Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 109658. [0] [1] [2] [3] [4] ... [1096]

Sequence qxbjop1xs1vff

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime
a(n)=gcd(n, gpf(n))
gpf(n)=greatest prime factor of n
gcd(a,b)=greatest common divisor
n≥1
4 operations
Prime
a(n)=lpf(gpf(n)²)
gpf(n)=greatest prime factor of n
lpf(n)=least prime factor of n
n≥1
4 operations
Prime
a(n)=exp(Λ(gpf(n)))
gpf(n)=greatest prime factor of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
a(n)=floor(sqrt(floor(gpf(n)²)))
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence eticauab1kot

-1, -2, -3, -2, -5, -3, -7, -2, -3, -5, -11, -3, -13, -7, -5, -2, -17, -3, -19, -5, -7, -11, -23, -3, -5, -13, -3, -7, -29, -5, -31, -2, -11, -17, -7, -3, -37, -19, -13, -5, -41, -7, -43, -11, -5, -23, -47, -3, -7, -5, more...

integer, non-monotonic, -

a(n)=-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime
a(n)=-gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime

Sequence rxgll420vg4zn

-9, -8, -7, -8, -5, -7, -3, -8, -7, -5, 1, -7, 3, -3, -5, -8, 7, -7, 9, -5, -3, 1, 13, -7, -5, 3, -7, -3, 19, -5, 21, -8, 1, 7, -3, -7, 27, 9, 3, -5, 31, -3, 33, 1, -5, 13, 37, -7, -3, -5, more...

integer, non-monotonic, +-

a(n)=gpf(n)-10
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence h2b3k1estsgkb

-8, -7, -6, -7, -4, -6, -2, -7, -6, -4, 2, -6, 4, -2, -4, -7, 8, -6, 10, -4, -2, 2, 14, -6, -4, 4, -6, -2, 20, -4, 22, -7, 2, 8, -2, -6, 28, 10, 4, -4, 32, -2, 34, 2, -4, 14, 38, -6, -2, -4, more...

integer, non-monotonic, +-

a(n)=gpf(n)-9
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence pyvmrh1p4codh

-7, -6, -5, -6, -3, -5, -1, -6, -5, -3, 3, -5, 5, -1, -3, -6, 9, -5, 11, -3, -1, 3, 15, -5, -3, 5, -5, -1, 21, -3, 23, -6, 3, 9, -1, -5, 29, 11, 5, -3, 33, -1, 35, 3, -3, 15, 39, -5, -1, -3, more...

integer, non-monotonic, +-

a(n)=gpf(n)-8
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence nmo4smdkbqwql

-6, -5, -4, -5, -2, -4, 0, -5, -4, -2, 4, -4, 6, 0, -2, -5, 10, -4, 12, -2, 0, 4, 16, -4, -2, 6, -4, 0, 22, -2, 24, -5, 4, 10, 0, -4, 30, 12, 6, -2, 34, 0, 36, 4, -2, 16, 40, -4, 0, -2, more...

integer, non-monotonic, +-

a(n)=gpf(n)-7
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence zt4kzhyvbxsbn

-5, -4, -3, -4, -1, -3, 1, -4, -3, -1, 5, -3, 7, 1, -1, -4, 11, -3, 13, -1, 1, 5, 17, -3, -1, 7, -3, 1, 23, -1, 25, -4, 5, 11, 1, -3, 31, 13, 7, -1, 35, 1, 37, 5, -1, 17, 41, -3, 1, -1, more...

integer, non-monotonic, +-

a(n)=gpf(n)-6
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence uflkgf04twumh

-4, -3, -2, -3, 0, -2, 2, -3, -2, 0, 6, -2, 8, 2, 0, -3, 12, -2, 14, 0, 2, 6, 18, -2, 0, 8, -2, 2, 24, 0, 26, -3, 6, 12, 2, -2, 32, 14, 8, 0, 36, 2, 38, 6, 0, 18, 42, -2, 2, 0, more...

integer, non-monotonic, +-

a(n)=gpf(n)-5
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence njfxqx51dqfbp

-3, -2, -1, -2, 1, -1, 3, -2, -1, 1, 7, -1, 9, 3, 1, -2, 13, -1, 15, 1, 3, 7, 19, -1, 1, 9, -1, 3, 25, 1, 27, -2, 7, 13, 3, -1, 33, 15, 9, 1, 37, 3, 39, 7, 1, 19, 43, -1, 3, 1, more...

integer, non-monotonic, +-

a(n)=gpf(n)-4
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence wdbpzxezdhjsn

-2, -1, 0, -1, 2, 0, 4, -1, 0, 2, 8, 0, 10, 4, 2, -1, 14, 0, 16, 2, 4, 8, 20, 0, 2, 10, 0, 4, 26, 2, 28, -1, 8, 14, 4, 0, 34, 16, 10, 2, 38, 4, 40, 8, 2, 20, 44, 0, 4, 2, more...

integer, non-monotonic, +-

a(n)=gpf(n)-3
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence vjxhoztjk4u3j

-1, 0, 1, 0, 3, 1, 5, 0, 1, 3, 9, 1, 11, 5, 3, 0, 15, 1, 17, 3, 5, 9, 21, 1, 3, 11, 1, 5, 27, 3, 29, 0, 9, 15, 5, 1, 35, 17, 11, 3, 39, 5, 41, 9, 3, 21, 45, 1, 5, 3, more...

integer, non-monotonic, +-

a(n)=gpf(n)-2
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=gpf(φ(n²))-2
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence dwcamvrglxvlp

