Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 893130. [0] [1] [2] [3] [4] ... [8931]

Sequence rqze1ag3ydclb

0, 0.6931471805599453, 1.0986122886681098, 0.6931471805599453, 1.6094379124341003, 0, 1.9459101490553132, 0.6931471805599453, 1.0986122886681098, 0, 2.3978952727983707, 0, 2.5649493574615367, 0, 0, 0.6931471805599453, 2.833213344056216, 0, 2.9444389791664403, 0, 0, 0, 3.1354942159291497, 0, 1.6094379124341003, more...

decimal, non-monotonic, +

a(n)=Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
2 operations
Prime

Sequence lcv1zgpjttqpl

0, 0.8414709848078965, 0.9092974268256817, 0.1411200080598672, -0.7568024953079282, -0.9589242746631385, -0.27941549819892586, 0.6569865987187891, 0.9893582466233818, 0.4121184852417566, -0.5440211108893698, -0.9999902065507035, -0.5365729180004349, 0.4201670368266409, 0.9906073556948704, 0.6502878401571168, -0.2879033166650653, -0.9613974918795568, -0.7509872467716762, 0.14987720966295234, 0.9129452507276277, 0.8366556385360561, -0.008851309290403876, -0.8462204041751706, -0.9055783620066238, more...

decimal, non-monotonic, +-

a(n)=sin(n)
n≥0
2 operations
Trigonometric

Sequence ccgud0zu4fvbp

0, 1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656, 0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605, 0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092, 0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561, 0.7387603198742113, 0.7393038923969059, 0.7389377567153445, 0.7391843997714936, 0.7390182624274122, 0.7391301765296711, 0.7390547907469174, more...

decimal, non-monotonic, convergent, +

a(n)=cos(a(n-1))
a(0)=0
n≥0
2 operations
Trigonometric

Sequence ncilpddnshefo

0, 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, 2, 4, 21, 2, 405, 2, 1, 33, 1, 2, 8, 2, 29, 1, 4, 4, 4, 4, 1, 9, 3, 1, 4, 1, 1, 2, 26, 1, 8, more...

integer, non-monotonic, +, A065645

a(n)=contfrac[TwinPrime]
TwinPrime=0.6601... (Twin Prime)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence brsi1x4psomni

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max distinct factors of n
n≥1
2 operations
Prime
a(n)=log(sqrt(exp(Ω(n²))))
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=Ω(n*p(n))-1
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence 2co2c3vr2pedl

0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65, 1, 4, 7, 11, 1, 399, 2, 1, 3, 2, 1, 2, 1, 5, 3, 2, more...

integer, non-monotonic, +, A002852

a(n)=contfrac[γ]
γ=0.5772... (Euler Gamma)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence f0hiz4pasazlk

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, more...

integer, non-monotonic, +, A002487

a(n)=stern(n)
stern(n)=Stern-Brocot sequence
n≥0
2 operations
Recursive

Sequence g3fycrmfjmnxl

0, 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, 1, 1, 1, 1, 7, 1, 4, 2, 15, 1, 2, 1, 1, 4, 1, 3, 3, 5, 4, 1, 1, 1, 4, 3, 1, 38, 1, 2, 4, more...

integer, non-monotonic, +, A019474

a(n)=contfrac[W1]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[log(W1)]
W1=0.5671... (Lambert W)
contfrac(a)=continued fraction of a
n≥0
3 operations
Power

Sequence 2e2pf0fazbckl

0, 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 1, 1, 1, 6, 1, 12, 1, 4, 7, 1, 1, 2, 5, 1, 5, 9, 1, more...

integer, non-monotonic, +, A014538

a(n)=contfrac[G]
G=0.9159... (Catalans)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence tggbolmv0svvn

0, 1.5574077246549023, -2.185039863261519, -0.1425465430742778, 1.1578212823495777, -3.380515006246586, -0.29100619138474915, 0.8714479827243187, -6.799711455220379, -0.45231565944180985, 0.6483608274590866, -225.95084645419513, -0.6358599286615808, 0.4630211329364896, 7.2446066160948055, -0.8559934009085188, 0.3006322420239034, 3.49391564547484, -1.1373137123376869, 0.15158947061240008, 2.237160944224742, -1.5274985276366035, 0.00885165604168446, 1.5881530833912738, -2.1348966977217008, more...

decimal, non-monotonic, +-

a(n)=tan(n)
n≥0
2 operations
Trigonometric

Sequence g4ygqqbyryufl

0, 1.5707963267948966, 0.5669115049410094, 1.0550620112573421, 0.7586112145937554, 0.9218067818082122, 0.8260630799508202, 0.880364061711098, 0.8489363384272013, 0.8669200971125083, 0.856560920825803, 0.8625056203158679, 0.8590867594493288, 0.861050527953115, 0.8599217423241453, 0.860570307066057, 0.8601975736780776, 0.8604117562009795, 0.8602886715766134, 0.860359401635384, 0.860318755854242, 0.8603421130376111, 0.8603286906684817, 0.8603364038890915, 0.8603319714420676, more...

decimal, non-monotonic, convergent, +

a(n)=acot(a(n-1))
a(0)=0
n≥0
2 operations
Trigonometric

Sequence jsxfs42lrpw3p

0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, more...

integer, non-monotonic, +, A048296

a(n)=contfrac[Artins]
Artins=0.3739... (Artins)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence ebfmjj0402bb

0, 2, 1, 14, 1, 3, 8, 1, 5, 2, 7, 1, 12, 1, 5, 59, 1, 1, 1, 3, 1, 3, 1, 36, 2, 1, 1, 1, 5, 1, 5, 2, 3, 1, 2, 1, 255, 1, 1, 26, 4, 5, 1, 5, 1, 2, 1, 3, 5, 1, more...

integer, non-monotonic, +

a(n)=contfrac[Pólya_D3]
Pólya_D3=0.3405... (Pólya random walk 3D)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence kusc5pibufhkj

0, 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, 1, 5, 19, 1, 5, 1, 1, 1, 1, 1, 12, 12, 9, 1, 8, 4, 10, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, more...

integer, non-monotonic, +, A230767

a(n)=contfrac[Mertens]
Mertens=0.2614... (Mertens)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence 4cpzl0cv2iyxp

0, 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, 2, 2, 1, 1, 2, 1, 4, 39, 4, 4, 5, 2, 1, 1, 87, 16, 1, 2, 1, 2, 1, 1, 3, 1, 8, 1, 3, 1, 1, more...

integer, non-monotonic, +, A030168

a(n)=contfrac[CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence t1zgct2gyon3m

