549456, 0.1788701724, -1.9952004122, 0.9357524721, -0.5872139152, 4.0278017639, 0.0442860424, -2.9018013543, 0.7131230098, -0.7820605685, more...

decimal, non-monotonic, +-

a(n)=tan(∑(a(n-1)))
a(0)=5
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric
a(n)=tan(∑(gpf(a(n-1))))
a(0)=5
gpf(n)=greatest prime factor of n
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence juwrtdbnbt3ub

-3.1425465431, -0.0009734047, -0.000993594, -0.0010144904, -0.001036129, -0.0010585473, -0.0010817851, -0.0011058849, -0.0011308923, -0.0011568557, -0.001183827, -0.0012118619, -0.00124102, -0.0012713653, -0.0013029664, -0.0013358974, -0.0013702379, -0.0014060737, -0.0014434975, -0.0014826096, -0.0015235184, -0.0015663416, -0.0016112069, -0.0016582532, -0.0017076316, more...

decimal, non-monotonic, -

a(n)=Δ(tan(a(n-1)))
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence 5dykflwdgyamm

-2.8421787177, 1.1243831678, -3.4423240884, -1.1364293224, 3.4235667229, 0.9764527987, -3.7997803714, 9.6216994681, -21.9056073966, 7.6611319927, 6.2831698759, -0.0000154512, -0.0000154712, -0.0000154912, -0.0000155112, -0.0000155313, -0.0000155514, -0.0000155716, -0.0000155918, -0.0000156121, -0.0000156324, -0.0000156527, -0.0000156731, -0.0000156935, -0.000015714, more...

decimal, non-monotonic, +-

a(n)=Δ(tan(a(n-1)))
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence qsyifw2zknz3b

-2.4161468365, 1.3308001624, -0.3045880261, 0.2095453083, -0.1371047501, 0.0934887552, -0.0622698791, 0.0422039796, -0.0282939213, 0.0191148094, -0.0128490045, 0.0086669531, -0.0058326919, 0.0039314055, -0.0026471227, 0.001783637, -0.0012012496, 0.00080928, -0.0005450935, 0.0003672029, -0.0002473426, 0.0001666174, -0.0001122335, 0.0000756027, -0.0000509265, more...

decimal, non-monotonic, +-

a(n)=Δ(cos(a(n-1)))
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence xplecjv5r1gjo

-2.1850398633, -0.1425465431, -3.3805150062, 0.8714479827, -225.9508464542, 0.4630211329, 3.4939156455, 0.1515894706, 1.5881530834, 0.8871428438, -0.441695568, -0.8407712554, 0.1606566987, -1.4983873389, -0.1245275681, -0.4311581967, -0.8257740092, 3.7431679443, 1.652317264, -3.0776204032, 0.9192864044, 0.4956775332, 3.8805963104, 1.6858253705, -0.410321299, more...

decimal, non-monotonic, +-

a(n)=tan(p(n))
p(n)=nth prime
n≥1
3 operations
Prime

Sequence 5c2kwcvpahymj

-2.1850398633, 1.1578212823, -6.7997114552, 0.300632242, 0.6610060415, 2.3478603092, -1.0406148914, 25.1115594634, -0.0797710979, -0.1605639328, -0.3296258767, -0.739613097, -3.2655984694, 0.6758181715, 2.4879651793, -0.9587588474, -23.7370975832, 0.0844061017, 0.1700235173, 0.3501697401, 0.7982157786, 4.3996820897, -0.4793412386, -1.2446671989, 4.5326849094, more...

decimal, non-monotonic, +-

a(n)=tan(∏(a(n-1)))
a(0)=2
∏(a)=partial products of a
n≥0
3 operations
Trigonometric
a(n)=tan(∏(a(n-1)!))
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=tan(∏(τ(a(n-1))))
a(0)=2
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
4 operations
Prime

Sequence ka54xhwipjnhp

-2.1850398633, 1.1578212823, -0.2910061914, -6.7997114552, 0.6483608275, -0.6358599287, 7.2446066161, 0.300632242, -1.1373137123, 2.2371609442, 0.008851656, -2.1348966977, 1.1787535542, -0.2814296046, -6.4053311966, 0.6610060415, -0.6234989627, 7.7504709057, 0.310309661, -1.1172149309, 2.2913879924, 0.0177046993, -2.0866135311, 1.2001272431, -0.271900612, more...