0, -1, -2, -1, -4, -2, -6, -1, -2, -4, -10, -2, -12, -6, -4, -1, -16, -2, -18, -4, -6, -10, -22, -2, -4, -12, -2, -6, -28, -4, -30, -1, -10, -16, -6, -2, -36, -18, -12, -4, -40, -6, -42, -10, -4, -22, -46, -2, -6, -4, more...

integer, non-monotonic, -

a(n)=1-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=1-gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence h4sc3vguv0yum

0, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 2, 4, 12, 2, 6, 28, 4, 30, 1, 10, 16, 6, 2, 36, 18, 12, 4, 40, 6, 42, 10, 4, 22, 46, 2, 6, 4, more...

integer, non-monotonic, +

a(n)=gpf(n)-1
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=gpf(φ(n²))-1
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence vyhazdie41zve

0.1, 0.2, 0.3, 0.2, 0.5, 0.3, 0.7, 0.2, 0.3, 0.5, 1.1, 0.3, 1.3, 0.7, 0.5, 0.2, 1.7, 0.3, 1.9, 0.5, 0.7, 1.1, 2.3, 0.3, 0.5, more...

decimal, non-monotonic, +

a(n)=gpf(n)/10
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 0svptt1qfhyag

0.1111111111111111, 0.2222222222222222, 0.3333333333333333, 0.2222222222222222, 0.5555555555555556, 0.3333333333333333, 0.7777777777777778, 0.2222222222222222, 0.3333333333333333, 0.5555555555555556, 1.2222222222222223, 0.3333333333333333, 1.4444444444444444, 0.7777777777777778, 0.5555555555555556, 0.2222222222222222, 1.8888888888888888, 0.3333333333333333, 2.111111111111111, 0.5555555555555556, 0.7777777777777778, 1.2222222222222223, 2.5555555555555554, 0.3333333333333333, 0.5555555555555556, more...

decimal, non-monotonic, +

a(n)=gpf(n)/9
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 3ewh34vmckzfb

0.125, 0.25, 0.375, 0.25, 0.625, 0.375, 0.875, 0.25, 0.375, 0.625, 1.375, 0.375, 1.625, 0.875, 0.625, 0.25, 2.125, 0.375, 2.375, 0.625, 0.875, 1.375, 2.875, 0.375, 0.625, more...

decimal, non-monotonic, +

a(n)=gpf(n)/8
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence n4sbimyzvwapm

0.14285714285714285, 0.2857142857142857, 0.42857142857142855, 0.2857142857142857, 0.7142857142857143, 0.42857142857142855, 1, 0.2857142857142857, 0.42857142857142855, 0.7142857142857143, 1.5714285714285714, 0.42857142857142855, 1.8571428571428572, 1, 0.7142857142857143, 0.2857142857142857, 2.4285714285714284, 0.42857142857142855, 2.7142857142857144, 0.7142857142857143, 1, 1.5714285714285714, 3.2857142857142856, 0.42857142857142855, 0.7142857142857143, more...

decimal, non-monotonic, +

a(n)=gpf(n)/7
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence zlmjo51uzn1op

0.16666666666666666, 0.3333333333333333, 0.5, 0.3333333333333333, 0.8333333333333334, 0.5, 1.1666666666666667, 0.3333333333333333, 0.5, 0.8333333333333334, 1.8333333333333333, 0.5, 2.1666666666666665, 1.1666666666666667, 0.8333333333333334, 0.3333333333333333, 2.8333333333333335, 0.5, 3.1666666666666665, 0.8333333333333334, 1.1666666666666667, 1.8333333333333333, 3.8333333333333335, 0.5, 0.8333333333333334, more...

decimal, non-monotonic, +

a(n)=gpf(n)/6
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 02ede5001vcil

0.2, 0.4, 0.6, 0.4, 1, 0.6, 1.4, 0.4, 0.6, 1, 2.2, 0.6, 2.6, 1.4, 1, 0.4, 3.4, 0.6, 3.8, 1, 1.4, 2.2, 4.6, 0.6, 1, more...

decimal, non-monotonic, +

a(n)=gpf(n)/5
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence djgmwqm2jirve

0.25, 0.5, 0.75, 0.5, 1.25, 0.75, 1.75, 0.5, 0.75, 1.25, 2.75, 0.75, 3.25, 1.75, 1.25, 0.5, 4.25, 0.75, 4.75, 1.25, 1.75, 2.75, 5.75, 0.75, 1.25, more...

decimal, non-monotonic, +

a(n)=gpf(n)/4
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence ktn4yojrmtglb

0.3333333333333333, 0.6666666666666666, 1, 0.6666666666666666, 1.6666666666666667, 1, 2.3333333333333335, 0.6666666666666666, 1, 1.6666666666666667, 3.6666666666666665, 1, 4.333333333333333, 2.3333333333333335, 1.6666666666666667, 0.6666666666666666, 5.666666666666667, 1, 6.333333333333333, 1.6666666666666667, 2.3333333333333335, 3.6666666666666665, 7.666666666666667, 1, 1.6666666666666667, more...

decimal, non-monotonic, +

a(n)=gpf(n)/3
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence bp1dwszrit2yc

0.5, 1, 1.5, 1, 2.5, 1.5, 3.5, 1, 1.5, 2.5, 5.5, 1.5, 6.5, 3.5, 2.5, 1, 8.5, 1.5, 9.5, 2.5, 3.5, 5.5, 11.5, 1.5, 2.5, more...

decimal, non-monotonic, +

a(n)=gpf(n)/2
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=gpf(n*φ(n))/2
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
7 operations
Prime