0, 7, 2, 8, 1, 5, 8, 4, 5, 4, 8, 3, 6, 7, 6, 7, 2, 4, 8, 6, 0, 5, 8, 6, 3, 7, 5, 8, 7, 4, 9, 0, 1, 3, 1, 9, 1, 3, 7, 7, 3, 6, 3, 3, 8, 3, 3, 4, 3, 3, more...

integer, non-monotonic, +, A082633

a(n)=de[Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence ruhaqit5bcw0k

0, 13, 1, 2, 1, 2, 1, 74, 1, 10, 1, 9, 2, 1, 3, 1, 4, 1, 6, 1, 1, 2, 84, 1, 108, 1, 20, 22, 2, 2, 1, 2, 2, 1, 7, 1, 66, 2, 1, 1, 2, 5, 1, 1, 2, 1, 1, 59, 1, 2, more...

integer, non-monotonic, +, A066036

a(n)=contfrac[Stieltjes]
Stieltjes=0.0728... (Stieltjes gamma(1))
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence jf1vodtk3fpuj

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence sxgqtfmeezvbp

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime
a(n)=(-1)^Ω(n)
Ω(n)=max distinct factors of n
n≥1
5 operations
Prime
a(n)=μ(or(6, Ω(n)))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence 2mcooaevb1qke

1, 0.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.6536436208636119, 0.28366218546322625, 0.9601702866503661, 0.7539022543433046, -0.14550003380861354, -0.9111302618846769, -0.8390715290764524, 0.004425697988050785, 0.8438539587324921, 0.9074467814501962, 0.1367372182078336, -0.7596879128588213, -0.9576594803233847, -0.27516333805159693, 0.6603167082440802, 0.9887046181866692, 0.40808206181339196, -0.5477292602242684, -0.9999608263946371, -0.5328330203333975, 0.424179007336997, more...

decimal, non-monotonic, +-

a(n)=cos(n)
n≥0
2 operations
Trigonometric

Sequence pl1msqvbe0jxf

1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656, 0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605, 0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092, 0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561, 0.7387603198742113, 0.7393038923969059, 0.7389377567153445, 0.7391843997714936, 0.7390182624274122, 0.7391301765296711, 0.7390547907469174, 0.7391055719265363, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence mko4mgfp3pynf

1, 0.6420926159343308, 1.3372531775192829, 0.23788387690605642, 4.12413633154056, 0.6670279034307094, 1.2699574736317798, 0.3102556105005124, 3.1190604630027807, -44.37343795786241, -2.4248943131588243, 1.1477850226460427, 0.4501892604691449, 2.069157407113594, -0.5441763422005822, -1.6525623988614118, 0.08194878158265755, 12.175415468226646, -2.4261722603240066, 1.1507509027647633, 0.44662703019981215, 2.088110796239434, -0.5690013762475906, -1.5635736046906987, -0.007222847704453914, more...

decimal, non-monotonic, +-

a(n)=cot(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence ujc35vfizaa1h

1, 0.7853981633974483, 0.9050225767665427, 0.8352132406069623, 0.8749496223708837, 0.8519948603481292, 0.8651452827866869, 0.8575750932355533, 0.8619209364833037, 0.8594221270660236, 0.8608576014691751, 0.8600325405331767, 0.8605066138531038, 0.8602341679011974, 0.8603907246919031, 0.8603007566345732, 0.8603524566268336, 0.8603227467514742, 0.8603398196185867, 0.8603300085840736, 0.8603356465388472, 0.8603324066562877, 0.8603342684708953, 0.8603331985691531, 0.8603338133936824, more...

decimal, non-monotonic, +

a(n)=acot(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence lalqvjgjzo0ro

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, more...

integer, non-monotonic, +, A007318

a(n)=pt(n)
pt(n)=Pascals triangle by rows
n≥0
2 operations
Combinatoric

Sequence t2oz3rjao0lvj

1, 1, 1, 1, 21, 1, 1, 1, 6, 4, 2, 1, 1, 2, 1, 3, 1, 13, 13, 6, 1, 5, 2, 1, 15, 1, 12, 1, 1, 1, 8, 13, 4, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, more...

integer, non-monotonic, +

a(n)=contfrac[QR]
QR=1.6616... (Quadratic Recurrence)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence pvurlm0y53im

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence gv5wnaqfuuoao

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=φ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence btuzaf21som1g

1, 1, 5, 4, 2, 305, 1, 8, 2, 1, 4, 6, 14, 3, 1, 13, 5, 1, 7, 23, 1, 16, 4, 1, 1, 1, 1, 1, 2, 17, 1, 3, 1, 1, 1, 29, 1, 6, 1, 3, 1, 1, 1, 1, 3, 2, 5, 1, 63, 2, more...

integer, non-monotonic, +, A019712

a(n)=contfrac[Tribonacci]
Tribonacci=1.8392... (Tribonacci)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence zmyrhgo0sugfg

1, 1.5574077246549023, 74.68593339876537, -0.8635188548774503, -1.1698563550584242, -2.35903773417943, 0.9943296190225849, 1.5381535569209899, 30.6237735079718, -1.013601814346662, -1.605012367826759, 29.214651770673843, 1.3701487455122843, 4.91679999052104, -4.823776826089959, 8.940480157748263, -0.5260857888567784, -0.5806710619667708, -0.656127983201063, -0.7699191877094069, -0.969511543661403, -1.4576737054682187, -8.8022251344211, 0.7177699669114329, 0.8731301134190125, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=1
n≥0
2 operations
Trigonometric

Sequence k0beacn12pjwc

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime
a(n)=Ω(floor(2^τ(n)))
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=τ(n*p(n))/2
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence gekakw1rgdk0j

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, lpf(n))
lpf(n)=least prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=gpf(lpf(n)²)
lpf(n)=least prime factor of n
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=exp(Λ(lpf(n)))
lpf(n)=least prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence qxbjop1xs1vff

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, gpf(n))
gpf(n)=greatest prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=lpf(gpf(n)²)
gpf(n)=greatest prime factor of n
lpf(n)=least prime factor of n
n≥1
4 operations
Prime
a(n)=exp(Λ(gpf(n)))
gpf(n)=greatest prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
a(n)=floor(sqrt(floor(gpf(n)²)))
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence r0cho0bzrtaxc

1, 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, 3, 12, 1, 2, 2, 1, 1, 15, 1, 1, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, more...

integer, non-monotonic, +, A074269

a(n)=contfrac[Backhouse]
Backhouse=1.456... (Backhouse)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence pqpjig3sq3dmp