decimal, non-monotonic, +-

a(n)=tan(∑(a(n-1)))
a(0)=2
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric
a(n)=tan(∑(a(n-1)!))
a(0)=2
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=tan(∑(τ(a(n-1))))
a(0)=2
τ(n)=number of divisors of n
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence vkt2vltyljt4e

-2, 0, 1, -1, 2, -2, 1, 0, 1, -2, 1, -1, 2, 0, -1, -1, 1, -1, 1, 1, 0, -2, 1, 0, 1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, -1, 2, 0, -1, -1, 0, 0, 1, 0, 1, -2, 1, 0, 0, 1, more...

integer, non-monotonic, +-, A127440

a(n)=Δ(μ(n))
μ(n)=Möbius function
Δ(a)=differences of a
n≥1
3 operations
Prime

Sequence ajk1e2pvpfe3c

-2, 0, 2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, 0, -2, 0, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 2, -2, 0, 2, -2, 2, more...

integer, non-monotonic, +-

a(n)=Δ(λ(n))
λ(n)=Liouville's function
Δ(a)=differences of a
n≥1
3 operations
Prime

Sequence nexwtcywlydui

-2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, more...

integer, periodic-2, non-monotonic, +-

a(n)=Δ(-a(n-1))
a(0)=1
Δ(a)=differences of a
n≥0
3 operations
Recursive
a(n)=Δ((-1)^n)
Δ(a)=differences of a
n≥0
5 operations
Power
a(n)=Δ(-a(n-1)%2)
a(0)=1
Δ(a)=differences of a
n≥0
5 operations
Divisibility

Sequence qtn4igfox0zfo

-1, -3, -4, -7, -6, -12, -8, -15, -13, -18, -12, -28, -14, -24, -24, -31, -18, -39, -20, -42, -32, -36, -24, -60, -31, -42, -40, -56, -30, -72, -32, -63, -48, -54, -48, -91, -38, -60, -56, -90, -42, -96, -44, -84, -78, -72, -48, -124, -57, -93, more...

integer, non-monotonic, -

a(n)=-σ(n)
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence c5dglrcjdavhh

-1, -2, -3, -2, -5, -3, -7, -2, -3, -5, -11, -3, -13, -7, -5, -2, -17, -3, -19, -5, -7, -11, -23, -3, -5, -13, -3, -7, -29, -5, -31, -2, -11, -17, -7, -3, -37, -19, -13, -5, -41, -7, -43, -11, -5, -23, -47, -3, -7, -5, more...

integer, non-monotonic, -

a(n)=-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence yllw0pgoktc1h

-1, -2, -3, -2, -5, -2, -7, -2, -3, -2, -11, -2, -13, -2, -3, -2, -17, -2, -19, -2, -3, -2, -23, -2, -5, -2, -3, -2, -29, -2, -31, -2, -3, -2, -5, -2, -37, -2, -3, -2, -41, -2, -43, -2, -3, -2, -47, -2, -7, -2, more...

integer, non-monotonic, -

a(n)=-lpf(n)
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence xs5ftugsnt13o

-1, -2, -2, -3, -2, -4, -2, -4, -3, -4, -2, -6, -2, -4, -4, -5, -2, -6, -2, -6, -4, -4, -2, -8, -3, -4, -4, -6, -2, -8, -2, -6, -4, -4, -4, -9, -2, -4, -4, -8, -2, -8, -2, -6, -6, -4, -2, -10, -3, -6, more...

integer, non-monotonic, -

a(n)=-τ(n)
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence fuae1h3b5z4np

-1, -1, -2, -2, -4, -2, -6, -4, -6, -4, -10, -4, -12, -6, -8, -8, -16, -6, -18, -8, -12, -10, -22, -8, -20, -12, -18, -12, -28, -8, -30, -16, -20, -16, -24, -12, -36, -18, -24, -16, -40, -12, -42, -20, -24, -22, -46, -16, -42, -20, more...