Sequence qsalgx13soqdm

1, 0, -1, 0, -3, -1, -5, 0, -1, -3, -9, -1, -11, -5, -3, 0, -15, -1, -17, -3, -5, -9, -21, -1, -3, -11, -1, -5, -27, -3, -29, 0, -9, -15, -5, -1, -35, -17, -11, -3, -39, -5, -41, -9, -3, -21, -45, -1, -5, -3, more...

integer, non-monotonic, +-

a(n)=2-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=2-gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence yu530hrtlsj4d

1, 0.5, 0.3333333333333333, 0.5, 0.2, 0.3333333333333333, 0.14285714285714285, 0.5, 0.3333333333333333, 0.2, 0.09090909090909091, 0.3333333333333333, 0.07692307692307693, 0.14285714285714285, 0.2, 0.5, 0.058823529411764705, 0.3333333333333333, 0.05263157894736842, 0.2, 0.14285714285714285, 0.09090909090909091, 0.043478260869565216, 0.3333333333333333, 0.2, more...

decimal, non-monotonic, +

a(n)=1/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=1/gpf(n*φ(n))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
7 operations
Prime

Sequence lgunuodvfduno

2, 1, 0, 1, -2, 0, -4, 1, 0, -2, -8, 0, -10, -4, -2, 1, -14, 0, -16, -2, -4, -8, -20, 0, -2, -10, 0, -4, -26, -2, -28, 1, -8, -14, -4, 0, -34, -16, -10, -2, -38, -4, -40, -8, -2, -20, -44, 0, -4, -2, more...

integer, non-monotonic, +-

a(n)=3-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence na4cymu1csqkf

2, 1, 0.6666666666666666, 1, 0.4, 0.6666666666666666, 0.2857142857142857, 1, 0.6666666666666666, 0.4, 0.18181818181818182, 0.6666666666666666, 0.15384615384615385, 0.2857142857142857, 0.4, 1, 0.11764705882352941, 0.6666666666666666, 0.10526315789473684, 0.4, 0.2857142857142857, 0.18181818181818182, 0.08695652173913043, 0.6666666666666666, 0.4, more...

decimal, non-monotonic, +

a(n)=2/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=2/gpf(n*φ(n))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
7 operations
Prime
a(n)=Ω(p(n)²)/gpf(n)
p(n)=nth prime
Ω(n)=max distinct factors of n
gpf(n)=greatest prime factor of n
n≥1
7 operations
Prime

Sequence dcjhlu541dvle

2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A111089

a(n)=gpf(2*n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=Ω(a(n-1))*gpf(n)
a(0)=2
Ω(n)=max distinct factors of n
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime
a(n)=and(μ(a(n-1)), gpf(n))
a(0)=2
μ(n)=Möbius function
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=lcm(gpf(n), Ω(a(n-1)))
a(0)=2
gpf(n)=greatest prime factor of n
Ω(n)=max distinct factors of n
lcm(a,b)=least common multiple
n≥1
5 operations
Prime
a(n)=root(Ω(a(n-1)), gpf(n))
a(0)=2
Ω(n)=max distinct factors of n
gpf(n)=greatest prime factor of n
root(n,a)=the n-th root of a
n≥1
5 operations
Prime

Sequence jn5qnwjpfagyc

2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, more...

integer, non-monotonic, +

a(n)=gpf(2+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence cvkxbqnesfazf

2, 3, 4, 3, 6, 4, 8, 3, 4, 6, 12, 4, 14, 8, 6, 3, 18, 4, 20, 6, 8, 12, 24, 4, 6, 14, 4, 8, 30, 6, 32, 3, 12, 18, 8, 4, 38, 20, 14, 6, 42, 8, 44, 12, 6, 24, 48, 4, 8, 6, more...

integer, non-monotonic, +

a(n)=1+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=1+gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence z2nei0gpjvrt

2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, more...

integer, non-monotonic, +

a(n)=gpf(8+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence g2zxdwttvtmfh

2, 4, 6, 4, 10, 6, 14, 4, 6, 10, 22, 6, 26, 14, 10, 4, 34, 6, 38, 10, 14, 22, 46, 6, 10, 26, 6, 14, 58, 10, 62, 4, 22, 34, 14, 6, 74, 38, 26, 10, 82, 14, 86, 22, 10, 46, 94, 6, 14, 10, more...

integer, non-monotonic, +

a(n)=2*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=2*gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence xyvii2womfdml

2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, more...

integer, non-monotonic, +

a(n)=gpf(4+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence zhlbrsa50v53n

3, 1.5, 1, 1.5, 0.6, 1, 0.42857142857142855, 1.5, 1, 0.6, 0.2727272727272727, 1, 0.23076923076923078, 0.42857142857142855, 0.6, 1.5, 0.17647058823529413, 1, 0.15789473684210525, 0.6, 0.42857142857142855, 0.2727272727272727, 0.13043478260869565, 1, 0.6, more...

decimal, non-monotonic, +

a(n)=3/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=τ(p(n)²)/gpf(n)
p(n)=nth prime
τ(n)=number of divisors of n
gpf(n)=greatest prime factor of n
n≥1
7 operations
Prime

Sequence 2lufp0habopqk

3, 2, 1, 2, -1, 1, -3, 2, 1, -1, -7, 1, -9, -3, -1, 2, -13, 1, -15, -1, -3, -7, -19, 1, -1, -9, 1, -3, -25, -1, -27, 2, -7, -13, -3, 1, -33, -15, -9, -1, -37, -3, -39, -7, -1, -19, -43, 1, -3, -1, more...

integer, non-monotonic, +-

a(n)=4-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence fbbn2sctffndk

3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, more...