1, 2, 8, 2, 4, 2, 7, 1, 2, 9, 1, 0, 0, 6, 2, 2, 6, 3, 6, 8, 7, 5, 3, 4, 2, 5, 6, 8, 8, 6, 9, 7, 9, 1, 7, 2, 7, 7, 6, 7, 6, 8, 8, 9, 2, 7, 3, 2, 5, 0, more...

integer, non-monotonic, +, A074962

a(n)=de[GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 5jttb1vusgdqd

1, 3, 1, 1, 5, 1, 1, 1, 3, 12, 4, 1, 271, 1, 1, 2, 7, 1, 35, 6, 1, 9, 4, 2, 1, 1, 2, 1, 1, 2, 15, 3, 1, 24, 2, 39, 1, 3, 1, 2, 2, 5, 1, 2, 2, 1, 3, 3, 1, 3, more...

integer, non-monotonic, +, A087501

a(n)=contfrac[GlaisherKinkelin]
GlaisherKinkelin=1.2824... (Glaisher-Kinkelin)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence n55c2fon5zb

1, 3, 3, 2, 5, 8, 2, 2, 7, 5, 7, 3, 3, 2, 2, 0, 8, 8, 1, 7, 6, 5, 8, 2, 8, 7, 7, 6, 0, 7, 1, 0, 2, 7, 7, 4, 8, 8, 3, 8, 4, 5, 9, 4, 8, 9, 0, 4, 2, 4, more...

integer, non-monotonic, +, A083343

a(n)=de[B3]
B3=1.3325... (Mertens B3)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence sbudzke0snrw

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence tj23qg0wt21zd

1, 3, 147, 1, 1, 1, 1, 5, 1, 5, 1, 2, 1, 1, 1, 1, 1, 3, 45, 1, 1, 2, 4, 8, 3, 2, 1, 1, 1, 4, 1, 6, 1, 4, 1, 64, 1, 1, 16, 4, 1, 1, 1, 1, 10, 5, 1, 1, 7, 4, more...

integer, non-monotonic, +

a(n)=contfrac[B3]
B3=1.3325... (Mertens B3)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence ax4hv2yzrhzsf

1, 4, 5, 6, 0, 7, 4, 9, 4, 8, 5, 8, 2, 6, 8, 9, 6, 7, 1, 3, 9, 9, 5, 9, 5, 3, 5, 1, 1, 1, 6, 5, 4, 3, 5, 5, 7, 6, 5, 3, 1, 7, 8, 3, 7, 4, 8, 4, 7, 1, more...

integer, non-monotonic, +, A072508

a(n)=de[Backhouse]
Backhouse=1.456... (Backhouse)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence wqwhagpwcscgc

1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, more...

integer, non-monotonic, +, A001622

a(n)=de[ϕ]
ϕ=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[sqrt(1+ϕ)]
ϕ=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*ϕ]
ϕ=1.618... (Golden Ratio)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence e2tkwlio5ubrf

1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, more...

integer, non-monotonic, +, A112302

a(n)=de[QR]
QR=1.6616... (Quadratic Recurrence)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 5ikbvw505eq1k

1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, more...

integer, non-monotonic, +, A058265

a(n)=de[Tribonacci]
Tribonacci=1.8392... (Tribonacci)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence xr3nzyt1pcwvm

2, -2.185039863261519, 1.4179285755053868, 6.490566602728474, 0.21040629391697788, 0.21356723292044746, 0.2168745891178323, 0.22034000376284393, 0.22397645454871787, 0.22779845932374504, 0.23182231905201484, 0.23606640927074993, 0.24055153190462047, 0.2453013427722584, 0.250342874794811, 0.25570718327303055, 0.2614301483439144, 0.26755348190833933, 0.2741260035181865, 0.28120527434983683, 0.2888597142589457, 0.29717138004773413, 0.30623966332012453, 0.3161862900768629, 0.3271621996737142, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence d3iagnfw0qw5

2, -0.45765755436028577, -2.0303137983814556, 0.49484793829887097, 1.8531163265557713, -0.2900678418018812, -3.350233348793712, -4.723179246621436, 0.01079068502592696, 92.66892549777648, 0.008057957518507039, 124.09824127886377, -0.005331512582201638, -187.56225546790253, 0.7406536784433513, 1.0937461641873407, 0.5168672339692599, 1.7592950361976771, -0.1907634670415232, -5.178351237736626, 0.5028966679958746, 1.8179516659029487, -0.25231398108125785, -3.878852056639137, -1.1012287532956417, more...

decimal, non-monotonic, +-

a(n)=cot(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence wma1ci0fdudz

2, -0.4161468365471424, 0.9146533258523714, 0.6100652997429745, 0.8196106080000903, 0.6825058578960018, 0.7759946131215992, 0.7137247340083882, 0.7559287135747029, 0.7276347923146813, 0.7467496017309728, 0.7339005972426009, 0.7425675503014617, 0.7367348583938166, 0.740666263873949, 0.7380191411807893, 0.7398027782109352, 0.7386015286351051, 0.7394108086387853, 0.7388657151407354, 0.7392329180769628, 0.7389855754839373, 0.7391521928375896, 0.7390399593850235, 0.7391155620964187, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence wqaew4bmkyozo

2, 0.46364760900080615, 1.1366511866264786, 0.7215293734239171, 0.9457667771079381, 0.8132633659430815, 0.8880201279546327, 0.844639503352005, 0.8694225508555931, 0.8551339813983643, 0.8633292625846987, 0.8586146570923905, 0.8613222220676018, 0.8597657434911755, 0.8606599960381842, 0.8601460477898633, 0.8604413705582306, 0.8602716550961863, 0.8603691807612092, 0.860313136399174, 0.860345342343114, 0.8603268349498331, 0.8603374702936364, 0.860331358629162, 0.8603348707261661, more...

decimal, non-monotonic, +

a(n)=acot(a(n-1))
a(0)=2
n≥0
2 operations
Trigonometric

Sequence dodcahtwj3i1g

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, more...

integer, non-monotonic, +, A003417

a(n)=contfrac[e]
e=2.7182... (Euler e)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[root(log(2), 2)]
root(n,a)=the n-th root of a
contfrac(a)=continued fraction of a
n≥0
5 operations
Power

Sequence wt1tbgmgmbojn

2, 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 1, 1, 90, 2, 1, 12, 1, 1, 1, 1, 5, 2, 6, 1, 6, 3, 1, 1, 2, 5, 2, 1, 2, 1, 1, 4, 1, 2, 2, more...

integer, non-monotonic, +, A002211

a(n)=contfrac[Khintchine]
Khintchine=2.6854... (Khintchine)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant

Sequence 3adjjx2yzeaxh

2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, more...

