Sequence Database

A database with 662107 machine generated integer and decimal sequences.

Displaying the first 100 of 461092 results.

Sequence xeqru1sygmtfp

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0, 1.9459101491, 0.6931471806, 1.0986122887, 0, 2.3978952728, 0, 2.5649493575, 0, 0, 0.6931471806, 2.8332133441, 0, 2.9444389792, 0, 0, 0, 3.1354942159, 0, 1.6094379124, 0, 1.0986122887, 0, 3.36729583, 0, 3.4339872045, 0.6931471806, 0, 0, 0, 0, 3.6109179126, 0, 0, 0, 3.7135720667, 0, 3.7612001157, 0, 0, 0, 3.8501476017, 0, 1.9459101491, 0, more...

decimal, non-monotonic, +

a(n)=Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
2 operations
Prime

Sequence 20kztluqqh1i

0, 0.8414709848, 0.9092974268, 0.1411200081, -0.7568024953, -0.9589242747, -0.2794154982, 0.6569865987, 0.9893582466, 0.4121184852, -0.5440211109, -0.9999902066, -0.536572918, 0.4201670368, 0.9906073557, 0.6502878402, -0.2879033167, -0.9613974919, -0.7509872468, 0.1498772097, 0.9129452507, 0.8366556385, -0.0088513093, -0.8462204042, -0.905578362, -0.1323517501, 0.7625584505, 0.9563759284, 0.2709057883, -0.6636338842, -0.9880316241, -0.4040376453, 0.5514266812, 0.9999118601, 0.5290826861, -0.4281826695, -0.9917788534, -0.6435381334, 0.2963685787, 0.9637953863, 0.7451131605, -0.1586226688, -0.9165215479, -0.8317747426, 0.0177019251, 0.8509035245, 0.9017883476, 0.1235731227, -0.7682546613, -0.9537526528, more...

decimal, non-monotonic, +-

a(n)=sin(n)
n≥0
2 operations
Trigonometric

Sequence 1geoyb5xzuhhk

0, 1, 0.5403023059, 0.8575532158, 0.6542897905, 0.7934803587, 0.7013687736, 0.7639596829, 0.722102425, 0.7504177618, 0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, 0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, 0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, 0.7390182624, 0.7391301765, 0.7390547907, 0.7391055719, 0.7390713653, 0.7390944074, 0.739078886, 0.7390893414, 0.7390822985, 0.7390870427, 0.739083847, 0.7390859996, 0.7390845496, 0.7390855264, 0.7390848684, 0.7390853116, 0.739085013, 0.7390852142, 0.7390850787, 0.7390851699, 0.7390851085, 0.7390851499, 0.739085122, 0.7390851408, 0.7390851281, 0.7390851366, 0.7390851309, 0.7390851348, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=0
n≥0
2 operations
Trigonometric
a(n)=cos(λ(n)*a(n-1))
a(0)=0
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence ub3tktmvdthvj

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max factorization terms
n≥1
2 operations
Prime

Sequence 2meyuegu0uzbn

0, 1.5574077247, -2.1850398633, -0.1425465431, 1.1578212823, -3.3805150062, -0.2910061914, 0.8714479827, -6.7997114552, -0.4523156594, 0.6483608275, -225.9508464542, -0.6358599287, 0.4630211329, 7.2446066161, -0.8559934009, 0.300632242, 3.4939156455, -1.1373137123, 0.1515894706, 2.2371609442, -1.5274985276, 0.008851656, 1.5881530834, -2.1348966977, -0.133526407, 1.1787535542, -3.2737038004, -0.2814296046, 0.8871428438, -6.4053311966, -0.441695568, 0.6610060415, -75.3130148001, -0.6234989627, 0.4738147204, 7.7504709057, -0.8407712554, 0.310309661, 3.6145544071, -1.1172149309, 0.1606566987, 2.2913879924, -1.4983873389, 0.0177046993, 1.6197751905, -2.0866135311, -0.1245275681, 1.2001272431, -3.1729085522, more...

decimal, non-monotonic, +-

a(n)=tan(n)
n≥0
2 operations
Trigonometric

Sequence 3bmepyefoqlfp

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence 5as1ecrpxvlwn

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime

Sequence fikvnefgblguh

1, 0.5403023059, -0.4161468365, -0.9899924966, -0.6536436209, 0.2836621855, 0.9601702867, 0.7539022543, -0.1455000338, -0.9111302619, -0.8390715291, 0.004425698, 0.8438539587, 0.9074467815, 0.1367372182, -0.7596879129, -0.9576594803, -0.2751633381, 0.6603167082, 0.9887046182, 0.4080820618, -0.5477292602, -0.9999608264, -0.5328330203, 0.4241790073, 0.9912028119, 0.6469193223, -0.2921388087, -0.9626058663, -0.7480575297, 0.1542514499, 0.9147423578, 0.8342233605, -0.0132767472, -0.8485702748, -0.9036922051, -0.1279636896, 0.7654140519, 0.955073644, 0.2666429324, -0.6669380617, -0.9873392775, -0.399985315, 0.5551133015, 0.9998433086, 0.5253219888, -0.4321779449, -0.9923354692, -0.6401443395, 0.3005925437, more...

decimal, non-monotonic, +-

a(n)=cos(n)
n≥0
2 operations
Trigonometric

Sequence ah3e125oj0u1p

1, 0.5403023059, 0.8575532158, 0.6542897905, 0.7934803587, 0.7013687736, 0.7639596829, 0.722102425, 0.7504177618, 0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, 0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, 0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, 0.7390182624, 0.7391301765, 0.7390547907, 0.7391055719, 0.7390713653, 0.7390944074, 0.739078886, 0.7390893414, 0.7390822985, 0.7390870427, 0.739083847, 0.7390859996, 0.7390845496, 0.7390855264, 0.7390848684, 0.7390853116, 0.739085013, 0.7390852142, 0.7390850787, 0.7390851699, 0.7390851085, 0.7390851499, 0.739085122, 0.7390851408, 0.7390851281, 0.7390851366, 0.7390851309, 0.7390851348, 0.7390851322, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric
a(n)=cos(λ(n)*a(n-1))
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence 1r0kz5stvechb

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric
a(n)=pt(n%p(P(n)))
P(n)=Partition numbers
p(n)=nth prime
pt(n)=Pascals triangle by rows
n≥0
6 operations
Prime

Sequence 2q1rtmulmg2m

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence rr0pwa4zvo2oh

1, 1.5574077247, 74.6859333988, -0.8635188549, -1.1698563551, -2.3590377342, 0.994329619, 1.5381535569, 30.623773508, -1.0136018143, -1.6050123678, 29.2146517707, 1.3701487455, 4.9167999905, -4.8237768261, 8.9404801577, -0.5260857889, -0.580671062, -0.6561279832, -0.7699191877, -0.9695115437, -1.4576737055, -8.8022251344, 0.7177699669, 0.8731301134, 1.1928808263, 2.5189063581, -0.7179722179, -0.8734866146, -1.1937449837, -2.525267346, 0.7083759388, 0.8567086986, 1.1538533121, 2.2577904353, -1.2190733997, -2.7249276145, 0.4425784376, 0.4739342704, 0.5129252615, 0.5632055447, 0.6314240774, 0.7312981266, 0.8972580163, 1.2530863851, 3.0409021585, -0.1010321668, -0.1013773381, -0.1017260691, -0.1020784213, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence okvxpoucbqnai