integer, non-monotonic, +

a(n)=gpf(3+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence b4xuowjkllpxo

3, 3, 3, 3, 5, 3, 7, 3, 3, 5, 11, 3, 13, 7, 5, 3, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 3, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +

a(n)=gpf(3*n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence pxj4tirozk3ll

3, 4, 5, 4, 7, 5, 9, 4, 5, 7, 13, 5, 15, 9, 7, 4, 19, 5, 21, 7, 9, 13, 25, 5, 7, 15, 5, 9, 31, 7, 33, 4, 13, 19, 9, 5, 39, 21, 15, 7, 43, 9, 45, 13, 7, 25, 49, 5, 9, 7, more...

integer, non-monotonic, +

a(n)=2+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=2+gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence mbloucbmlq31c

3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, more...

integer, non-monotonic, +

a(n)=gpf(9+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence yhke3admtbgaf

3, 6, 9, 6, 15, 9, 21, 6, 9, 15, 33, 9, 39, 21, 15, 6, 51, 9, 57, 15, 21, 33, 69, 9, 15, 39, 9, 21, 87, 15, 93, 6, 33, 51, 21, 9, 111, 57, 39, 15, 123, 21, 129, 33, 15, 69, 141, 9, 21, 15, more...

integer, non-monotonic, +

a(n)=3*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 4kndtjuyr30hf

3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, more...

integer, non-monotonic, +

a(n)=gpf(6+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence 4nq0ogxsprutl

4, 2, 1.3333333333333333, 2, 0.8, 1.3333333333333333, 0.5714285714285714, 2, 1.3333333333333333, 0.8, 0.36363636363636365, 1.3333333333333333, 0.3076923076923077, 0.5714285714285714, 0.8, 2, 0.23529411764705882, 1.3333333333333333, 0.21052631578947367, 0.8, 0.5714285714285714, 0.36363636363636365, 0.17391304347826086, 1.3333333333333333, 0.8, more...

decimal, non-monotonic, +

a(n)=4/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence aobqiwqasogqn

4, 3, 2, 3, 0, 2, -2, 3, 2, 0, -6, 2, -8, -2, 0, 3, -12, 2, -14, 0, -2, -6, -18, 2, 0, -8, 2, -2, -24, 0, -26, 3, -6, -12, -2, 2, -32, -14, -8, 0, -36, -2, -38, -6, 0, -18, -42, 2, -2, 0, more...

integer, non-monotonic, +-

a(n)=5-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 50btokj2rroip

4, 5, 6, 5, 8, 6, 10, 5, 6, 8, 14, 6, 16, 10, 8, 5, 20, 6, 22, 8, 10, 14, 26, 6, 8, 16, 6, 10, 32, 8, 34, 5, 14, 20, 10, 6, 40, 22, 16, 8, 44, 10, 46, 14, 8, 26, 50, 6, 10, 8, more...

integer, non-monotonic, +

a(n)=3+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence zphqhzpe0uibn

4, 8, 12, 8, 20, 12, 28, 8, 12, 20, 44, 12, 52, 28, 20, 8, 68, 12, 76, 20, 28, 44, 92, 12, 20, 52, 12, 28, 116, 20, 124, 8, 44, 68, 28, 12, 148, 76, 52, 20, 164, 28, 172, 44, 20, 92, 188, 12, 28, 20, more...

integer, non-monotonic, +

a(n)=4*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence yy150hqb4ifz

5, 2.5, 1.6666666666666667, 2.5, 1, 1.6666666666666667, 0.7142857142857143, 2.5, 1.6666666666666667, 1, 0.45454545454545453, 1.6666666666666667, 0.38461538461538464, 0.7142857142857143, 1, 2.5, 0.29411764705882354, 1.6666666666666667, 0.2631578947368421, 1, 0.7142857142857143, 0.45454545454545453, 0.21739130434782608, 1.6666666666666667, 1, more...

decimal, non-monotonic, +

a(n)=5/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 3rdu1ins03cad

5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, more...

integer, non-monotonic, +

a(n)=gpf(5+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence a323bkl1prxjp

5, 4, 3, 4, 1, 3, -1, 4, 3, 1, -5, 3, -7, -1, 1, 4, -11, 3, -13, 1, -1, -5, -17, 3, 1, -7, 3, -1, -23, 1, -25, 4, -5, -11, -1, 3, -31, -13, -7, 1, -35, -1, -37, -5, 1, -17, -41, 3, -1, 1, more...

integer, non-monotonic, +-

a(n)=6-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence iqamnipt1yh2n

5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 11, 5, 13, 7, 5, 5, 17, 5, 19, 5, 7, 11, 23, 5, 5, 13, 5, 7, 29, 5, 31, 5, 11, 17, 7, 5, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 5, 7, 5, more...

integer, non-monotonic, +

a(n)=gpf(5*n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence hqr3lwikvcve

5, 6, 7, 6, 9, 7, 11, 6, 7, 9, 15, 7, 17, 11, 9, 6, 21, 7, 23, 9, 11, 15, 27, 7, 9, 17, 7, 11, 33, 9, 35, 6, 15, 21, 11, 7, 41, 23, 17, 9, 45, 11, 47, 15, 9, 27, 51, 7, 11, 9, more...

integer, non-monotonic, +

a(n)=4+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence ariar2kqdwvpc

5, 10, 15, 10, 25, 15, 35, 10, 15, 25, 55, 15, 65, 35, 25, 10, 85, 15, 95, 25, 35, 55, 115, 15, 25, 65, 15, 35, 145, 25, 155, 10, 55, 85, 35, 15, 185, 95, 65, 25, 205, 35, 215, 55, 25, 115, 235, 15, 35, 25, more...