integer, non-monotonic, +, A033308

a(n)=de[CopelandErdős]
CopelandErdős=0.2357... (Copeland-Erdős)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence n11quy32pwigm

2, 6, 1, 4, 9, 7, 2, 1, 2, 8, 4, 7, 6, 4, 2, 7, 8, 3, 7, 5, 5, 4, 2, 6, 8, 3, 8, 6, 0, 8, 6, 9, 5, 8, 5, 9, 0, 5, 1, 5, 6, 6, 6, 4, 8, 2, 6, 1, 1, 9, more...

integer, non-monotonic, +, A077761

a(n)=de[Mertens]
Mertens=0.2614... (Mertens)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence 1w02asgugejep

2, 6, 8, 5, 4, 5, 2, 0, 0, 1, 0, 6, 5, 3, 0, 6, 4, 4, 5, 3, 0, 9, 7, 1, 4, 8, 3, 5, 4, 8, 1, 7, 9, 5, 6, 9, 3, 8, 2, 0, 3, 8, 2, 2, 9, 3, 9, 9, 4, 4, more...

integer, non-monotonic, +, A002210

a(n)=de[Khintchine]
Khintchine=2.6854... (Khintchine)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence idcen5jpa2zpc

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, more...

integer, non-monotonic, +, A001113

a(n)=de[e]
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[root(log(2), 2)]
root(n,a)=the n-th root of a
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*e]
e=2.7182... (Euler e)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence sb0gkrb34xxsi

3, -7.015252551434534, -1.1127836396499338, -0.4929760630059242, -1.861445197641989, 0.2991195764453913, 3.242838238854065, 9.84320225497418, 2.2487882596280446, -0.8053455460881099, -0.9608803799719335, -0.698793757516798, -1.190152495237775, -0.40015945592409213, -2.364171319903177, 1.0160822861856584, 0.6196101009757935, 1.4018942755188502, 0.17052673375226393, 5.807230411232213, -1.9399389108821214, 0.3868770856397324, 2.4545358453016966, -1.218917531063782, -0.3671590959085158, more...

decimal, non-monotonic, +-

a(n)=cot(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence vvfdypotcl5rp

3, -0.9899924966004454, 0.5486961336030971, 0.8532053115057471, 0.6575716719440715, 0.7914787496844161, 0.7027941118082985, 0.7630391877968155, 0.7227389047849776, 0.7499969196947133, 0.7316909685258258, 0.7440456819525395, 0.7357345682868414, 0.7413379612461033, 0.7375657269232188, 0.7401077700526904, 0.7383958863975352, 0.7395492425705096, 0.7387724239832232, 0.739295741775515, 0.7389432483650884, 0.7391807011172313, 0.739020754151705, 0.7391284981950723, 0.7390559213481233, more...

decimal, non-monotonic, convergent, +-

a(n)=cos(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence 42zyqj1ugnlfo

3, 0.32175055439664213, 1.25950624160801, 0.671048329612308, 0.9797663957344107, 0.7956180054304229, 0.8987330497592796, 0.8386816386458731, 0.8729099645744918, 0.8531512908469421, 0.8644756184318187, 0.8579582189693987, 0.8617002118824961, 0.8595487824794827, 0.8607847572160703, 0.8600743806853275, 0.8604825635308438, 0.8602479863443071, 0.8603827831250737, 0.860305320057476, 0.8603498341528393, 0.8603242537436738, 0.8603389536090192, 0.8603305062381361, 0.8603353605584022, more...

decimal, non-monotonic, +

a(n)=acot(a(n-1))
a(0)=3
n≥0
2 operations
Trigonometric

Sequence xecz0440luoph

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, more...

integer, non-monotonic, +, A000796

a(n)=de[π]
π=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[acos(-1)]
de(a)=decimal expansion of a
n≥0
4 operations
Trigonometric
a(n)=de[exp(abs(log(π)))]
π=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
5 operations
Power
a(n)=de[2*5*π]
π=3.1415... (Pi)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic

Sequence nh2klcrdlym2h

3, 4, 0, 5, 3, 7, 3, 2, 9, 5, 5, 0, 9, 9, 9, 1, 4, 2, 8, 2, 6, 2, 7, 3, 1, 8, 4, 4, 3, 2, 9, 0, 2, 8, 9, 6, 7, 1, 0, 6, 0, 8, 2, 1, 7, 1, 2, 4, 3, 0, more...

integer, non-monotonic, +, A086230

a(n)=de[Pólya_D3]
Pólya_D3=0.3405... (Pólya random walk 3D)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence evxmhr5g4b0go

3, 7, 3, 9, 5, 5, 8, 1, 3, 6, 1, 9, 2, 0, 2, 2, 8, 8, 0, 5, 4, 7, 2, 8, 0, 5, 4, 3, 4, 6, 4, 1, 6, 4, 1, 5, 1, 1, 1, 6, 2, 9, 2, 4, 8, 6, 0, 6, 1, 5, more...

integer, non-monotonic, +, A005596

a(n)=de[Artins]
Artins=0.3739... (Artins)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence dc212nwugb3uj

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, more...

integer, non-monotonic, +, A001203

a(n)=contfrac[π]
π=3.1415... (Pi)
contfrac(a)=continued fraction of a
n≥0
2 operations
DecimalConstant
a(n)=contfrac[acos(-1)]
contfrac(a)=continued fraction of a
n≥0
4 operations
Trigonometric
a(n)=contfrac[exp(abs(log(π)))]
π=3.1415... (Pi)
contfrac(a)=continued fraction of a
n≥0
5 operations
Power

Sequence b4ytrhgeb1rvm

4, -0.7568024953079282, -0.6866002607386249, -0.6339114732985194, -0.5923008210655263, -0.5582713944195423, -0.529720835124789, -0.5052924560809323, -0.4840633697270739, -0.4653795417340422, -0.4487620117263402, -0.4338504581249109, -0.4203676380717351, -0.40809611175335475, -0.3968625110465547, -0.3865266116719075, -0.37697355987444925, -0.36810822709513386, -0.3598510343307839, -0.3521348128703309, -0.3449024095242504, -0.3381048356363251, -0.3316998192805959, -0.32565066049373903, -0.3199253171119008, more...

decimal, non-monotonic, convergent, +-

a(n)=sin(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence 5ygvhkm41iqgo

4, -0.6536436208636119, 0.7938734492261525, 0.7010885250960164, 0.7641404871774221, 0.7219773353286648, 0.7505004356582367, 0.7313476609259477, 0.7442750117780783, 0.7355792307316547, 0.7414422042900879, 0.7374953301579025, 0.7401551092185018, 0.73836396157563, 0.739570730869702, 0.7387579416665603, 0.7393054938130885, 0.7389366777222988, 0.7391851264762225, 0.7390177728568568, 0.7391305062860009, 0.7390545686080692, 0.7391057215569367, 0.7390712645038388, 0.7390944752748578, more...