integer, non-monotonic, -

a(n)=-ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence 2d4ccxymyiqf

-1, -1, -1, -2, -1, -1, -1, -3, -2, -1, -1, -2, -1, -1, -1, -5, -1, -2, -1, -2, -1, -1, -1, -3, -2, -1, -3, -2, -1, -1, -1, -7, -1, -1, -1, -4, -1, -1, -1, -3, -1, -1, -1, -2, -2, -1, -1, -5, -2, -2, more...

integer, non-monotonic, -

a(n)=-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence afpks0yvdxnmm

-1, -1, -1, -1, -2, -1, -1, -3, -3, -1, -1, -4, -6, -4, -1, -1, -5, -10, -10, -5, -1, -1, -6, -15, -20, -15, -6, -1, -1, -7, -21, -35, -35, -21, -7, -1, -1, -8, -28, -56, -70, -56, -28, -8, -1, -1, -9, -36, -84, -126, more...

integer, non-monotonic, -

a(n)=-pt(n)
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric
a(n)=-pt(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence i0c2x30qin2dj

-1, -0.5403023059, 0.4161468365, 0.9899924966, 0.6536436209, -0.2836621855, -0.9601702867, -0.7539022543, 0.1455000338, 0.9111302619, 0.8390715291, -0.004425698, -0.8438539587, -0.9074467815, -0.1367372182, 0.7596879129, 0.9576594803, 0.2751633381, -0.6603167082, -0.9887046182, -0.4080820618, 0.5477292602, 0.9999608264, 0.5328330203, -0.4241790073, more...

decimal, non-monotonic, +-

a(n)=-cos(n)
n≥0
3 operations
Trigonometric

Sequence dudoyi5ajsrhb

-1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, more...

integer, non-monotonic, +-

a(n)=-λ(n)
λ(n)=Liouville's function
n≥1
3 operations
Prime

Sequence lyu0d1h5rvlyg

-1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=-μ(n)
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence ekanw2hwzpx0

-0.9899924966, -0.9111302619, -0.2921388087, 0.776685982, -0.4559422759, 0.9886955805, 0.8997879248, 0.2145753405, -0.6042076152, 0.930318181, 0.4297769237, -0.971797476, -0.7556321455, 0.54109325, -0.9895904995, -0.9076102759, -0.2677683134, 0.7265091275, -0.645676233, 0.8603047004, -0.0339848661, 0.1017975921, -0.3011731644, more...

decimal, non-monotonic, +-

a(n)=cos(∏(a(n-1)))
a(0)=3
∏(a)=partial products of a
n≥0
3 operations
Trigonometric
a(n)=cos(∏(P(a(n-1))))
a(0)=3
P(n)=Partition numbers
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=cos(∏(gpf(a(n-1))))
a(0)=3
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥0
4 operations
Prime

Sequence vk1bxa4yihfbl

-0.9899924966, 0.9601702867, -0.9111302619, 0.8438539587, -0.7596879129, 0.6603167082, -0.5477292602, 0.4241790073, -0.2921388087, 0.1542514499, -0.0132767472, -0.1279636896, 0.2666429324, -0.399985315, 0.5253219888, -0.6401443395, 0.7421541968, -0.8293098329, 0.899866827, -0.9524129804, 0.9858965816, -0.999647456, 0.9933903797, -0.9672505883, 0.9217512697, more...

decimal, non-monotonic, +-

a(n)=cos(∑(a(n-1)))
a(0)=3
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric
a(n)=cos(∑(P(a(n-1))))
a(0)=3
P(n)=Partition numbers
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=cos(∑(gpf(a(n-1))))
a(0)=3
gpf(n)=greatest prime factor of n
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence ja2xug4symmid

-0.9589242747, -0.5440211109, 0.6502878402, 0.9129452507, -0.1323517501, -0.9880316241, -0.4281826695, 0.7451131605, 0.8509035245, -0.2623748537, -0.9997551734, -0.3048106211, 0.8268286795, 0.7738906816, -0.3877816354, -0.9938886539, -0.1760756199, 0.8939966636, 0.6832617147, -0.5063656411, -0.9705352835, -0.0442426781, 0.945435334, 0.5806111842, -0.6160404592, more...