integer, non-monotonic, +

a(n)=5*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence ehh5j2wkbgdwc

5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, more...

integer, non-monotonic, +

a(n)=gpf(10+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence mi254we0gwff

6, 3, 2, 3, 1.2, 2, 0.8571428571428571, 3, 2, 1.2, 0.5454545454545454, 2, 0.46153846153846156, 0.8571428571428571, 1.2, 3, 0.35294117647058826, 2, 0.3157894736842105, 1.2, 0.8571428571428571, 0.5454545454545454, 0.2608695652173913, 2, 1.2, more...

decimal, non-monotonic, +

a(n)=6/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence jvnmh3iblvlif

6, 5, 4, 5, 2, 4, 0, 5, 4, 2, -4, 4, -6, 0, 2, 5, -10, 4, -12, 2, 0, -4, -16, 4, 2, -6, 4, 0, -22, 2, -24, 5, -4, -10, 0, 4, -30, -12, -6, 2, -34, 0, -36, -4, 2, -16, -40, 4, 0, 2, more...

integer, non-monotonic, +-

a(n)=7-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence xgmpwe1ir1sph

6, 7, 8, 7, 10, 8, 12, 7, 8, 10, 16, 8, 18, 12, 10, 7, 22, 8, 24, 10, 12, 16, 28, 8, 10, 18, 8, 12, 34, 10, 36, 7, 16, 22, 12, 8, 42, 24, 18, 10, 46, 12, 48, 16, 10, 28, 52, 8, 12, 10, more...

integer, non-monotonic, +

a(n)=5+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence rs1j4o0k5aypn

6, 12, 18, 12, 30, 18, 42, 12, 18, 30, 66, 18, 78, 42, 30, 12, 102, 18, 114, 30, 42, 66, 138, 18, 30, 78, 18, 42, 174, 30, 186, 12, 66, 102, 42, 18, 222, 114, 78, 30, 246, 42, 258, 66, 30, 138, 282, 18, 42, 30, more...

integer, non-monotonic, +

a(n)=6*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence lppjmk05d4bbi

7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, more...

integer, non-monotonic, +

a(n)=gpf(7+n)
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence yj2klqkxf1cbk

7, 3.5, 2.3333333333333335, 3.5, 1.4, 2.3333333333333335, 1, 3.5, 2.3333333333333335, 1.4, 0.6363636363636364, 2.3333333333333335, 0.5384615384615384, 1, 1.4, 3.5, 0.4117647058823529, 2.3333333333333335, 0.3684210526315789, 1.4, 1, 0.6363636363636364, 0.30434782608695654, 2.3333333333333335, 1.4, more...

decimal, non-monotonic, +

a(n)=7/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 0uqiowqtcjqse

7, 6, 5, 6, 3, 5, 1, 6, 5, 3, -3, 5, -5, 1, 3, 6, -9, 5, -11, 3, 1, -3, -15, 5, 3, -5, 5, 1, -21, 3, -23, 6, -3, -9, 1, 5, -29, -11, -5, 3, -33, 1, -35, -3, 3, -15, -39, 5, 1, 3, more...

integer, non-monotonic, +-

a(n)=8-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence xcjz24tvyvnup

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 11, 7, 13, 7, 7, 7, 17, 7, 19, 7, 7, 11, 23, 7, 7, 13, 7, 7, 29, 7, 31, 7, 11, 17, 7, 7, 37, 19, 13, 7, 41, 7, 43, 11, 7, 23, 47, 7, 7, 7, more...

integer, non-monotonic, +

a(n)=gpf(7*n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence xvhcqxmpvmpcj

7, 8, 9, 8, 11, 9, 13, 8, 9, 11, 17, 9, 19, 13, 11, 8, 23, 9, 25, 11, 13, 17, 29, 9, 11, 19, 9, 13, 35, 11, 37, 8, 17, 23, 13, 9, 43, 25, 19, 11, 47, 13, 49, 17, 11, 29, 53, 9, 13, 11, more...

integer, non-monotonic, +

a(n)=6+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 2si04s4jzgvio

7, 14, 21, 14, 35, 21, 49, 14, 21, 35, 77, 21, 91, 49, 35, 14, 119, 21, 133, 35, 49, 77, 161, 21, 35, 91, 21, 49, 203, 35, 217, 14, 77, 119, 49, 21, 259, 133, 91, 35, 287, 49, 301, 77, 35, 161, 329, 21, 49, 35, more...

integer, non-monotonic, +

a(n)=7*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence i5nmm3sf3fshi

8, 4, 2.6666666666666665, 4, 1.6, 2.6666666666666665, 1.1428571428571428, 4, 2.6666666666666665, 1.6, 0.7272727272727273, 2.6666666666666665, 0.6153846153846154, 1.1428571428571428, 1.6, 4, 0.47058823529411764, 2.6666666666666665, 0.42105263157894735, 1.6, 1.1428571428571428, 0.7272727272727273, 0.34782608695652173, 2.6666666666666665, 1.6, more...

decimal, non-monotonic, +

a(n)=8/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence in51np0bbzqdb

8, 7, 6, 7, 4, 6, 2, 7, 6, 4, -2, 6, -4, 2, 4, 7, -8, 6, -10, 4, 2, -2, -14, 6, 4, -4, 6, 2, -20, 4, -22, 7, -2, -8, 2, 6, -28, -10, -4, 4, -32, 2, -34, -2, 4, -14, -38, 6, 2, 4, more...