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime

Sequence 1ouwsby2jnaal

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime

Sequence f01q4ekd0c3wl

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime

Sequence 4rlzjihdzbx0j

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence 3mrt3vz22vub

2, -2.1850398633, 1.4179285755, 6.4905666027, 0.2104062939, 0.2135672329, 0.2168745891, 0.2203400038, 0.2239764545, 0.2277984593, 0.2318223191, 0.2360664093, 0.2405515319, 0.2453013428, 0.2503428748, 0.2557071833, 0.2614301483, 0.2675534819, 0.2741260035, 0.2812052743, 0.2888597143, 0.29717138, 0.3062396633, 0.3161862901, 0.3271621997, 0.3393571977, 0.3530138063, 0.36844765, 0.3860783527, 0.4064779968, 0.4304502627, 0.4591661041, 0.4944106058, 0.5390669794, 0.5981620619, 0.6814420213, 0.8110491682, 1.0526644569, 1.7541276955, -5.3933560809, 1.2341684767, 2.8575733066, -0.2919110814, -0.3004952402, -0.309878962, -0.3201940526, -0.3316047823, -0.3443189159, -0.3586036845, -0.3748095438, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence t1quy0niauvve

2, -0.4161468365, 0.9146533259, 0.6100652997, 0.819610608, 0.6825058579, 0.7759946131, 0.713724734, 0.7559287136, 0.7276347923, 0.7467496017, 0.7339005972, 0.7425675503, 0.7367348584, 0.7406662639, 0.7380191412, 0.7398027782, 0.7386015286, 0.7394108086, 0.7388657151, 0.7392329181, 0.7389855755, 0.7391521928, 0.7390399594, 0.7391155621, 0.7390646356, 0.7390989405, 0.7390758324, 0.7390913983, 0.7390809129, 0.739087976, 0.7390832183, 0.7390864232, 0.7390842643, 0.7390857185, 0.7390847389, 0.7390853988, 0.7390849543, 0.7390852537, 0.739085052, 0.7390851879, 0.7390850964, 0.739085158, 0.7390851165, 0.7390851445, 0.7390851256, 0.7390851383, 0.7390851298, 0.7390851355, 0.7390851317, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric
a(n)=cos(λ(n)*a(n-1))
a(0)=2
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence ouafxhsnphn5h

3, -0.9899924966, 0.5486961336, 0.8532053115, 0.6575716719, 0.7914787497, 0.7027941118, 0.7630391878, 0.7227389048, 0.7499969197, 0.7316909685, 0.744045682, 0.7357345683, 0.7413379612, 0.7375657269, 0.7401077701, 0.7383958864, 0.7395492426, 0.738772424, 0.7392957418, 0.7389432484, 0.7391807011, 0.7390207542, 0.7391284982, 0.7390559213, 0.7391048104, 0.7390718783, 0.7390940618, 0.7390791188, 0.7390891846, 0.7390824041, 0.7390869715, 0.7390838949, 0.7390859674, 0.7390845713, 0.7390855117, 0.7390848783, 0.739085305, 0.7390850175, 0.7390852111, 0.7390850807, 0.7390851686, 0.7390851094, 0.7390851493, 0.7390851224, 0.7390851405, 0.7390851283, 0.7390851365, 0.739085131, 0.7390851347, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric
a(n)=cos(λ(n)*a(n-1))
a(0)=3
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence yhluupeaw422k

4, -0.7568024953, -0.6866002607, -0.6339114733, -0.5923008211, -0.5582713944, -0.5297208351, -0.5052924561, -0.4840633697, -0.4653795417, -0.4487620117, -0.4338504581, -0.4203676381, -0.4080961118, -0.396862511, -0.3865266117, -0.3769735599, -0.3681082271, -0.3598510343, -0.3521348129, -0.3449024095, -0.3381048356, -0.3316998193, -0.3256506605, -0.3199253171, -0.3144956681, -0.3093369149, -0.3044270912, -0.2997466587, -0.295278171, -0.2910059934, -0.2869160673, -0.2829957104, -0.279233448, -0.2756188684, -0.2721424995, -0.2687957016, -0.2655705758, -0.2624598839, -0.2594569788, -0.2565557438, -0.2537505389, -0.2510361544, -0.2484077692, -0.2458609141, -0.2433914397, -0.2409954872, -0.2386694631, -0.2364100153, -0.2342140137, more...

decimal, non-monotonic, +-

a(n)=sin(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence fg4yulgnh1zpk

4, -0.6536436209, 0.7938734492, 0.7010885251, 0.7641404872, 0.7219773353, 0.7505004357, 0.7313476609, 0.7442750118, 0.7355792307, 0.7414422043, 0.7374953302, 0.7401551092, 0.7383639616, 0.7395707309, 0.7387579417, 0.7393054938, 0.7389366777, 0.7391851265, 0.7390177729, 0.7391305063, 0.7390545686, 0.7391057216, 0.7390712645, 0.7390944753, 0.7390788403, 0.7390893722, 0.7390822778, 0.7390870567, 0.7390838375, 0.739086006, 0.7390845453, 0.7390855292, 0.7390848664, 0.7390853129, 0.7390850122, 0.7390852148, 0.7390850783, 0.7390851702, 0.7390851083, 0.73908515, 0.7390851219, 0.7390851408, 0.7390851281, 0.7390851367, 0.7390851309, 0.7390851348, 0.7390851322, 0.7390851339, 0.7390851327, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric
a(n)=cos(λ(n)*a(n-1))
a(0)=4
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence cm3vpgjhl0zq

4, 1.1578212823, 2.2822044502, -1.1601196382, -2.2965489606, 1.1270177622, 2.1034705609, -1.6963098104, 7.9253896577, -13.9802177389, -6.3190857462, -0.0359158703, -0.0359313215, -0.0359467927, -0.0359622838, -0.035977795, -0.0359933263, -0.0360088777, -0.0360244493, -0.0360400411, -0.0360556532, -0.0360712855, -0.0360869382, -0.0361026113, -0.0361183049, -0.0361340189, -0.0361497535, -0.0361655086, -0.0361812843, -0.0361970807, -0.0362128978, -0.0362287357, -0.0362445944, -0.0362604739, -0.0362763742, -0.0362922956, -0.0363082379, -0.0363242012, -0.0363401856, -0.0363561911, -0.0363722178, -0.0363882657, -0.0364043348, -0.0364204253, -0.0364365371, -0.0364526703, -0.0364688249, -0.0364850011, -0.0365011988, -0.0365174181, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence hy5hsgaezwjkf

5, -3.3805150062, -0.2435748198, -0.2485089388, -0.2537542469, -0.2593447991, -0.2653200961, -0.271726255, -0.2786175037, -0.2860581081, -0.2941248901, -0.3029105609, -0.3125282017, -0.3231173902, -0.334852733, -0.3479560093, -0.3627138747, -0.3795044015, -0.3988381736, -0.4214243829, -0.4482820782, -0.4809380349, -0.5218037029, -0.5749593143, -0.6479877239, -0.7570340526, -0.9448220537, -1.3831891801, -5.2676044016, 1.6121122882, -24.1899473689, 1.377297142, 5.1033191253, -2.4263444372, 0.8686956452, 1.1821927342, 2.4424587403, -0.8408089276, -1.1174497367, -2.0525904246, 1.912435906, -2.8122853819, 0.3417510496, 0.3557082591, 0.3715109333, 0.389602417, 0.41059023, 0.4353331118, 0.4650917539, 0.5018064868, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence ifg0lh2dr42dd