decimal, non-monotonic, +-

a(n)=cos(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence sg0wd5xt1y2uj

4, 0.244978663126864, 1.3305491827640883, 0.6445047439118987, 0.9982939089751085, 0.7862519370103731, 0.9044947483026184, 0.8355034813873954, 0.8747786736441164, 0.8520916939036454, 0.8650891791922083, 0.8576071812598545, 0.8619024468742127, 0.8594327356473884, 0.8608514997282753, 0.8600360451245755, 0.8605045993252972, 0.8602353253632183, 0.8603900594853052, 0.8603011388775447, 0.8603522369618265, 0.8603228729807751, 0.8603397470794873, 0.8603300502687902, 0.8603356225844231, more...

decimal, non-monotonic, +

a(n)=acot(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence 5ntqgrdvm5ffd

4, 0.8636911544506167, 0.8545076484137172, 0.8705229255206287, 0.8427558538563839, 0.8913948342196446, 0.8076719625780553, 0.956415975542288, 0.7054590253006596, 1.1741726489552227, 0.4188190231368104, 2.2463994875861677, -0.801415014843366, -0.9684686339211402, -0.6875594185252555, -1.2176689275069115, -0.36857666907234493, -2.589153552338726, 1.6221489499792712, -0.05139781138015997, -19.43894573932725, -1.4955009126281544, -0.07543803085435699, -13.230757790342224, -1.276880377965301, more...

decimal, non-monotonic, +-

a(n)=cot(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence 45wh4joht4rhh

4, 1.1578212823495777, 2.2822044501913683, -1.1601196381740493, -2.296548960623955, 1.1270177622394826, 2.1034705609322457, -1.696309810434974, 7.925389657698786, -13.980217738912426, -6.319085746217142, -0.035915870318503886, -0.035931321513594114, -0.035946792665692735, -0.03596228381779586, -0.03597779501302941, -0.035993326294649575, -0.036008877706043364, -0.036024449290729094, -0.03604004109235691, -0.03605565315470929, -0.036071285521701565, -0.03608693823738245, -0.036102611345934545, -0.036118304891674856, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=4
n≥0
2 operations
Trigonometric

Sequence hlpf1uaj33v3l

5, -3.380515006246586, -0.24357481979072695, -0.24850893877992755, -0.2537542468591638, -0.25934479911728164, -0.2653200961007324, -0.271726254993048, -0.27861750365222154, -0.28605810809823745, -0.2941248901304945, -0.302910560864307, -0.3125282017479326, -0.32311739021507274, -0.3348527330010869, -0.3479560092847818, -0.36271387468205657, -0.37950440154399284, -0.398838173600548, -0.42142438287271, -0.4482820781889235, -0.4809380348939071, -0.521803702867141, -0.5749593142648531, -0.6479877238824792, more...

decimal, non-monotonic, +-

a(n)=tan(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence 13pklgxsvygo

5, -0.9589242746631385, -0.8185741444617193, -0.7301723379367498, -0.6669980469189455, -0.618630196631228, -0.579919762318392, -0.5479568192040523, -0.5209442774095623, -0.49769937824489874, -0.47740528608577604, -0.45947612558340706, -0.443478627088078, -0.4290841752507516, -0.4160381743937593, -0.4041397632659557, -0.39322796903554574, -0.38317200700535275, -0.37386432917244145, -0.36521554275253043, -0.35715062979034173, -0.34960609031432466, -0.34252775285212944, -0.33586907498462876, -0.3295898089876673, more...

decimal, non-monotonic, convergent, +-

a(n)=sin(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence oehccsztt5n1

5, -0.2958129155327455, -3.2813306384073417, -7.109610252948, -0.9211376517389247, -0.7596659585344953, -1.0528356496459659, -0.5698571165855477, -1.5606297207719233, -0.010166956310508422, -98.35446455711977, -0.6925434688465031, -1.2053694805268003, -0.38261131148889427, -2.4848190903954577, 1.2971044061233916, 0.2807369229321418, 3.467979339366969, 2.9542743292406732, -5.275920018043741, 0.6318794367886456, 1.3661253628632917, 0.2075775799342305, 4.748083848631617, -0.03571003586871606, more...

decimal, non-monotonic, +-

a(n)=cot(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence 0tv14b3v2nv0f

5, 0.19739555984988066, 1.3759062859787567, 0.6284828955677074, 1.009696376914778, 0.7805734039026121, 0.9080136263006808, 0.833571407556029, 0.8759175642281087, 0.8514468810289711, 0.8654628730798425, 0.8573934834652117, 0.8620255938546229, 0.8593620826042572, 0.8608921384662972, 0.860012704287587, 0.8605180163605228, 0.8602276165487223, 0.8603944898430888, 0.8602985930970652, 0.8603536999566412, 0.8603220322792833, 0.860340230198305, 0.8603297726437983, 0.860335782123653, more...

decimal, non-monotonic, +

a(n)=acot(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence sv2ptxptvcl5e

5, 0.28366218546322625, 0.9600369302946615, 0.5734897326953653, 0.8400126809521591, 0.6674533830038623, 0.7854005359989481, 0.7071051035019478, 0.7602456869604484, 0.7246667298504657, 0.748720383642674, 0.7325605057027099, 0.7434644379563424, 0.736128103100636, 0.7410737900802427, 0.7377440894616297, 0.7399878115637962, 0.7384767771899289, 0.7394947923598947, 0.7388091198782614, 0.7392710309637552, 0.7389598974855885, 0.7391694877129623, 0.739028308381246, 0.7391234099135455, more...

decimal, non-monotonic, +

a(n)=cos(a(n-1))
a(0)=5
n≥0
2 operations
Trigonometric

Sequence qvvnqvlyivqen

5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, more...

integer, non-monotonic, +, A030178

a(n)=de[W1]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[log(W1)]
W1=0.5671... (Lambert W)
de(a)=decimal expansion of a
n≥0
3 operations
Power

Sequence knd2jdmkw4tcn

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, more...

integer, non-monotonic, +, A001620

a(n)=de[γ]
γ=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant
a(n)=de[2*5*γ]
γ=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
6 operations
Arithmetic
a(n)=de[(γ/sqrt(γ))²]
γ=0.5772... (Euler Gamma)
de(a)=decimal expansion of a
n≥0
6 operations
Power