integer, non-monotonic, +-

a(n)=9-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence dd1uszshtbnwb

8, 9, 10, 9, 12, 10, 14, 9, 10, 12, 18, 10, 20, 14, 12, 9, 24, 10, 26, 12, 14, 18, 30, 10, 12, 20, 10, 14, 36, 12, 38, 9, 18, 24, 14, 10, 44, 26, 20, 12, 48, 14, 50, 18, 12, 30, 54, 10, 14, 12, more...

integer, non-monotonic, +

a(n)=7+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence ztxrtgaaohnob

8, 16, 24, 16, 40, 24, 56, 16, 24, 40, 88, 24, 104, 56, 40, 16, 136, 24, 152, 40, 56, 88, 184, 24, 40, 104, 24, 56, 232, 40, 248, 16, 88, 136, 56, 24, 296, 152, 104, 40, 328, 56, 344, 88, 40, 184, 376, 24, 56, 40, more...

integer, non-monotonic, +

a(n)=8*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence s2hmr0wr2trip

9, 4.5, 3, 4.5, 1.8, 3, 1.2857142857142858, 4.5, 3, 1.8, 0.8181818181818182, 3, 0.6923076923076923, 1.2857142857142858, 1.8, 4.5, 0.5294117647058824, 3, 0.47368421052631576, 1.8, 1.2857142857142858, 0.8181818181818182, 0.391304347826087, 3, 1.8, more...

decimal, non-monotonic, +

a(n)=9/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence f0znyccnn023c

9, 8, 7, 8, 5, 7, 3, 8, 7, 5, -1, 7, -3, 3, 5, 8, -7, 7, -9, 5, 3, -1, -13, 7, 5, -3, 7, 3, -19, 5, -21, 8, -1, -7, 3, 7, -27, -9, -3, 5, -31, 3, -33, -1, 5, -13, -37, 7, 3, 5, more...

integer, non-monotonic, +-

a(n)=10-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence wk3mmx4y1531g

9, 10, 11, 10, 13, 11, 15, 10, 11, 13, 19, 11, 21, 15, 13, 10, 25, 11, 27, 13, 15, 19, 31, 11, 13, 21, 11, 15, 37, 13, 39, 10, 19, 25, 15, 11, 45, 27, 21, 13, 49, 15, 51, 19, 13, 31, 55, 11, 15, 13, more...

integer, non-monotonic, +

a(n)=8+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence kj2hx5icnemvf

9, 18, 27, 18, 45, 27, 63, 18, 27, 45, 99, 27, 117, 63, 45, 18, 153, 27, 171, 45, 63, 99, 207, 27, 45, 117, 27, 63, 261, 45, 279, 18, 99, 153, 63, 27, 333, 171, 117, 45, 369, 63, 387, 99, 45, 207, 423, 27, 63, 45, more...

integer, non-monotonic, +

a(n)=9*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence bzmcxdvh5l2yi

10, 5, 3.3333333333333335, 5, 2, 3.3333333333333335, 1.4285714285714286, 5, 3.3333333333333335, 2, 0.9090909090909091, 3.3333333333333335, 0.7692307692307693, 1.4285714285714286, 2, 5, 0.5882352941176471, 3.3333333333333335, 0.5263157894736842, 2, 1.4285714285714286, 0.9090909090909091, 0.43478260869565216, 3.3333333333333335, 2, more...

decimal, non-monotonic, +

a(n)=10/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence yyqltkoxsrgyn

10, 11, 12, 11, 14, 12, 16, 11, 12, 14, 20, 12, 22, 16, 14, 11, 26, 12, 28, 14, 16, 20, 32, 12, 14, 22, 12, 16, 38, 14, 40, 11, 20, 26, 16, 12, 46, 28, 22, 14, 50, 16, 52, 20, 14, 32, 56, 12, 16, 14, more...

integer, non-monotonic, +

a(n)=9+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence xsm13mdtotldk

10, 20, 30, 20, 50, 30, 70, 20, 30, 50, 110, 30, 130, 70, 50, 20, 170, 30, 190, 50, 70, 110, 230, 30, 50, 130, 30, 70, 290, 50, 310, 20, 110, 170, 70, 30, 370, 190, 130, 50, 410, 70, 430, 110, 50, 230, 470, 30, 70, 50, more...

integer, non-monotonic, +

a(n)=10*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence sfdmxtnfeb1bk

11, 12, 13, 12, 15, 13, 17, 12, 13, 15, 21, 13, 23, 17, 15, 12, 27, 13, 29, 15, 17, 21, 33, 13, 15, 23, 13, 17, 39, 15, 41, 12, 21, 27, 17, 13, 47, 29, 23, 15, 51, 17, 53, 21, 15, 33, 57, 13, 17, 15, more...

integer, non-monotonic, +

a(n)=10+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence qfmmsg5vcuqge

0, 0, 0, -2, 0, -3, 0, -6, -6, -5, 0, -9, 0, -7, -10, -14, 0, -15, 0, -15, -14, -11, 0, -21, -20, -13, -24, -21, 0, -25, 0, -30, -22, -17, -28, -33, 0, -19, -26, -35, 0, -35, 0, -33, -40, -23, 0, -45, -42, -45, more...

integer, non-monotonic, -

a(n)=gpf(n)-n
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=gpf(φ(n²))-n
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence s15nfwwtqjeqn

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 8, 0, 8, 0, 8, 0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 8, 0, 0, 8, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(8, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence wsmwo0lzd3yhd

0, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 4, 4, 4, 0, 0, 0, 0, 4, 4, 0, 4, 0, 4, 4, 0, 4, 4, 4, 4, 0, 0, 0, 4, 0, 4, 0, 4, 4, 0, 4, 0, 0, 4, 4, 4, 0, 4, 4, more...