5, -0.9589242747, -0.8185741445, -0.7301723379, -0.6669980469, -0.6186301966, -0.5799197623, -0.5479568192, -0.5209442774, -0.4976993782, -0.4774052861, -0.4594761256, -0.4434786271, -0.4290841753, -0.4160381744, -0.4041397633, -0.393227969, -0.383172007, -0.3738643292, -0.3652155428, -0.3571506298, -0.3496060903, -0.3425277529, -0.335869075, -0.329589809, -0.3236549431, -0.3180338532, -0.3126996177, -0.3076284582, -0.3027992818, -0.2981933014, -0.2937937202, -0.2895854678, -0.2855549776, -0.2816899987, -0.2779794356, -0.2744132113, -0.27098215, -0.2676778755, -0.2644927235, -0.2614196658, -0.2584522431, -0.2555845078, -0.2528109723, -0.2501265642, -0.2475265869, -0.2450066842, -0.2425628094, -0.2401911972, -0.2378883392, more...

decimal, non-monotonic, +-

a(n)=sin(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence 1rp3hrfjrpsjl

5, 0.2836621855, 0.9600369303, 0.5734897327, 0.840012681, 0.667453383, 0.785400536, 0.7071051035, 0.760245687, 0.7246667299, 0.7487203836, 0.7325605057, 0.743464438, 0.7361281031, 0.7410737901, 0.7377440895, 0.7399878116, 0.7384767772, 0.7394947924, 0.7388091199, 0.739271031, 0.7389598975, 0.7391694877, 0.7390283084, 0.7391234099, 0.739059349, 0.7391025015, 0.7390734336, 0.7390930142, 0.7390798245, 0.7390887092, 0.7390827244, 0.7390867558, 0.7390840402, 0.7390858695, 0.7390846373, 0.7390854673, 0.7390849082, 0.7390852848, 0.7390850311, 0.739085202, 0.7390850869, 0.7390851644, 0.7390851122, 0.7390851474, 0.7390851237, 0.7390851396, 0.7390851289, 0.7390851361, 0.7390851313, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric
a(n)=cos(λ(n)*a(n-1))
a(0)=5
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence vp2pleig2e5vd

-13.4636851994, 2.5879002655, 1.8817209493, 1.6916881673, 1.6184721971, 1.5863858136, 1.5714641226, 1.5643091081, 1.560819947, 1.5591018811, 1.558251022, 1.5578281619, 1.5576175513, 1.5575125102, 1.5574600756, 1.5574338863, 1.5574208009, 1.5574142613, 1.5574109925, 1.5574093584, 1.5574085415, 1.557408133, 1.5574079288, 1.5574078267, 1.5574077757, 1.5574077502, 1.5574077374, 1.557407731, 1.5574077278, 1.5574077263, 1.5574077255, 1.5574077251, 1.5574077249, 1.5574077248, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, more...

decimal, non-monotonic, +-

a(n)=tan(ζ(n))
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence 2u1are4bjfkup

-2.1850398633, -0.1425465431, -3.3805150062, 0.8714479827, -225.9508464542, 0.4630211329, 3.4939156455, 0.1515894706, 1.5881530834, 0.8871428438, -0.441695568, -0.8407712554, 0.1606566987, -1.4983873389, -0.1245275681, -0.4311581967, -0.8257740092, 3.7431679443, 1.652317264, -3.0776204032, 0.9192864044, 0.4956775332, 3.8805963104, 1.6858253705, -0.410321299, 0.5067526002, -0.7964255049, 0.1880195193, -1.4154931063, -0.0976440909, 4.1858918319, -1.3892350875, -2.8205029711, 0.9695194089, 4.3561478017, 0.2064113266, -0.0798014341, -0.3796235128, 0.5405892391, 0.2156570057, -0.0708996963, -2.6694940005, -0.7401261985, 4.7393732858, -1.3141827972, 1.8697005118, 0.5636889887, -0.0531283073, 1.0406776805, -0.3495385984, more...

decimal, non-monotonic, +-

a(n)=tan(p(n))
p(n)=nth prime
n≥0
3 operations
Prime

Sequence qtn4igfox0zfo

-1, -3, -4, -7, -6, -12, -8, -15, -13, -18, -12, -28, -14, -24, -24, -31, -18, -39, -20, -42, -32, -36, -24, -60, -31, -42, -40, -56, -30, -72, -32, -63, -48, -54, -48, -91, -38, -60, -56, -90, -42, -96, -44, -84, -78, -72, -48, -124, -57, -93, more...

integer, non-monotonic, -

a(n)=-σ(n)
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence c5dglrcjdavhh

-1, -2, -3, -2, -5, -3, -7, -2, -3, -5, -11, -3, -13, -7, -5, -2, -17, -3, -19, -5, -7, -11, -23, -3, -5, -13, -3, -7, -29, -5, -31, -2, -11, -17, -7, -3, -37, -19, -13, -5, -41, -7, -43, -11, -5, -23, -47, -3, -7, -5, more...

integer, non-monotonic, -

a(n)=-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence yllw0pgoktc1h

-1, -2, -3, -2, -5, -2, -7, -2, -3, -2, -11, -2, -13, -2, -3, -2, -17, -2, -19, -2, -3, -2, -23, -2, -5, -2, -3, -2, -29, -2, -31, -2, -3, -2, -5, -2, -37, -2, -3, -2, -41, -2, -43, -2, -3, -2, -47, -2, -7, -2, more...

integer, non-monotonic, -

a(n)=-lpf(n)
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence xs5ftugsnt13o

-1, -2, -2, -3, -2, -4, -2, -4, -3, -4, -2, -6, -2, -4, -4, -5, -2, -6, -2, -6, -4, -4, -2, -8, -3, -4, -4, -6, -2, -8, -2, -6, -4, -4, -4, -9, -2, -4, -4, -8, -2, -8, -2, -6, -6, -4, -2, -10, -3, -6, more...

integer, non-monotonic, -

a(n)=-τ(n)
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence fuae1h3b5z4np

-1, -1, -2, -2, -4, -2, -6, -4, -6, -4, -10, -4, -12, -6, -8, -8, -16, -6, -18, -8, -12, -10, -22, -8, -20, -12, -18, -12, -28, -8, -30, -16, -20, -16, -24, -12, -36, -18, -24, -16, -40, -12, -42, -20, -24, -22, -46, -16, -42, -20, more...

integer, non-monotonic, -

a(n)=-ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence afpks0yvdxnmm

-1, -1, -1, -1, -2, -1, -1, -3, -3, -1, -1, -4, -6, -4, -1, -1, -5, -10, -10, -5, -1, -1, -6, -15, -20, -15, -6, -1, -1, -7, -21, -35, -35, -21, -7, -1, -1, -8, -28, -56, -70, -56, -28, -8, -1, -1, -9, -36, -84, -126, more...

integer, non-monotonic, -

a(n)=-pt(n)
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence kzzug0thfnuxm

-1, -0.5403023059, 0.4161468365, 0.9899924966, 0.6536436209, -0.2836621855, -0.9601702867, -0.7539022543, 0.1455000338, 0.9111302619, 0.8390715291, -0.004425698, -0.8438539587, -0.9074467815, -0.1367372182, 0.7596879129, 0.9576594803, 0.2751633381, -0.6603167082, -0.9887046182, -0.4080820618, 0.5477292602, 0.9999608264, 0.5328330203, -0.4241790073, -0.9912028119, -0.6469193223, 0.2921388087, 0.9626058663, 0.7480575297, -0.1542514499, -0.9147423578, -0.8342233605, 0.0132767472, 0.8485702748, 0.9036922051, 0.1279636896, -0.7654140519, -0.955073644, -0.2666429324, 0.6669380617, 0.9873392775, 0.399985315, -0.5551133015, -0.9998433086, -0.5253219888, 0.4321779449, 0.9923354692, 0.6401443395, -0.3005925437, more...