Sequence a5bupax2uvirg

6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, more...

integer, non-monotonic, +, A005597

a(n)=de[TwinPrime]
TwinPrime=0.6601... (Twin Prime)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence wetnjc3kfq5te

9, 1, 5, 9, 6, 5, 5, 9, 4, 1, 7, 7, 2, 1, 9, 0, 1, 5, 0, 5, 4, 6, 0, 3, 5, 1, 4, 9, 3, 2, 3, 8, 4, 1, 1, 0, 7, 7, 4, 1, 4, 9, 3, 7, 4, 2, 8, 1, 6, 7, more...

integer, non-monotonic, +, A006752

a(n)=de[G]
G=0.9159... (Catalans)
de(a)=decimal expansion of a
n≥0
2 operations
DecimalConstant

Sequence dn5adrofu1jqn

-13.463685199378217, 2.5879002655085457, 1.8817209493232954, 1.691688167265629, 1.6184721971332583, 1.5863858135569653, 1.5714641225625423, 1.5643091081036051, 1.5608199469915107, 1.5591018810700832, 1.5582510219915222, 1.5578281618904506, 1.5576175513095603, 1.5575125102259122, 1.5574600755681238, 1.5574338863303225, 1.5574208009425659, 1.5574142612929027, more...

decimal, non-monotonic, +-

a(n)=tan(ζ(n))
ζ(n)=Riemann zeta
n≥2
3 operations
Prime

Sequence gbfaanrphpuce

-10.015252551434534, 5.9024689117846005, 0.6198075766440095, -1.3684691346360647, 2.1605647740873803, 2.9437186624086737, 6.600364016120116, -7.594413995346136, -3.0541338057161544, -0.1555348338838236, 0.2620866224551356, -0.49135873772097716, 0.7899930393136829, -1.964011863979085, 3.3802536060888357, -0.39647218520986494, 0.7822841745430567, -1.2313675417665861, 5.636703677479949, -7.747169322114335, 2.326815996521854, 2.067658759661964, -3.6734533763654786, 0.8517584351552663, -2.232955274653307, more...

decimal, non-monotonic, +-

a(n)=Δ[cot(a(n-1))]
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence fc3q4yvugjf4l

-8.380515006246586, 3.136940186455859, -0.004934118989200598, -0.005245308079236261, -0.005590552258117831, -0.005975296983450784, -0.00640615889231555, -0.006891248659173566, -0.007440604446015908, -0.008066782032257025, -0.008785670733812534, -0.0096176408836256, -0.010589188467140132, -0.01173534278601418, -0.013103276283694898, -0.01475786539727475, -0.016790526861936272, -0.019333772056555176, -0.022586209272161983, -0.026857695316213515, -0.03265595670498356, -0.04086566797323388, -0.05315561139771219, -0.07302840961762602, -0.1090463287071406, more...

decimal, non-monotonic, +-

a(n)=Δ[tan(a(n-1))]
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence vd1ywuuixnd4h

-8, 4, 4, -3, -1, 0, 4, -5, -3, 6, 0, -5, -1, 8, -9, 1, 4, -5, 5, -1, 2, -6, 3, 2, -4, 3, 5, -6, -1, 1, 5, -4, -3, 0, -1, 7, 0, -3, -3, 3, 5, -6, 4, -3, -2, 6, -7, 5, 1, more...

integer, non-monotonic, +-

a(n)=Δ[de[G]]
G=0.9159... (Catalans)
de(a)=decimal expansion of a
Δ(a)=differences of a
n≥0
3 operations
DecimalConstant

Sequence vjnt0rn0jjsbd

-5.958924274663138, 0.14035013020141918, 0.08840180652496943, 0.06317429101780436, 0.048367850287717506, 0.03871043431283594, 0.03196294311433978, 0.027012541794489975, 0.023244899164663546, 0.0202940921591227, 0.01792916050236898, 0.015997498495329054, 0.014394451837326405, 0.013046000856992312, 0.011898411127803599, 0.010911794230409944, 0.010055962030192989, 0.00930767783291131, 0.008648786419911014, 0.008064912962188697, 0.007544539476017076, 0.007078337462195217, 0.006658677867500684, 0.006279265996961436, 0.005934865909717757, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[sin(a(n-1))]
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence nzdnxekuhwoqk

-5.295812915532745, -2.9855177228745964, -3.8282796145406586, 6.188472601209075, 0.16147169320442945, -0.2931696911114706, 0.48297853306041816, -0.9907726041863756, 1.5504627644614148, -98.34429760080926, 97.66192108827326, -0.5128260116802972, 0.822758169037906, -2.102207778906563, 3.781923496518849, -1.01636748319125, 3.187242416434827, -0.5137050101262957, -8.230194347284414, 5.907799454832387, 0.7342459260746461, -1.1585477829290611, 4.540506268697387, -4.783793884500333, -27.955717882223425, more...

decimal, non-monotonic, +-

a(n)=Δ[cot(a(n-1))]
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence ltebzmxerbmgf

-4.80260444015012, 1.178510726128876, -0.7474233904110493, 0.38121348134707056, -0.2291229730121659, 0.12744022239806874, -0.07444221874465184, 0.04234615667207975, -0.02447068319913759, 0.01401599205087134, -0.008069389614630773, 0.004632110389411137, -0.00266351125036568, 0.001530055862040025, -0.00087943417871017, 0.000505312072935804, -0.000290399811800568, 0.000166873294366487, -0.000095896746023505, 0.000055106859575993, -0.00003166767735796, 0.00001819791902169, -0.000010457554506682, 0.000006009479854741, -0.000003453381717478, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[acot(a(n-1))]
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence qplfeo4ber0ii

-4.756802495307928, 0.0702022345693033, 0.05268878744010552, 0.041610652232993095, 0.03402942664598396, 0.028550559294753364, 0.02442837904385664, 0.021229086353858395, 0.0186838279930317, 0.016617530007701997, 0.014911553601429317, 0.013482820053175804, 0.012271526318380355, 0.011233600706800073, 0.010335899374647184, 0.009553051797458245, 0.008865332779315394, 0.008257192764349941, 0.007716221460453032, 0.007232403346080496, 0.00679757388792529, 0.006405016355729209, 0.006049158786856856, 0.005725343381838222, 0.005429649015478377, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[sin(a(n-1))]
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence yiwxqq32ipoji