integer, non-monotonic, +

a(n)=and(4, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence qiw450jtkhd1l

0, 0, 0, 2, 0, 3, 0, 6, 6, 5, 0, 9, 0, 7, 10, 14, 0, 15, 0, 15, 14, 11, 0, 21, 20, 13, 24, 21, 0, 25, 0, 30, 22, 17, 28, 33, 0, 19, 26, 35, 0, 35, 0, 33, 40, 23, 0, 45, 42, 45, more...

integer, non-monotonic, +

a(n)=n-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=n-gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence tidy1rfh1sf4h

0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 0, more...

integer, non-monotonic, +

a(n)=and(2, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence 3u3l455ayyoim

0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 10, 2, 8, 2, 0, 2, 0, 2, 2, 0, 2, 10, 2, 2, 0, 8, 2, 2, 8, 0, 10, 2, 10, 0, 2, 2, 0, 2, 8, 0, 8, 2, 10, 10, 0, 2, 10, 2, 2, 0, more...

integer, non-monotonic, +

a(n)=and(10, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence sekdfphedmm3

0, 2, 2, 2, 4, 2, 6, 2, 2, 4, 2, 2, 4, 6, 4, 2, 0, 2, 2, 4, 6, 2, 6, 2, 4, 4, 2, 6, 4, 4, 6, 2, 2, 0, 6, 2, 4, 2, 4, 4, 0, 6, 2, 2, 4, 6, 6, 2, 6, 4, more...

integer, non-monotonic, +

a(n)=and(6, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence pdrhxtw52zf2e

0, 3, 2, 3, 4, 2, 6, 3, 2, 4, 10, 2, 12, 6, 4, 3, 16, 2, 18, 4, 6, 10, 22, 2, 4, 12, 2, 6, 28, 4, 30, 3, 10, 16, 6, 2, 36, 18, 12, 4, 40, 6, 42, 10, 4, 22, 46, 2, 6, 4, more...

integer, non-monotonic, +

a(n)=xor(1, gpf(n))
gpf(n)=greatest prime factor of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence si2lpja42wscb

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, non-monotonic, +, A267442

a(n)=and(1, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=gpf(n)%2
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=char[comp[or(n, a(n-1))]]
a(0)=1
or(a,b)=bitwise or
comp(a)=complement function of a (in range)
char(a)=characteristic function of a (in range)
n≥0
5 operations
Recursive
a(n)=exp(Λ(n))%2
Λ(n)=Von Mangoldt's function
n≥1
5 operations
Prime
a(n)=gpf(φ(n²))%2
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence irv243qwnixb

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 9, 1, 9, 1, 1, 0, 1, 1, 1, 1, 1, 9, 1, 1, 1, 9, 1, 1, 9, 1, 9, 0, 9, 1, 1, 1, 1, 1, 9, 1, 9, 1, 9, 9, 1, 1, 9, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=and(9, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence posunyjww25mi

1, 0, 1, 0, 5, 1, 5, 0, 1, 5, 1, 1, 5, 5, 5, 0, 1, 1, 1, 5, 5, 1, 5, 1, 5, 5, 1, 5, 5, 5, 5, 0, 1, 1, 5, 1, 5, 1, 5, 5, 1, 5, 1, 1, 5, 5, 5, 1, 5, 5, more...

integer, non-monotonic, +

a(n)=and(5, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence jhrsqxdpo0qod

1, 1, 1, 0.5, 1, 0.5, 1, 0.25, 0.3333333333333333, 0.5, 1, 0.25, 1, 0.5, 0.3333333333333333, 0.125, 1, 0.16666666666666666, 1, 0.25, 0.3333333333333333, 0.5, 1, 0.125, 0.2, more...

decimal, non-monotonic, +

a(n)=gpf(n)/n
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=gpf(n*φ(n))/n
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
7 operations
Prime

Sequence ysapc4id2wk2i

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 3, 8, 1, 6, 1, 4, 3, 2, 1, 8, 5, 2, 9, 4, 1, 6, 1, 16, 3, 2, 5, 12, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 16, 7, 10, more...

integer, non-monotonic, +, A052126

a(n)=n/gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=n/gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence il0kzazj2vddd

1, 1, 3, 3, 5, 5, 7, 7, 3, 3, 11, 11, 13, 13, 5, 5, 17, 17, 19, 19, 7, 7, 23, 23, 5, 5, 3, 3, 29, 29, 31, 31, 11, 11, 7, 7, 37, 37, 13, 13, 41, 41, 43, 43, 5, 5, 47, 47, 7, 7, more...

integer, non-monotonic, +

a(n)=gpf(or(1, n))
or(a,b)=bitwise or
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence pxyn22lhbc3vl

1, 2, 3, 2, 1, 3, 3, 2, 3, 1, 3, 3, 1, 3, 1, 2, 1, 3, 3, 1, 3, 3, 3, 3, 1, 1, 3, 3, 1, 1, 3, 2, 3, 1, 3, 3, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 3, 1, more...

integer, non-monotonic, +

a(n)=and(3, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=gpf(n)%4
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence q5ohplxkvdusn

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 3, 3, 5, 7, 5, 2, 1, 3, 3, 5, 7, 3, 7, 3, 5, 5, 3, 7, 5, 5, 7, 2, 3, 1, 7, 3, 5, 3, 5, 5, 1, 7, 3, 3, 5, 7, 7, 3, 7, 5, more...