decimal, non-monotonic, +-

a(n)=sin(∑(a(n-1)))
a(0)=5
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric
a(n)=sin(∑(gpf(a(n-1))))
a(0)=5
gpf(n)=greatest prime factor of n
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence 5ggiqvmeb5vqi

-0.9589242747, -0.1323517501, -0.6160404592, 0.1760162728, 0.7737188341, -0.9585471955, -0.1257754709, -0.5895869475, 0.0111438902, 0.0556917754, 0.2750128057, 0.9842384982, 0.6302616945, -0.2646669291, -0.9733224767, more...

decimal, non-monotonic, +-

a(n)=sin(∏(a(n-1)))
a(0)=5
∏(a)=partial products of a
n≥0
3 operations
Trigonometric
a(n)=sin(∏(gpf(a(n-1))))
a(0)=5
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥0
4 operations
Prime

Sequence 0xkqf2vc1l15

-0.7568024953, -0.2879033167, 0.9200260382, -0.9992080341, -0.15853338, -0.5946419876, -0.5599384657, 0.6920654538, -0.0841070278, 0.33049314, 0.9751293949, -0.7795636732, 0.4207598978, -0.9861982118, -0.617326415, -0.4619865795, 0.9393250269, 0.9855441071, more...

decimal, non-monotonic, +-

a(n)=sin(∏(a(n-1)))
a(0)=4
∏(a)=partial products of a
n≥0
3 operations
Trigonometric

Sequence s1g2b3igjhakp

-0.7568024953, 0.9893582466, -0.536572918, -0.2879033167, 0.9129452507, -0.905578362, 0.2709057883, 0.5514266812, -0.9917788534, 0.7451131605, 0.0177019251, -0.7682546613, 0.986627592, -0.5215510021, -0.3048106211, 0.9200260382, -0.8979276807, 0.2538233628, 0.5661076369, -0.9938886539, 0.7331903201, 0.0353983027, -0.7794660696, 0.9835877454, -0.5063656411, more...

decimal, non-monotonic, +-

a(n)=sin(∑(a(n-1)))
a(0)=4
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric

Sequence mltsm1hluxdkk

-0.6536436209, -0.9576594803, 0.3918572304, -0.0397907599, 0.9873536182, 0.8039906135, -0.8285341964, -0.7218347509, -0.9964567265, 0.9438083939, 0.2216363308, 0.6263229833, -0.9071720391, -0.1655689795, 0.7867071229, -0.8868869152, -0.3430284154, 0.1694190454, more...

decimal, non-monotonic, +-

a(n)=cos(∏(a(n-1)))
a(0)=4
∏(a)=partial products of a
n≥0
3 operations
Trigonometric

Sequence eptzxt0xj5m2i

-0.6536436209, -0.1455000338, 0.8438539587, -0.9576594803, 0.4080820618, 0.4241790073, -0.9626058663, 0.8342233605, -0.1279636896, -0.6669380617, 0.9998433086, -0.6401443395, -0.1629907808, 0.8532201077, -0.9524129804, 0.3918572304, 0.4401430225, -0.9672505883, 0.8243313311, -0.1103872438, -0.6800234956, 0.9993732837, -0.6264444479, -0.1804304493, 0.8623188723, more...

decimal, non-monotonic, +-

a(n)=cos(∑(a(n-1)))
a(0)=4
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric

Sequence eji22ew2eqdfj

-0.4596976941, -0.9564491424, -0.5738456601, 0.3363488757, 0.9373058063, 0.6765081012, -0.2062680323, -0.8994022882, -0.7656302281, 0.0720587328, 0.8434972271, 0.8394282607, 0.0635928227, -0.7707095632, -0.8964251311, -0.1979715675, 0.6824961423, 0.9354800463, 0.3283879099, -0.5806225564, -0.955811322, -0.4522315662, 0.4671278061, 0.9570120277, 0.5670238045, more...

decimal, non-monotonic, +-

a(n)=Δ(cos(n))
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence 1wjcbejvdei3o

-0.4596976941, 0.31725091, -0.2032634253, 0.1391905682, -0.0921115851, 0.0625909093, -0.0418572579, 0.0283153367, -0.0190137193, 0.0128333125, -0.0086326145, 0.0058203462, -0.0039181961, 0.0026404451, -0.0017781314, 0.0011979981, -0.0008068823, 0.0005435725, -0.0003661357, 0.0002466431, -0.0001661373, 0.0001119141, -0.0000753858, 0.0000507812, -0.0000342066, more...