decimal, non-monotonic, +-

a(n)=-cos(n)
n≥0
3 operations
Trigonometric

Sequence dudoyi5ajsrhb

-1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, more...

integer, non-monotonic, +-

a(n)=-λ(n)
λ(n)=Liouville's function
n≥1
3 operations
Prime

Sequence lyu0d1h5rvlyg

-1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=-μ(n)
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence fuu1qmrem5tae

-0.4161468365, -0.9899924966, 0.2836621855, 0.7539022543, 0.004425698, 0.9074467815, -0.2751633381, 0.9887046182, -0.5328330203, -0.7480575297, 0.9147423578, 0.7654140519, -0.9873392775, 0.5551133015, -0.9923354692, -0.9182827862, -0.771080223, -0.2581016359, -0.5177697998, -0.3090227282, -0.7361927182, -0.8959709468, 0.249540118, 0.5101770449, -0.9251475366, 0.8920048698, -0.7822308899, 0.982779582, -0.5770021789, 0.9952666362, 0.232359102, 0.5842088171, 0.3341653826, 0.7179641014, -0.2237409501, 0.9793545964, 0.9968309934, 0.9349004049, -0.8796885925, -0.9775269404, -0.9974960527, 0.3507973421, -0.8037933932, -0.2064527345, -0.6055518643, -0.4716257125, -0.8711325991, -0.9985916722, 0.6928740864, -0.9439940861, more...

decimal, non-monotonic, +-

a(n)=cos(p(n))
p(n)=nth prime
n≥0
3 operations
Prime

Sequence tv4jogof1uuvp

0, -1.5574077247, 2.1850398633, 0.1425465431, -1.1578212823, 3.3805150062, 0.2910061914, -0.8714479827, 6.7997114552, 0.4523156594, -0.6483608275, 225.9508464542, 0.6358599287, -0.4630211329, -7.2446066161, 0.8559934009, -0.300632242, -3.4939156455, 1.1373137123, -0.1515894706, -2.2371609442, 1.5274985276, -0.008851656, -1.5881530834, 2.1348966977, 0.133526407, -1.1787535542, 3.2737038004, 0.2814296046, -0.8871428438, 6.4053311966, 0.441695568, -0.6610060415, 75.3130148001, 0.6234989627, -0.4738147204, -7.7504709057, 0.8407712554, -0.310309661, -3.6145544071, 1.1172149309, -0.1606566987, -2.2913879924, 1.4983873389, -0.0177046993, -1.6197751905, 2.0866135311, 0.1245275681, -1.2001272431, 3.1729085522, more...

decimal, non-monotonic, +-

a(n)=tan(-n)
n≥0
3 operations
Trigonometric

Sequence vxxvaleofb2dn

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-monotonic, -

a(n)=-Ω(n)
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence mtmzd4xqkm1tc

0, -1, -0.5403023059, -0.8575532158, -0.6542897905, -0.7934803587, -0.7013687736, -0.7639596829, -0.722102425, -0.7504177618, -0.7314040424, -0.7442373549, -0.7356047404, -0.7414250866, -0.7375068905, -0.7401473356, -0.7383692041, -0.7395672022, -0.7387603199, -0.7393038924, -0.7389377567, -0.7391843998, -0.7390182624, -0.7391301765, -0.7390547907, -0.7391055719, -0.7390713653, -0.7390944074, -0.739078886, -0.7390893414, -0.7390822985, -0.7390870427, -0.739083847, -0.7390859996, -0.7390845496, -0.7390855264, -0.7390848684, -0.7390853116, -0.739085013, -0.7390852142, -0.7390850787, -0.7390851699, -0.7390851085, -0.7390851499, -0.739085122, -0.7390851408, -0.7390851281, -0.7390851366, -0.7390851309, -0.7390851348, more...

decimal, non-monotonic, -

a(n)=-cos(a(n-1))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence hv1vt4pluifkc

0, -1, -0.3678794412, -0.6922006276, -0.5004735006, -0.6062435351, -0.545395786, -0.5796123355, -0.5601154614, -0.5711431151, -0.5648793474, -0.568428725, -0.5664147331, -0.5675566373, -0.5669089119, -0.5672762322, -0.5670678984, -0.5671860501, -0.5671190401, -0.567157044, -0.5671354902, -0.5671477143, -0.5671407815, -0.5671447133, -0.5671424834, -0.5671437481, -0.5671430308, -0.5671434376, -0.5671432069, -0.5671433378, -0.5671432636, -0.5671433056, -0.5671432818, -0.5671432953, -0.5671432876, -0.567143292, -0.5671432895, -0.5671432909, -0.5671432901, -0.5671432906, -0.5671432903, -0.5671432905, -0.5671432904, -0.5671432904, -0.5671432904, -0.5671432904, -0.5671432904, -0.5671432904, -0.5671432904, -0.5671432904, more...

decimal, non-monotonic, -

a(n)=-exp(a(n-1))
a(0)=0
n≥0
3 operations
Power

Sequence dz3fv1sxj2izc

0, -0.8414709848, -0.9092974268, -0.1411200081, 0.7568024953, 0.9589242747, 0.2794154982, -0.6569865987, -0.9893582466, -0.4121184852, 0.5440211109, 0.9999902066, 0.536572918, -0.4201670368, -0.9906073557, -0.6502878402, 0.2879033167, 0.9613974919, 0.7509872468, -0.1498772097, -0.9129452507, -0.8366556385, 0.0088513093, 0.8462204042, 0.905578362, 0.1323517501, -0.7625584505, -0.9563759284, -0.2709057883, 0.6636338842, 0.9880316241, 0.4040376453, -0.5514266812, -0.9999118601, -0.5290826861, 0.4281826695, 0.9917788534, 0.6435381334, -0.2963685787, -0.9637953863, -0.7451131605, 0.1586226688, 0.9165215479, 0.8317747426, -0.0177019251, -0.8509035245, -0.9017883476, -0.1235731227, 0.7682546613, 0.9537526528, more...

decimal, non-monotonic, +-

a(n)=sin(-n)
n≥0
3 operations
Trigonometric

Sequence j1jkkulgv1q5j

0, -0.6931471806, -1.0986122887, -0.6931471806, -1.6094379124, 0, -1.9459101491, -0.6931471806, -1.0986122887, 0, -2.3978952728, 0, -2.5649493575, 0, 0, -0.6931471806, -2.8332133441, 0, -2.9444389792, 0, 0, 0, -3.1354942159, 0, -1.6094379124, 0, -1.0986122887, 0, -3.36729583, 0, -3.4339872045, -0.6931471806, 0, 0, 0, 0, -3.6109179126, 0, 0, 0, -3.7135720667, 0, -3.7612001157, 0, 0, 0, -3.8501476017, 0, -1.9459101491, 0, more...

decimal, non-monotonic, -

a(n)=-Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence yqcqonw3vwoec

0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, more...