-4.716337814536773, 0.6763747448314352, -0.38654719759929623, 0.2665229482567938, -0.17255929794829683, 0.11794715299508585, -0.07829543249700033, 0.05314058345850059, -0.03557895710998271, 0.024053653792208363, -0.016159877939964096, 0.010903932253632509, -0.007336334855706395, 0.004945686979606623, -0.00332970061861293, 0.002243722102166501, -0.001511034373867348, 0.001018015169965802, -0.000685672481633315, 0.000461911085493871, -0.000311133478166692, 0.000209590227373768, -0.000141179331716312, 0.000095101532299524, -0.000064060884266914, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[cos(a(n-1))]
a(0)=5
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence 1aejo3j2p1kuh

-4.653643620863612, 1.4475170700897646, -0.09278492413013617, 0.06305196208140573, -0.042163151848757296, 0.028523100329571838, -0.019152774732288935, 0.012927350852130592, -0.008695781046423656, 0.005862973558433238, -0.003946874132185418, 0.002659779060599332, -0.001791147642871804, 0.001206769294072041, -0.000812789203141762, 0.000547552146528241, -0.000368816090789759, 0.000248448753923713, -0.000167353619365707, 0.000112733429144085, -0.000075937677931681, 0.000051152948867483, -0.000034457053097903, 0.000023210771019078, -0.00001563501573798, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[cos(a(n-1))]
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence tbrv5kv3wcgnc

-4.185039863261519, 3.6029684387669056, 5.072638027223087, -6.280160308811496, 0.003160939003469587, 0.003307356197384842, 0.003465414645011627, 0.003636450785873935, 0.003822004775027171, 0.004023859728269796, 0.004244090218735092, 0.004485122633870547, 0.004749810867637927, 0.005041532022552586, 0.005364308478219559, 0.005722965070883879, 0.006123333564424904, 0.006572521609847171, 0.007079270831650331, 0.007654439909108857, 0.008311665788788447, 0.009068283272390398, 0.009946626756738353, 0.010975909596851297, 0.012194998000255697, more...

decimal, non-monotonic, +-

a(n)=Δ[tan(a(n-1))]
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence d01a5dfioo2am

-3.989992496600445, 1.5386886302035425, 0.30450917790265, -0.19563363956167557, 0.1339070777403446, -0.08868463787611758, 0.060245075988516916, -0.040300283011837856, 0.027258014909735673, -0.018305951168887447, 0.012354713426713682, -0.008311113665698144, 0.005603392959261932, -0.003772234322884538, 0.002542043129471594, -0.001711883655155177, 0.001153356172974407, -0.000776818587286399, 0.000523317792291866, -0.000352493410426646, 0.00023745275214293, -0.000159946965526347, 0.00010774404336733, -0.000072576846949057, 0.000048889016722953, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[cos(a(n-1))]
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence s0uhpldaxhbco

-3.7550213368731358, 1.0855705196372243, -0.6860444388521896, 0.3537891650632098, -0.2120419719647354, 0.11824281129224534, -0.06899126691522306, 0.03927519225672105, -0.02268697974047107, 0.012997485288562927, -0.007481997932353823, 0.004295265614358224, -0.002469711226824267, 0.001418764080886925, -0.000815454603699806, 0.000468554200721671, -0.000269273962078875, 0.000154734122086886, -0.000088920607760556, 0.000051098084281831, -0.000029363981051356, 0.000016874098712205, -0.00000969681069718, 0.000005572315632918, -0.000003202162628391, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[acot(a(n-1))]
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence evhzkxk0hg1sb

-3.142546543074278, -0.000973404710651049, -0.000993593998818515, -0.001014490380874089, -0.001036128998436386, -0.001058547269851579, -0.001081785073034358, -0.001105884945913044, -0.001130892306464043, -0.001156855694577158, -0.001183827038288926, -0.001211861947260806, -0.001241020036769264, -0.001271365285926224, -0.001302966434370834, -0.001335897422277549, -0.001370237879229991, -0.001406073668328456, -0.001443497492856743, -0.001482609573953436, -0.001523518409049185, -0.001566341622379647, -0.001611206920712344, -0.001658253169590534, -0.001707631607969412, more...

decimal, non-monotonic, -

a(n)=Δ[tan(a(n-1))]
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence e5yp2mcpbofzb

-3.136308845549383, -0.009183506036899547, 0.01601527710691153, -0.027767071664244858, 0.04863898036326075, -0.08372287164158931, 0.14874401296423267, -0.25095695024162834, 0.46871362365456304, -0.7553536258184123, 1.8275804644493574, -3.047814502429534, -0.16705361907777427, 0.28090921539588476, -0.530109508981656, 0.8490922584345666, -2.220576883266381, 4.211302502317997, -1.673546761359431, -19.38754792794709, 17.943444826699093, 1.4200628817737975, -13.155319759487867, 11.953877412376922, 0.9741979153376776, more...

decimal, non-monotonic, +-

a(n)=Δ[cot(a(n-1))]
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence 1wo4u1m1vuv5n

-2.8421787176504223, 1.1243831678417906, -3.4423240883654174, -1.1364293224499058, 3.4235667228634377, 0.9764527986927631, -3.79978037136722, 9.62169946813376, -21.905607396611213, 7.661131992695284, 6.283169875898638, -0.000015451195090228, -0.000015471152098621, -0.000015491152103128, -0.000015511195233547, -0.000015531281620164, -0.00001555141139379, -0.000015571584685729, -0.000015591801627815, -0.000015612062352378, -0.000015632366992278, -0.000015652715680887, -0.000015673108552092, -0.000015693545740311, -0.000015714027380494, more...

decimal, non-monotonic, +-

a(n)=Δ[tan(a(n-1))]
a(0)=4
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence ra1klzsmwtbeo

-2.678249445603358, 0.9377556872113679, -0.5884579119957021, 0.30871806612210273, -0.18414839030398777, 0.10311504432885665, -0.060051411113406505, 0.034228325928618686, -0.01975867372754969, 0.01132432758487667, -0.006517399462420026, 0.003741992913097403, -0.002151429403013383, 0.001235974736587542, -0.000710376530742796, 0.000408182845516358, -0.000234577186536744, 0.000134796780766555, -0.000077463067597705, 0.000044514095363324, -0.000025580409165449, 0.000014699865345413, -0.000008447370883125, 0.00000485432026609, -0.000002789562271066, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[acot(a(n-1))]
a(0)=3
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence lg5ci345qefe

-2.457657554360286, -1.5726562440211698, 2.5251617366803267, 1.3582683882569002, -2.1431841683576525, -3.0601655069918308, -1.3729458978277242, 4.733969931647363, 92.65813481275056, -92.66086754025798, 124.09018332134526, -124.10357279144597, -187.55692395532034, 188.30290914634588, 0.35309248574398944, -0.5768789302180808, 1.2424278022284172, -1.9500585032392004, -4.987587770695103, 5.6812479057325005, 1.315054997907074, -2.0702656469842067, -3.626538075557879, 2.7776233033434954, 0.5938067419466454, more...