decimal, non-monotonic, +-

a(n)=Δ(cos(a(n-1)))
a(0)=1
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence cxm2ek0dcpg0

-0.4161468365, -0.9899924966, 0.2836621855, 0.7539022543, 0.004425698, 0.9074467815, -0.2751633381, 0.9887046182, -0.5328330203, -0.7480575297, 0.9147423578, 0.7654140519, -0.9873392775, 0.5551133015, -0.9923354692, -0.9182827862, -0.771080223, -0.2581016359, -0.5177697998, -0.3090227282, -0.7361927182, -0.8959709468, 0.249540118, 0.5101770449, -0.9251475366, more...

decimal, non-monotonic, +-

a(n)=cos(p(n))
p(n)=nth prime
n≥1
3 operations
Prime

Sequence 4o2vvnent2n4p

-0.4161468365, -0.6536436209, -0.1455000338, -0.9576594803, 0.8342233605, 0.3918572304, -0.6928958219, -0.0397907599, -0.9968333908, 0.9873536182, 0.9497343348, 0.8039906135, 0.2928018131, -0.8285341964, 0.3729378293, -0.7218347509, 0.0420908153, -0.9964567265, 0.9858520157, 0.9438083939, 0.7815485688, 0.2216363308, -0.9017546738, 0.6263229833, -0.2154390412, more...

decimal, non-monotonic, +-

a(n)=cos(∏(a(n-1)))
a(0)=2
∏(a)=partial products of a
n≥0
3 operations
Trigonometric
a(n)=cos(∏(a(n-1)!))
a(0)=2
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=cos(∏(τ(a(n-1))))
a(0)=2
τ(n)=number of divisors of n
∏(a)=partial products of a
n≥0
4 operations
Prime

Sequence 4kjs4nsrqmphd

-0.4161468365, -0.6536436209, 0.9601702867, -0.1455000338, -0.8390715291, 0.8438539587, 0.1367372182, -0.9576594803, 0.6603167082, 0.4080820618, -0.9999608264, 0.4241790073, 0.6469193223, -0.9626058663, 0.1542514499, 0.8342233605, -0.8485702748, -0.1279636896, 0.955073644, -0.6669380617, -0.399985315, 0.9998433086, -0.4321779449, -0.6401443395, 0.9649660285, more...

decimal, non-monotonic, +-

a(n)=cos(∑(a(n-1)))
a(0)=2
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric
a(n)=cos(∑(a(n-1)!))
a(0)=2
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=cos(∑(τ(a(n-1))))
a(0)=2
τ(n)=number of divisors of n
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence mv45xw5zv2alc

-0.1425465431, -0.4523156594, -3.2737038004, -0.8109944158, 1.9520219903, 0.1516511453, 0.484922604, 4.5518158684, 1.3187965706, -0.3942236566, -2.1009390008, -0.2426606602, -0.8668189057, 1.5541916297, -0.1454257384, -0.4625484791, -3.5981977082, -0.9458336976, 1.1826535514, -0.5925576956, 29.4078648125, 9.7723837193, 3.1661833717, more...

decimal, non-monotonic, +-

a(n)=tan(∏(a(n-1)))
a(0)=3
∏(a)=partial products of a
n≥0
3 operations
Trigonometric
a(n)=tan(∏(P(a(n-1))))
a(0)=3
P(n)=Partition numbers
∏(a)=partial products of a
n≥0
4 operations
Combinatoric
a(n)=tan(∏(gpf(a(n-1))))
a(0)=3
gpf(n)=greatest prime factor of n
∏(a)=partial products of a
n≥0
4 operations
Prime

Sequence x3zqpxm0kibxk

-0.1425465431, -0.2910061914, -0.4523156594, -0.6358599287, -0.8559934009, -1.1373137123, -1.5274985276, -2.1348966977, -3.2737038004, -6.4053311966, -75.3130148001, 7.7504709057, 3.6145544071, 2.2913879924, 1.6197751905, 1.2001272431, 0.9030861494, 0.6738001006, 0.4846992268, 0.3200403894, 0.1697497521, 0.0265605178, -0.1155485458, -0.2624173775, -0.4207009506, more...