integer, non-monotonic, -, A000493

a(n)=floor(sin(n))
n≥0
3 operations
Trigonometric

Sequence po5b0foth54gk

0, 0, 0, 0, 0.6931471806, 0, 0, 1.0986122887, 1.0986122887, 0, 0, 1.3862943611, 1.7917594692, 1.3862943611, 0, 0, 1.6094379124, 2.302585093, 2.302585093, 1.6094379124, 0, 0, 1.7917594692, 2.7080502011, 2.9957322736, 2.7080502011, 1.7917594692, 0, 0, 1.9459101491, 3.0445224377, 3.5553480615, 3.5553480615, 3.0445224377, 1.9459101491, 0, 0, 2.0794415417, 3.3322045102, 4.0253516907, 4.248495242, 4.0253516907, 3.3322045102, 2.0794415417, 0, 0, 2.1972245773, 3.5835189385, 4.4308167988, 4.836281907, more...

decimal, non-monotonic, +

a(n)=log(pt(n))
pt(n)=Pascals triangle by rows
n≥0
3 operations
Combinatoric

Sequence 2ruuf4wx3upoh

0, 0, 0, 0.6931471806, 0, 0, 1.0986122887, 1.0986122887, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 1.6094379124, 0, 0, 1.6094379124, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.9459101491, 0, 0, 0, 0, 1.9459101491, 0, 0, 0.6931471806, 0, 0, 0, 0, 0, 0.6931471806, 0, 0, 1.0986122887, 0, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=Λ(pt(n))
pt(n)=Pascals triangle by rows
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence jfh4cz5bd3uvl

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0, 1.0986122887, 0, 1.6094379124, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 1.0986122887, 1.0986122887, 0.6931471806, 0, 1.6094379124, 0.6931471806, 1.0986122887, more...

decimal, non-monotonic, +

a(n)=Λ(Ω(n))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence mzw5q42g3eiyl

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 1, 2, 2, 1, 0, 0, 2, 2, 3, 2, 2, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 3, 3, 4, 3, 4, 3, 3, 0, 0, 2, 4, 4, 4, 4, more...

integer, non-monotonic, +

a(n)=Ω(pt(n))
pt(n)=Pascals triangle by rows
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence avarweu42domk

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=Ω(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence c4fjjypuxjuik

0, 0, 0.6931471806, 0, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0, 1.0986122887, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 1.3862943611, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0, 1.0986122887, 0, 1.6094379124, 0.6931471806, 0.6931471806, 0.6931471806, 1.3862943611, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0, 1.0986122887, 0, 1.0986122887, 1.0986122887, 0.6931471806, 0, 1.6094379124, 0.6931471806, 1.0986122887, 0.6931471806, more...

decimal, non-monotonic, +

a(n)=log(Ω(n))
Ω(n)=max factorization terms
n≥2
3 operations
Prime

Sequence ng3ifz13fcfsp

0, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0, 0, 0, 0.6931471806, 0, 0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0, 0, 0, 0.6931471806, 0, 0, 0, 0, 0, 0, 0, 0.6931471806, 0, 0, more...

decimal, non-monotonic, +

a(n)=Λ(ϕ(n))
ϕ(n)=number of relative primes (Euler's totient)
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence t3c44fow4pxrd

0, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0.6931471806, 1.7917594692, 1.3862943611, 1.7917594692, 1.3862943611, 2.302585093, 1.3862943611, 2.4849066498, 1.7917594692, 2.0794415417, 2.0794415417, 2.7725887222, 1.7917594692, 2.8903717579, 2.0794415417, 2.4849066498, 2.302585093, 3.0910424534, 2.0794415417, 2.9957322736, 2.4849066498, 2.8903717579, 2.4849066498, 3.3322045102, 2.0794415417, 3.4011973817, 2.7725887222, 2.9957322736, 2.7725887222, 3.1780538303, 2.4849066498, 3.5835189385, 2.8903717579, 3.1780538303, 2.7725887222, 3.6888794541, 2.4849066498, 3.7376696183, 2.9957322736, 3.1780538303, 3.0910424534, 3.8286413965, 2.7725887222, 3.7376696183, 2.9957322736, more...

decimal, non-monotonic, +

a(n)=log(ϕ(n))
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence peyn0olxy0mle

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 1, 0, more...

integer, non-monotonic, +

a(n)=floor(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence kqhawrntvxs0k

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 2, 2, 4, 3, 3, more...

integer, non-monotonic, +

a(n)=Ω(ϕ(n))
ϕ(n)=number of relative primes (Euler's totient)
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence cxqfjhqbwe2jl

0, 0.5403023059, -0.1452141099, 0.6487640871, -0.3357285103, 0.7552131116, -0.5288700806, 0.8313463668, -0.6635935057, 0.8702940229, -0.7289702336, 0.8858815481, -0.7541277861, 0.8913776604, -0.7628376201, 0.8932193154, -0.7657363194, 0.8938254118, -0.7666880755, 0.8940236799, -0.7669991769, 0.8940884091, -0.7671007175, 0.8941095277, -0.7671338435, 0.8941164165, -0.7671446487, 0.8941186633, -0.767148173, 0.8941193962, -0.7671493224, 0.8941196352, -0.7671496973, 0.8941197132, -0.7671498196, 0.8941197386, -0.7671498595, 0.8941197469, -0.7671498725, 0.8941197496, -0.7671498768, 0.8941197505, -0.7671498781, 0.8941197508, -0.7671498786, 0.8941197509, -0.7671498787, 0.8941197509, -0.7671498788, 0.8941197509, more...

decimal, non-monotonic, +-

a(n)=cos(exp(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence tvzcjgetvy3zm

0, 0.6389612763, 0.8905770417, 0.6389612763, 0.9992535068, 0, 0.9304659259, 0.6389612763, 0.8905770417, 0, 0.6770136959, 0, 0.5452130972, 0, 0, 0.6389612763, 0.3035147985, 0, 0.1958789412, 0, 0, 0, 0.0060983999, 0, 0.9992535068, 0, 0.8905770417, 0, -0.2237917591, 0, -0.2882459668, 0.6389612763, 0, 0, 0, 0, -0.4522846047, 0, 0, 0, -0.5412974603, 0, -0.5807156376, 0, 0, 0, -0.6507372186, 0, 0.9304659259, 0, more...

decimal, non-monotonic, +-

a(n)=sin(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence gigom3zw1snbh

0, 0.6389612763, 0.8905770417, 0.9830277404, 0.9992535068, 0.9756868105, 0.9304659259, 0.8734050818, 0.8101266272, 0.743980337, 0.6770136959, 0.6104954587, 0.5452130972, 0.4816489515, 0.420088148, 0.3606865907, 0.3035147985, 0.2485867156, 0.1958789412, 0.1453437273, 0.0969178449, 0.0505286743, 0.0060983999, -0.0364530986, -0.0772062629, -0.116240509, -0.1536333284, -0.1894597053, -0.2237917591, -0.256698545, -0.2882459668, -0.3184967683, -0.3475105776, -0.3753439899, -0.4020506719, -0.4276814832, -0.4522846047, -0.475905671, -0.498587903, -0.5203722388, -0.5412974603, -0.561400316, -0.5807156376, -0.5992764521, -0.6171140865, -0.6342582682, -0.6507372186, -0.6665777418, -0.6818053073, -0.6964441283, more...

decimal, non-monotonic, +-

a(n)=sin(log(n))
n≥1
3 operations
Trigonometric

Sequence da2x1aan3aikl

0, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.6094379124, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, more...

decimal, non-monotonic, +

a(n)=Λ(τ(n))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence nd5ihn2nu41fd

0, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.3862943611, 0.6931471806, 1.3862943611, 1.0986122887, 1.3862943611, 0.6931471806, 1.7917594692, 0.6931471806, 1.3862943611, 1.3862943611, 1.6094379124, 0.6931471806, 1.7917594692, 0.6931471806, 1.7917594692, 1.3862943611, 1.3862943611, 0.6931471806, 2.0794415417, 1.0986122887, 1.3862943611, 1.3862943611, 1.7917594692, 0.6931471806, 2.0794415417, 0.6931471806, 1.7917594692, 1.3862943611, 1.3862943611, 1.3862943611, 2.1972245773, 0.6931471806, 1.3862943611, 1.3862943611, 2.0794415417, 0.6931471806, 2.0794415417, 0.6931471806, 1.7917594692, 1.7917594692, 1.3862943611, 0.6931471806, 2.302585093, 1.0986122887, 1.7917594692, more...

decimal, non-monotonic, +

a(n)=log(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence chazdove02lve

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0.6931471806, 1.9459101491, 0.6931471806, 1.0986122887, 0.6931471806, 2.3978952728, 0.6931471806, 2.5649493575, 0.6931471806, 1.0986122887, 0.6931471806, 2.8332133441, 0.6931471806, 2.9444389792, 0.6931471806, 1.0986122887, 0.6931471806, 3.1354942159, 0.6931471806, 1.6094379124, 0.6931471806, 1.0986122887, 0.6931471806, 3.36729583, 0.6931471806, 3.4339872045, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0.6931471806, 3.6109179126, 0.6931471806, 1.0986122887, 0.6931471806, 3.7135720667, 0.6931471806, 3.7612001157, 0.6931471806, 1.0986122887, 0.6931471806, 3.8501476017, 0.6931471806, 1.9459101491, 0.6931471806, more...

decimal, non-monotonic, +

a(n)=log(lpf(n))
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence xoofch2fdkvse

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 1.0986122887, 1.9459101491, 0.6931471806, 1.0986122887, 1.6094379124, 2.3978952728, 1.0986122887, 2.5649493575, 1.9459101491, 1.6094379124, 0.6931471806, 2.8332133441, 1.0986122887, 2.9444389792, 1.6094379124, 1.9459101491, 2.3978952728, 3.1354942159, 1.0986122887, 1.6094379124, 2.5649493575, 1.0986122887, 1.9459101491, 3.36729583, 1.6094379124, 3.4339872045, 0.6931471806, 2.3978952728, 2.8332133441, 1.9459101491, 1.0986122887, 3.6109179126, 2.9444389792, 2.5649493575, 1.6094379124, 3.7135720667, 1.9459101491, 3.7612001157, 2.3978952728, 1.6094379124, 3.1354942159, 3.8501476017, 1.0986122887, 1.9459101491, 1.6094379124, more...

decimal, non-monotonic, +

a(n)=log(gpf(n))
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence qohnuacuq4syg

0, 0.6931471806, 1.0986122887, 1.6094379124, 1.9459101491, 2.3978952728, 0, 0, 0, 0, 0, 0, 4.6151205168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.796848442, 0, 0, 0, 0, 0, more...

decimal, non-monotonic, +

a(n)=Λ(P(n))
P(n)=Partition numbers
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence bdohp0nwkeiyk

0, 0.7456241417, 0.7890723436, 0.1406520768, -0.6866002607, -0.8185741445, -0.2757938628, 0.6107335082, 0.8356736829, 0.400551339, -0.5175807675, -0.8414656933, -0.5111935402, 0.4079129668, 0.8363590743, 0.6054155255, -0.2839424641, -0.8199922576, -0.6823607852, 0.1493167198, 0.7913079479, 0.7424067229, -0.0088511937, -0.7487805754, -0.7867822693, -0.1319656878, 0.6907736454, 0.8171077158, 0.2676042996, -0.6159835378, -0.8349443318, -0.3931340756, 0.5239029773, 0.8414233594, 0.5047416637, -0.4152182238, -0.8370006942, -0.6000296192, 0.2920490365, 0.8213623928, 0.678054989, -0.157958317, -0.7934894947, -0.7391279391, 0.0177010006, 0.7518764094, 0.7844373111, 0.1232588627, -0.6948811817, -0.8155926269, more...

decimal, non-monotonic, +-

a(n)=sin(sin(n))
n≥0
3 operations
Trigonometric

Sequence caprmimf20p2h

0, 0.8306408779, 1.9580333261, 0.8306408779, -25.8659734032, 0, -2.5396306834, 0.8306408779, 1.9580333261, 0, -0.9198925388, 0, -0.6503814039, 0, 0, 0.8306408779, -0.3185414417, 0, -0.1997484513, 0, 0, 0, -0.0060985133, 0, -25.8659734032, 0, 1.9580333261, 0, 0.229615501, 0, 0.3010224424, 0.8306408779, 0, 0, 0, 0, 0.5071173439, 0, 0, 0, 0.6437647396, 0, 0.7133165715, 0, 0, 0, 0.8570191394, 0, -2.5396306834, 0, more...

decimal, non-monotonic, +-

a(n)=tan(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence vclot3nu051sh

0, 0.8306408779, 1.9580333261, 5.3583557768, -25.8659734032, -4.451746403, -2.5396306834, -1.7934601498, -1.3818674774, -1.1134071468, -0.9198925388, -0.7708083714, -0.6503814039, -0.5495990451, -0.4629155666, -0.3867176888, -0.3185414417, -0.2566428249, -0.1997484513, -0.1469036648, -0.0973762549, -0.0505933016, -0.0060985133, 0.0364773427, 0.0774374025, 0.1170338705, 0.1554791887, 0.1929543996, 0.229615501, 0.2655983419, 0.3010224424, 0.3359940103, 0.3706083492, 0.4049518037, 0.4391033457, 0.4731358818, 0.5071173439, 0.5411116061, 0.575179266, 0.609378318, 0.6437647396, 0.6783930094, 0.7133165715, 0.7485882562, 0.7842606688, 0.8203865534, 0.8570191394, 0.8942124759, 0.932021761, 0.9705036696, more...

decimal, non-monotonic, +-

a(n)=tan(log(n))
n≥1
3 operations
Trigonometric

Sequence kpfjetfjbri1l

0, 0.8325546112, 1.048147074, 0.8325546112, 1.2686362412, 0, 1.3949588342, 0.8325546112, 1.048147074, 0, 1.5485138917, 0, 1.6015459274, 0, 0, 0.8325546112, 1.6832151806, 0, 1.7159367643, 0, 0, 0, 1.7707326777, 0, 1.2686362412, 0, 1.048147074, 0, 1.8350192996, 0, 1.8531020491, 0.8325546112, 0, 0, 0, 0, 1.9002415406, 0, 0, 0, 1.9270630677, 0, 1.9393813745, 0, 0, 0, 1.9621792991, 0, 1.3949588342, 0, more...

decimal, non-monotonic, +

a(n)=sqrt(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence olfef5qucupzb

0, 0.8414709848, 0.618134071, 0.7276989929, 0.6792255438, 0.7018985385, 0.6915391975, 0.6963257084, 0.6941252871, 0.6951392307, 0.6946725141, 0.6948874499, 0.6947884887, 0.6948340575, 0.6948130754, 0.6948227368, 0.6948182882, 0.6948203366, 0.6948193934, 0.6948198277, 0.6948196277, 0.6948197198, 0.6948196774, 0.6948196969, 0.6948196879, 0.694819692, 0.6948196901, 0.694819691, 0.6948196906, 0.6948196908, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, 0.6948196907, more...

decimal, non-monotonic, +

a(n)=sin(cos(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence iuyf2acyruakm