integer, non-monotonic, +

a(n)=and(7, gpf(n))
gpf(n)=greatest prime factor of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=gpf(n)%8
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence lvtyvcifzx4dn

1, 3, 3, 3, 5, 3, 7, 3, 3, 5, 11, 3, 13, 7, 5, 3, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 3, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +

a(n)=or(1, gpf(n))
gpf(n)=greatest prime factor of n
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=gpf(n*σ(gpf(n)))
gpf(n)=greatest prime factor of n
σ(n)=divisor sum of n
n≥1
6 operations
Prime

Sequence bcvrhffo4f0mm

1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, more...

integer, non-monotonic, +, A253560

a(n)=n*gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=n*gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence hmvuygqgs5orh

2, 1, 0, 1, 6, 0, 4, 1, 0, 6, 8, 0, 14, 4, 6, 1, 18, 0, 16, 6, 4, 8, 20, 0, 6, 14, 0, 4, 30, 6, 28, 1, 8, 18, 4, 0, 38, 16, 14, 6, 42, 4, 40, 8, 6, 20, 44, 0, 4, 6, more...

integer, non-monotonic, +

a(n)=xor(3, gpf(n))
gpf(n)=greatest prime factor of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence mcjscaqaqvqmd

2, 3, 2, 3, 3, 7, 3, 7, 5, 11, 5, 11, 7, 5, 7, 5, 3, 19, 3, 19, 11, 23, 11, 23, 13, 3, 13, 3, 5, 31, 5, 31, 17, 7, 17, 7, 19, 13, 19, 13, 7, 43, 7, 43, 23, 47, 23, 47, 5, 17, more...

integer, non-monotonic, +

a(n)=gpf(or(2, n))
or(a,b)=bitwise or
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence lqldyjpfq52db

2, 3, 5, 11, 3, 13, 7, 5, 2, 3, 5, 11, 3, 13, 7, 5, 3, 5, 13, 3, 7, 29, 5, 31, 3, 5, 13, 3, 7, 29, 5, 31, 5, 41, 7, 43, 11, 5, 23, 47, 5, 41, 7, 43, 11, 5, 23, 47, 7, 19, more...

integer, non-monotonic, +

a(n)=gpf(or(8, n))
or(a,b)=bitwise or
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence a1yuabanfc0ig

2, 4, 6, 6, 10, 9, 14, 10, 12, 15, 22, 15, 26, 21, 20, 18, 34, 21, 38, 25, 28, 33, 46, 27, 30, 39, 30, 35, 58, 35, 62, 34, 44, 51, 42, 39, 74, 57, 52, 45, 82, 49, 86, 55, 50, 69, 94, 51, 56, 55, more...

integer, non-monotonic, +, A070229

a(n)=n+gpf(n)
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime
a(n)=n+gpf(φ(n²))
ϕ(n)=number of relative primes (Euler's totient)
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence hp4ktovys0b1i

2, 5, 3, 7, 2, 5, 3, 7, 3, 13, 7, 5, 3, 13, 7, 5, 5, 7, 11, 23, 5, 7, 11, 23, 7, 29, 5, 31, 7, 29, 5, 31, 3, 37, 19, 13, 3, 37, 19, 13, 11, 5, 23, 47, 11, 5, 23, 47, 13, 53, more...

integer, non-monotonic, +

a(n)=gpf(or(4, n))
or(a,b)=bitwise or
gpf(n)=greatest prime factor of n
n≥0
4 operations
Prime

Sequence defjb5v0jjokf

3, 0, 1, 0, 7, 1, 5, 0, 1, 7, 9, 1, 15, 5, 7, 0, 19, 1, 17, 7, 5, 9, 21, 1, 7, 15, 1, 5, 31, 7, 29, 0, 9, 19, 5, 1, 39, 17, 15, 7, 43, 5, 41, 9, 7, 21, 45, 1, 5, 7, more...

integer, non-monotonic, +

a(n)=xor(2, gpf(n))
gpf(n)=greatest prime factor of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence s51sh03jsqe0h

3, 2, 3, 2, 7, 3, 7, 2, 3, 7, 11, 3, 15, 7, 7, 2, 19, 3, 19, 7, 7, 11, 23, 3, 7, 15, 3, 7, 31, 7, 31, 2, 11, 19, 7, 3, 39, 19, 15, 7, 43, 7, 43, 11, 7, 23, 47, 3, 7, 7, more...

integer, non-monotonic, +

a(n)=or(2, gpf(n))
gpf(n)=greatest prime factor of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence u4a50yu1w21fm

3, 2, 5, 2, 7, 3, 3, 2, 11, 5, 13, 3, 5, 7, 17, 2, 19, 3, 7, 5, 23, 11, 5, 3, 3, 13, 29, 7, 31, 5, 11, 2, 7, 17, 37, 3, 13, 19, 41, 5, 43, 7, 5, 11, 47, 23, 7, 3, 17, 5, more...

integer, non-monotonic, +

a(n)=gpf(xor(1, n))
xor(a,b)=bitwise exclusive or
gpf(n)=greatest prime factor of n
n≥2
4 operations
Prime

Sequence okqulkmzs0xuf

3, 3, 3, 3, 7, 3, 7, 3, 3, 7, 11, 3, 15, 7, 7, 3, 19, 3, 19, 7, 7, 11, 23, 3, 7, 15, 3, 7, 31, 7, 31, 3, 11, 19, 7, 3, 39, 19, 15, 7, 43, 7, 43, 11, 7, 23, 47, 3, 7, 7, more...

integer, non-monotonic, +

a(n)=or(3, gpf(n))
gpf(n)=greatest prime factor of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

[0] [1] [2] [3] [4] ... [1096]