decimal, non-monotonic, +-

a(n)=tan(∑(a(n-1)))
a(0)=3
∑(a)=partial sums of a
n≥0
3 operations
Trigonometric
a(n)=tan(∑(P(a(n-1))))
a(0)=3
P(n)=Partition numbers
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=tan(∑(gpf(a(n-1))))
a(0)=3
gpf(n)=greatest prime factor of n
∑(a)=partial sums of a
n≥0
4 operations
Prime

Sequence iknq5ylo3dv0k

0, -1.5574077247, 2.1850398633, 0.1425465431, -1.1578212823, 3.3805150062, 0.2910061914, -0.8714479827, 6.7997114552, 0.4523156594, -0.6483608275, 225.9508464542, 0.6358599287, -0.4630211329, -7.2446066161, 0.8559934009, -0.300632242, -3.4939156455, 1.1373137123, -0.1515894706, -2.2371609442, 1.5274985276, -0.008851656, -1.5881530834, 2.1348966977, more...

decimal, non-monotonic, +-

a(n)=tan(-n)
n≥0
3 operations
Trigonometric

Sequence hkbamxejiornm

0, -1, -1, -2, -1, -3, -2, -3, -1, -4, -3, -5, -2, -5, -3, -4, -1, -5, -4, -7, -3, -8, -5, -7, -2, -7, -5, -8, -3, -7, -4, -5, -1, -6, -5, -9, -4, -11, -7, -10, -3, -11, -8, -13, -5, -12, -7, -9, -2, -9, more...

integer, non-monotonic, -

a(n)=-stern(n)
stern(n)=Stern-Brocot sequence
n≥0
3 operations
Recursive
a(n)=-stern(lcm(n, 2))
lcm(a,b)=least common multiple
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Divisibility
a(n)=-stern(∑(a(n-1)!))
a(0)=0
∑(a)=partial sums of a
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Combinatoric
a(n)=-stern(∑(agc(a(n-1))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Prime

Sequence vxxvaleofb2dn

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-monotonic, -

a(n)=-Ω(n)
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence 0mdl1lkhyr4jp

0, -1, -0.5403023059, -0.8575532158, -0.6542897905, -0.7934803587, -0.7013687736, -0.7639596829, -0.722102425, -0.7504177618, -0.7314040424, -0.7442373549, -0.7356047404, -0.7414250866, -0.7375068905, -0.7401473356, -0.7383692041, -0.7395672022, -0.7387603199, -0.7393038924, -0.7389377567, -0.7391843998, -0.7390182624, -0.7391301765, -0.7390547907, more...

decimal, non-monotonic, -

a(n)=-cos(a(n-1))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence yhqgyehjn4pti

0, -1, -0.3678794412, -0.6922006276, -0.5004735006, -0.6062435351, -0.545395786, -0.5796123355, -0.5601154614, -0.5711431151, -0.5648793474, -0.568428725, -0.5664147331, -0.5675566373, -0.5669089119, -0.5672762322, -0.5670678984, -0.5671860501, -0.5671190401, -0.567157044, -0.5671354902, -0.5671477143, -0.5671407815, -0.5671447133, -0.5671424834, more...

decimal, non-monotonic, -

a(n)=-exp(a(n-1))
a(0)=0
n≥0
3 operations
Power

Sequence dhvj05i51i5jh

0, -0.8414709848, -0.9092974268, -0.1411200081, 0.7568024953, 0.9589242747, 0.2794154982, -0.6569865987, -0.9893582466, -0.4121184852, 0.5440211109, 0.9999902066, 0.536572918, -0.4201670368, -0.9906073557, -0.6502878402, 0.2879033167, 0.9613974919, 0.7509872468, -0.1498772097, -0.9129452507, -0.8366556385, 0.0088513093, 0.8462204042, 0.905578362, more...