0, 0.8414709848, 0.7323834206, 0.8731172352, 0.6796090968, 0.9201589962, 0.5906815798, 0.9726487459, 0.4764844362, 0.9992157596, 0.4127232163, 0.9982083532, 0.415212762, 0.9984266197, 0.4146738481, 0.9983805271, 0.4147876757, 0.9983903159, 0.4147635028, 0.9983882395, 0.4147686304, 0.9983886801, 0.4147675425, 0.9983885866, 0.4147677733, 0.9983886064, 0.4147677243, 0.9983886022, 0.4147677347, 0.9983886031, 0.4147677325, 0.9983886029, 0.414767733, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, 0.4147677329, 0.998388603, more...

decimal, non-monotonic, +

a(n)=sin(exp(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence 4gxvu3zzqpm0b

0, 0.8414709848, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.1411200081, 0.9092974268, 0.9092974268, 0.8414709848, 0.1411200081, 0.8414709848, 0.9092974268, 0.9092974268, -0.7568024953, 0.8414709848, 0.1411200081, 0.8414709848, 0.1411200081, 0.9092974268, 0.9092974268, 0.8414709848, -0.7568024953, 0.9092974268, 0.9092974268, 0.1411200081, 0.1411200081, 0.8414709848, 0.1411200081, 0.8414709848, -0.9589242747, 0.9092974268, 0.9092974268, 0.9092974268, -0.7568024953, 0.8414709848, 0.9092974268, 0.9092974268, -0.7568024953, 0.8414709848, 0.1411200081, 0.8414709848, 0.1411200081, 0.1411200081, 0.9092974268, 0.8414709848, -0.9589242747, 0.9092974268, 0.1411200081, more...

decimal, non-monotonic, +-

a(n)=sin(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence p5e5o5k2uzas

0, 0.8414709848, 0.9092974268, 0.1411200081, 0.7568024953, 0.9589242747, 0.2794154982, 0.6569865987, 0.9893582466, 0.4121184852, 0.5440211109, 0.9999902066, 0.536572918, 0.4201670368, 0.9906073557, 0.6502878402, 0.2879033167, 0.9613974919, 0.7509872468, 0.1498772097, 0.9129452507, 0.8366556385, 0.0088513093, 0.8462204042, 0.905578362, 0.1323517501, 0.7625584505, 0.9563759284, 0.2709057883, 0.6636338842, 0.9880316241, 0.4040376453, 0.5514266812, 0.9999118601, 0.5290826861, 0.4281826695, 0.9917788534, 0.6435381334, 0.2963685787, 0.9637953863, 0.7451131605, 0.1586226688, 0.9165215479, 0.8317747426, 0.0177019251, 0.8509035245, 0.9017883476, 0.1235731227, 0.7682546613, 0.9537526528, more...

decimal, non-monotonic, +

a(n)=abs(sin(n))
n≥0
3 operations
Trigonometric

Sequence xwk0unima3sve

0, 0.8414709848, 0.987765946, 0.987026645, 0.9092974268, 0.7867491315, 0.6381576351, 0.4757718382, 0.3080717424, 0.1411200081, -0.0206835315, -0.1741397834, -0.3169471632, -0.4474917522, -0.5646958988, -0.6679052983, -0.7568024953, -0.8313391792, -0.8916822545, -0.9381702684, -0.971277799, -0.991586081, -0.9997585985, -0.9965206905, -0.9826424396, -0.9589242747, -0.9261848393, -0.8852507661, -0.8369480668, -0.7820948988, -0.721495512, -0.6559352108, -0.586176193, -0.5129541484, -0.4369755173, -0.3589153219, -0.2794154982, -0.1990836625, -0.1184922574, -0.0381780282, 0.0413582135, 0.1196515765, 0.1962728602, 0.2708281386, 0.3429581835, 0.4123377501, 0.4786747459, 0.5417093018, 0.6012127608, 0.6569865987, more...

decimal, non-monotonic, +-

a(n)=sin(sqrt(n))
n≥0
3 operations
Trigonometric

Sequence ev5mg03c4xlud

0, 0.999910374, -0.8172096612, -0.1420642871, 0.9159308854, 0.2366557288, -0.2869162569, 0.7652618331, -0.4938624705, -0.4370494949, 0.6038806746, 0.2414158622, -0.5938695992, 0.4466531706, 0.8200058897, -0.7552224318, 0.2961241514, -0.3450790355, -0.9075084401, 0.1510095656, 0.7860740031, -0.9990627967, 0.0088515405, 0.9998493753, -0.8450699342, -0.1331299802, 0.9241304921, 0.1317271849, -0.2777292949, 0.7752702497, -0.1218423876, -0.42747292, 0.6139113065, 0.0851058129, -0.5838793284, 0.4562840657, 0.9946475462, -0.7451576828, 0.3053535224, -0.4555249007, -0.8988835472, 0.1599664831, 0.7514154623, -0.9973796144, 0.0177037744, 0.9988007752, -0.8698899301, -0.1242059737, 0.932085186, 0.0313107803, more...

decimal, non-monotonic, +-

a(n)=sin(tan(n))
n≥0
3 operations
Trigonometric

Sequence c2nklqeprztrf

0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -226, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -76, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, more...

integer, non-monotonic, +-, A000503

a(n)=floor(tan(n))
n≥0
3 operations
Trigonometric

Sequence 1zhyi1t2v40zo

0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987, 1597, -2584, 4181, -6765, 10946, -17711, 28657, -46368, 75025, -121393, 196418, -317811, 514229, -832040, 1346269, -2178309, 3524578, -5702887, 9227465, -14930352, 24157817, -39088169, 63245986, -102334155, 165580141, -267914296, 433494437, -701408733, 1134903170, -1836311903, 2971215073, -4807526976, 7778742049, more...

integer, non-monotonic, +-

a(n)=a(n-2)-a(n-1)
a(0)=0
a(1)=1
n≥0
3 operations
Recursive
a(n)=a(n-2)^(2-1)-a(n-1)
a(0)=0
a(1)=1
n≥0
7 operations
Power
a(n)=a(n-2)%(2*a(n-1))-a(n-1)
a(0)=0
a(1)=1
n≥0
7 operations
Divisibility

Sequence st1yz2ibiheze

0, 1, 0.0133882021, 0.9999103687, 0.013695165, 0.999906211, 0.0137094018, 0.9999060158, 0.01371007, 0.9999060067, 0.0137101013, 0.9999060063, 0.0137101028, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, 0.0137101029, 0.9999060062, more...

decimal, non-monotonic, +

a(n)=cos(tan(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence bnwk0gxfig5np

0, 1, 0.3678794412, 0.6922006276, 0.5004735006, 0.6062435351, 0.545395786, 0.5796123355, 0.5601154614, 0.5711431151, 0.5648793474, 0.568428725, 0.5664147331, 0.5675566373, 0.5669089119, 0.5672762322, 0.5670678984, 0.5671860501, 0.5671190401, 0.567157044, 0.5671354902, 0.5671477143, 0.5671407815, 0.5671447133, 0.5671424834, 0.5671437481, 0.5671430308, 0.5671434376, 0.5671432069, 0.5671433378, 0.5671432636, 0.5671433056, 0.5671432818, 0.5671432953, 0.5671432876, 0.567143292, 0.5671432895, 0.5671432909, 0.5671432901, 0.5671432906, 0.5671432903, 0.5671432905, 0.5671432904, 0.5671432904, 0.5671432904, 0.5671432904, 0.5671432904, 0.5671432904, 0.5671432904, 0.5671432904, more...