decimal, non-monotonic, +-

a(n)=Δ[cot(a(n-1))]
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence qntv0a2zuaeao

-2.4161468365471426, 1.3308001623995138, -0.30458802610939684, 0.20954530825711581, -0.1371047501040885, 0.09348875522559741, -0.062269879113211024, 0.04220397956631472, -0.028293921260021615, 0.01911480941629151, -0.012849004488371896, 0.008666953058860782, -0.005832691907645127, 0.003931405480132377, -0.002647122693159698, 0.001783637030145946, -0.001201249575830121, 0.000809280003680191, -0.000545093498049876, 0.000367202936227384, -0.000247342593025501, 0.00016661735365231, -0.000112233452566057, 0.000075602711395173, -0.000050926483870617, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[cos(a(n-1))]
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence ae2al5q5xmx3e

-2.185039863261519, -0.1425465430742778, -3.380515006246586, 0.8714479827243187, -225.95084645419513, 0.4630211329364896, 3.49391564547484, 0.15158947061240008, 1.5881530833912738, 0.8871428437982152, -0.441695568020698, -0.8407712554027598, 0.16065669868064283, -1.4983873388551707, -0.12452756813273719, -0.4311581967195641, -0.8257740091968151, 3.7431679442724195, 1.6523172640102353, -3.07762040319336, 0.9192864044036078, 0.49567753318135577, 3.880596310384246, 1.6858253705060158, -0.41032129904824216, more...

decimal, non-monotonic, +-

a(n)=tan(p(n))
p(n)=nth prime
n≥1
3 operations
Prime

Sequence alv0irdpu3yyj

-2, 0, 1, -1, 2, -2, 1, 0, 1, -2, 1, -1, 2, 0, -1, -1, 1, -1, 1, 1, 0, -2, 1, 0, 1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, -1, 2, 0, -1, -1, 0, 0, 1, 0, 1, -2, 1, 0, 0, 1, more...

integer, non-monotonic, +-, A127440

a(n)=Δ[μ(n)]
μ(n)=Möbius function
Δ(a)=differences of a
n≥1
3 operations
Prime
a(n)=Δ[floor(exp(μ(n)))]
μ(n)=Möbius function
Δ(a)=differences of a
n≥1
5 operations
Prime

Sequence j5d5yp1t1kr4k

-2, 0, 2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, 0, -2, 0, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 2, -2, 0, 2, -2, 2, more...

integer, non-monotonic, +-

a(n)=Δ[λ(n)]
λ(n)=Liouville's function
Δ(a)=differences of a
n≥1
3 operations
Prime
a(n)=Δ[xor(1, λ(n))]
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
Δ(a)=differences of a
n≥1
5 operations
Prime
a(n)=Δ[or(1, λ(n))]
λ(n)=Liouville's function
or(a,b)=bitwise or
Δ(a)=differences of a
n≥1
5 operations
Prime
a(n)=Δ[floor(exp(λ(n)))]
λ(n)=Liouville's function
Δ(a)=differences of a
n≥1
5 operations
Prime

Sequence g2mm2we1holzd

-2, 3, -3, 4, 4, -7, 4, -1, -2, 2, 3, 1, -2, 2, -6, -1, 1, 5, -4, 2, -4, 4, -2, -1, 0, 5, -5, -1, 5, 2, -4, -5, 2, 6, 0, -4, -3, 8, -2, -6, 5, 3, -6, 6, 0, -6, 4, -2, -4, more...

integer, non-monotonic, +-, A095916

a(n)=Δ[de[π]]
π=3.1415... (Pi)
de(a)=decimal expansion of a
Δ(a)=differences of a
n≥0
3 operations
DecimalConstant
a(n)=Δ[1+de[π]]
π=3.1415... (Pi)
de(a)=decimal expansion of a
Δ(a)=differences of a
n≥0
5 operations
Arithmetic

Sequence mclutk2qnlzml

-1.5363523909991939, 0.6730035776256724, -0.4151218132025615, 0.224237403684021, -0.13250341116485664, 0.07475676201155124, -0.043380624602627704, 0.024783047503588063, -0.014288569457228784, 0.008195281186334391, -0.004714605492308177, 0.002707564975211296, -0.001556478576426268, 0.0008942525470087, -0.000513948248320961, 0.000295322768367301, -0.000169715462044251, 0.000097525665022857, -0.000056044362035212, 0.000032205943940045, -0.000018507393280909, 0.0000106353438033, -0.000006111664474395, 0.00000351209700411, -0.000002018245810254, more...

decimal, non-monotonic, convergent, +-

a(n)=Δ[acot(a(n-1))]
a(0)=2
Δ(a)=differences of a
n≥0
3 operations
Trigonometric

Sequence e3txrizyz1vyo

-1.0997501702946164, -6.557594997074248, 7.878943705885151, -1.1595040699833623, -3.140540088647383, 4.583868426585264, -1.294580486354616, -2.0637803470497142, 3.7531964563561147, -1.546776786688244, -1.5682476650663655, 3.7324020426652815, -2.021694916427183, -1.306267025072246, 4.4945565008672865, -3.0401113629899887, -1.1654767084241526, 7.476029123058804, -6.1497691383311945, -1.1016602244349742, 113.62787547191796, -112.34354813403164, -1.09806896126833, -7.02074856985462, 8.337509060388225, more...

decimal, non-monotonic, +-

a(n)=Δ[cot(n)]
Δ(a)=differences of a
n≥1
3 operations
Trigonometric

Sequence km0abwnc2qkzp

-1, -3, -4, -7, -6, -12, -8, -15, -13, -18, -12, -28, -14, -24, -24, -31, -18, -39, -20, -42, -32, -36, -24, -60, -31, -42, -40, -56, -30, -72, -32, -63, -48, -54, -48, -91, -38, -60, -56, -90, -42, -96, -44, -84, -78, -72, -48, -124, -57, -93, more...

integer, non-monotonic, -

a(n)=-σ(n)
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence eticauab1kot

-1, -2, -3, -2, -5, -3, -7, -2, -3, -5, -11, -3, -13, -7, -5, -2, -17, -3, -19, -5, -7, -11, -23, -3, -5, -13, -3, -7, -29, -5, -31, -2, -11, -17, -7, -3, -37, -19, -13, -5, -41, -7, -43, -11, -5, -23, -47, -3, -7, -5, more...

integer, non-monotonic, -

a(n)=-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime
a(n)=-gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime

[0] [1] [2] [3] [4] ... [8931]