decimal, non-monotonic, +-

a(n)=sin(-n)
n≥0
3 operations
Trigonometric

Sequence 5sfwvs5xbm2bh

0, -0.6931471806, -1.0986122887, -0.6931471806, -1.6094379124, 0, -1.9459101491, -0.6931471806, -1.0986122887, 0, -2.3978952728, 0, -2.5649493575, 0, 0, -0.6931471806, -2.8332133441, 0, -2.9444389792, 0, 0, 0, -3.1354942159, 0, -1.6094379124, more...

decimal, non-monotonic, -

a(n)=-Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence yqcqonw3vwoec

0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, more...

integer, non-monotonic, -, A000493

a(n)=floor(sin(n))
n≥0
3 operations
Trigonometric

Sequence sye4b4sl0s3rk

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=cf(p(a(n-1)))
a(0)=5
p(n)=nth prime
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Prime

Sequence l321wcnecuimj

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=cf(composite(a(n-1)))
a(0)=5
composite(n)=nth composite number
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Prime

Sequence rktlefb3412on

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=cf(σ(a(n-1)))
a(0)=5
σ(n)=divisor sum of n
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Prime

Sequence jytj0zlky4yxl

0, 0, 0, 0, 0.6931471806, 0, 0, 1.0986122887, 1.0986122887, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 1.6094379124, 0, 0, 1.6094379124, 0, 0, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=Λ(pt(n))
pt(n)=Pascals triangle by rows
Λ(n)=Von Mangoldt's function
n≥0
3 operations
Prime

Sequence q4ck2u4vx4tic

0, 0, 0, 0, 0.6931471806, 0, 0, 1.0986122887, 1.0986122887, 0, 0, 1.3862943611, 1.7917594692, 1.3862943611, 0, 0, 1.6094379124, 2.302585093, 2.302585093, 1.6094379124, 0, 0, 1.7917594692, 2.7080502011, 2.9957322736, more...

decimal, non-monotonic, +

a(n)=log(pt(n))
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric
a(n)=log(pt(∑(agc(a(n-1)))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime

Sequence qzzcq41cbdtyp

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, more...

integer, non-monotonic, +

a(n)=cf(composite(a(n-1)))
a(0)=4
composite(n)=nth composite number
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Prime

Sequence j4vk3vagezgid

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=cf(p(a(n-1)))
a(0)=4
p(n)=nth prime
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Prime
a(n)=cf(2+P(a(n-1)))
a(0)=4
P(n)=Partition numbers
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Combinatoric

Sequence sktrk3ifeibbl

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=cf(σ(a(n-1)))
a(0)=4
σ(n)=divisor sum of n
cf(a)=characteristic function of a (in range)
n≥0
3 operations
Prime

Sequence rni1xdqqnpoyg

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 1, 2, 2, 1, 0, 0, 2, 2, 3, 2, 2, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 3, 3, 4, 3, 4, 3, 3, 0, 0, 2, 4, 4, 4, more...

integer, non-monotonic, +, A132896

a(n)=Ω(pt(n))
pt(n)=Pascals triangle by rows
Ω(n)=max factorization terms
n≥0
3 operations
Prime

Sequence 104qm3tuvejlb

0, 0, 0, 0.6931471806, 0, 0, 0, 1.0986122887, 0.6931471806, 0, 0, 0.6931471806, 0, 0, 0, 1.6094379124, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0, 1.0986122887, 0.6931471806, more...

decimal, non-monotonic, +

a(n)=log(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence majiov2qpfuee

0, 0, 0, 1, -1, 0, 2, 0, -2, 0, 3, 2, -2, -3, 0, 4, 5, 0, -5, -4, 0, 5, 9, 5, -5, -9, -5, 0, 6, 14, 14, 0, -14, -14, -6, 0, 7, 20, 28, 14, -14, -28, -20, -7, 0, 8, 27, 48, 42, 0, more...

integer, non-monotonic, +-, A259525

a(n)=Δ(pt(n))
pt(n)=Pascals triangle by rows
Δ(a)=differences of a
n≥0
3 operations
Combinatoric
a(n)=Δ(pt(∑(agc(a(n-1)))))
a(0)=0
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
pt(n)=Pascals triangle by rows
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence tcfjtjkwyxyuk

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, more...

integer, non-monotonic, +, A056170

a(n)=Ω(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
Ω(n)=max factorization terms
n≥0
3 operations
Prime

[0] [1] [2] [3] [4] ... [5827]