decimal, non-monotonic, +

a(n)=exp(-a(n-1))
a(0)=0
n≥0
3 operations
Power

Sequence vkzlxvpcgvwuk

0, 1, 0.5403023059, 0.7417954881, 0.651470309, 0.6915691614, 0.673689496, 0.6816463881, 0.6781023042, 0.6796802681, 0.6789775765, 0.679290472, 0.6791511407, 0.6792131835, 0.6791855563, 0.6791978585, 0.6791923804, 0.6791948197, 0.6791937335, 0.6791942172, 0.6791940018, 0.6791940977, 0.679194055, 0.679194074, 0.6791940656, 0.6791940693, 0.6791940677, 0.6791940684, 0.6791940681, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, 0.6791940682, more...

decimal, non-monotonic, +

a(n)=cos(sqrt(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence uolpnrkf2y4bj

0, 1, 0.6663667454, 0.8149612096, 0.7467069, 0.7780594582, 0.7636177376, 0.7702653453, 0.7672040628, 0.7686135613, 0.767964533, 0.7682633778, 0.7681257723, 0.7681891334, 0.7681599584, 0.7681733922, 0.7681672065, 0.7681700547, 0.7681687433, 0.7681693471, 0.7681690691, 0.7681691971, 0.7681691381, 0.7681691653, 0.7681691528, 0.7681691586, 0.7681691559, 0.7681691571, 0.7681691566, 0.7681691568, 0.7681691567, 0.7681691568, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, 0.7681691567, more...

decimal, non-monotonic, +

a(n)=cos(sin(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence vnxdqcfpxedgp

0, 1, 0.7350525871, 0.8612755007, 0.8071371067, 0.8316063741, 0.8207859014, 0.825618791, 0.8234696741, 0.8244272364, 0.8240009566, 0.8241907983, 0.8241062679, 0.8241439095, 0.8241271481, 0.8241346119, 0.8241312883, 0.8241327683, 0.8241321093, 0.8241324027, 0.824132272, 0.8241323302, 0.8241323043, 0.8241323159, 0.8241323107, 0.824132313, 0.824132312, 0.8241323124, 0.8241323122, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, 0.8241323123, more...

decimal, non-monotonic, +

a(n)=sqrt(cos(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric

Sequence wvf2svirtnqsi

0, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 0, 1, -1, 1, -1, -1, -1, 1, 0, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 0, 1, -1, -1, 0, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, more...

integer, non-monotonic, +-

a(n)=μ(Ω(n))
Ω(n)=max factorization terms
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence yjj1j3ioifbql

0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, more...

integer, non-monotonic, +-, A000494

a(n)=round(sin(n))
n≥0
3 operations
Trigonometric

Sequence gnz0uzrjeg0hi

0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, more...

integer, non-monotonic, +

a(n)=ceil(sin(n))
n≥0
3 operations
Trigonometric

Sequence egb3cuxm3oa2g

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 2, more...

integer, non-monotonic, +

a(n)=ϕ(Ω(n))
Ω(n)=max factorization terms
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence csftowzxiutmc

0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 2, 1, 4, 5, 3, 4, 3, 4, 3, 6, 3, 2, 5, 3, 5, 4, 4, 3, 4, 3, 4, 5, 3, 4, 1, 3, 4, 7, 5, 4, more...

integer, non-monotonic, +

a(n)=Ω(P(n))
P(n)=Partition numbers
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence fb1agpv3bbaum

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, more...

integer, non-monotonic, +, A058061

a(n)=Ω(τ(n))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence 13qkvgusyxz4e

0, 1, 1, 1, 2, 0, 2, 1, 1, 0, 2, 0, 3, 0, 0, 1, 3, 0, 3, 0, 0, 0, 3, 0, 2, 0, 1, 0, 3, 0, 3, 1, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 2, 0, more...

integer, non-monotonic, +

a(n)=round(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence avfkmj0gbmwhd

0, 1, 1, 1.4142135624, 1, 1.4142135624, 1, 1.7320508076, 1.4142135624, 1.4142135624, 1, 1.7320508076, 1, 1.4142135624, 1.4142135624, 2, 1, 1.7320508076, 1, 1.7320508076, 1.4142135624, 1.4142135624, 1, 2, 1.4142135624, 1.4142135624, 1.7320508076, 1.7320508076, 1, 1.7320508076, 1, 2.2360679775, 1.4142135624, 1.4142135624, 1.4142135624, 2, 1, 1.4142135624, 1.4142135624, 2, 1, 1.7320508076, 1, 1.7320508076, 1.7320508076, 1.4142135624, 1, 2.2360679775, 1.4142135624, 1.7320508076, more...

decimal, non-monotonic, +

a(n)=sqrt(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence pc0bxdqamjwyb

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, more...

integer, non-monotonic, +, A036430

a(n)=τ(Ω(n))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence pv13x5bj5hpzk

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +

a(n)=gpf(Ω(n))
Ω(n)=max factorization terms
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence 1qaltkr0q1zkl

0, 1, 1, 2, 3, 4, 3, 4, 4, 5, more...

integer, non-monotonic, +

a(n)=Ω(catalan(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence lrr22uh5y40ve

0, 1, 1, 3, 1, 3, 1, 4, 3, 3, 1, 4, 1, 3, 3, 7, 1, 4, 1, 4, 3, 3, 1, 7, 3, 3, 4, 4, 1, 4, 1, 6, 3, 3, 3, 7, 1, 3, 3, 7, 1, 4, 1, 4, 4, 3, 1, 6, 3, 4, more...

integer, non-monotonic, +, A290080

a(n)=σ(Ω(n))
Ω(n)=max factorization terms
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence cq1jzheniyv0f

0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 3, 0, 3, 0, 0, 1, 3, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 4, 0, 4, 1, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 2, 0, more...

integer, non-monotonic, +

a(n)=ceil(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence qjzemqtuccdnm

0, 1, 2, 1, 2, 3, 3, 2, 1, 3, 3, 3, 2, 4, 4, 1, 3, 2, 3, 3, 5, 4, 4, 4, 1, 3, 4, 4, 3, 5, 5, 3, 5, 4, 5, 2, 2, 4, 4, 4, 3, 6, 3, 4, 3, 5, 5, 3, 2, 2, more...

integer, non-monotonic, +, A058063

a(n)=Ω(σ(n))
σ(n)=divisor sum of n
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence yytff2y4vuixg

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, more...

integer, non-monotonic, +

a(n)=n%26
n≥0
3 operations
Divisibility

Sequence 4spjrorviwvzk

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, more...

integer, non-monotonic, +

a(n)=n%27
n≥0
3 operations
Divisibility
a(n)=n%(3^3)
n≥0
5 operations
Power

Sequence mgt0va0inuryo

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, more...

integer, non-monotonic, +

a(n)=n%28
n≥0
3 operations
Divisibility

Sequence xduehm5fyf4sd

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, more...

integer, non-monotonic, +

a(n)=n%29
n≥0
3 operations
Divisibility

Sequence rr00ewseuqjcc

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, more...

integer, non-monotonic, +

a(n)=n%30
n≥0
3 operations
Divisibility

Sequence avfhsgijkvp5c

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, more...

integer, non-monotonic, +

a(n)=n%31
n≥0
3 operations
Divisibility

Sequence xktgx2yorx1l

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, more...

integer, non-monotonic, +

a(n)=n%32
n≥0
3 operations
Divisibility
a(n)=n%(2^5)
n≥0
5 operations
Power