Sequence Database

A database with 662107 machine generated integer and decimal sequences.

Displaying the first 100 of 92876 results.

Sequence dnb1wejvpehll

0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, more...

integer, monotonic, +, A110654

a(n)=n-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=ceil(n/2)
n≥0
4 operations
Arithmetic
a(n)=n%2+a(n-1)
a(0)=0
n≥0
5 operations
Divisibility
a(n)=floor(ζ(a(n-1))+a(n-2))
a(0)=0
a(1)=1
ζ(n)=Riemann Zeta
n≥0
5 operations
Prime
a(n)=n-a(n-1)%P(n)
a(0)=0
P(n)=Partition numbers
n≥0
6 operations
Combinatoric
a(n)=n^(2-1)-a(n-1)
a(0)=0
n≥0
7 operations
Power

Sequence ijoirlgtl1rj

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, more...

integer, monotonic, +, A054899

a(n)=floor(n/10)
n≥0
4 operations
Arithmetic

Sequence osupob4yuo4ql

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, more...

integer, monotonic, +, A054898

a(n)=floor(n/9)
n≥0
4 operations
Arithmetic

Sequence j5p1mjiwf0ylg

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, more...

integer, monotonic, +, A054897

a(n)=floor(n/8)
n≥0
4 operations
Arithmetic

Sequence vfodn4rv1ejnp

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, more...

integer, monotonic, +, A132270

a(n)=floor(n/7)
n≥0
4 operations
Arithmetic

Sequence 1csiyc0a2fqs

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, more...

integer, monotonic, +, A152467

a(n)=floor(n/6)
n≥0
4 operations
Arithmetic

Sequence qi5vvf5c1dr5p

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, more...

integer, monotonic, +

a(n)=round(n/10)
n≥0
4 operations
Arithmetic

Sequence przvrdkclisad

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, more...

integer, monotonic, +

a(n)=round(n/9)
n≥0
4 operations
Arithmetic

Sequence uziproz30uome

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, more...

integer, monotonic, +, A002266

a(n)=floor(n/5)
n≥0
4 operations
Arithmetic

Sequence pqy5fian4wqyp

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, more...

integer, monotonic, +

a(n)=round(n/8)
n≥0
4 operations
Arithmetic

Sequence q10tkieof21od

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, more...

integer, monotonic, +

a(n)=round(n/7)
n≥0
4 operations
Arithmetic

Sequence qxajx0kofi1me

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, more...

integer, monotonic, +, A002265

a(n)=floor(n/4)
n≥0
4 operations
Arithmetic
a(n)=floor(n/2^2)
n≥0
6 operations
Power

Sequence e0qiz3vtfm1cc

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, more...

integer, monotonic, +, A032615

a(n)=floor(n/π)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence 3kbd0f35vzbzo

0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, more...

integer, monotonic, +

a(n)=round(n/6)
n≥0
4 operations
Arithmetic

Sequence f1vfeuovfrvgl

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, more...

integer, monotonic, +

a(n)=round(n/5)
n≥0
4 operations
Arithmetic

Sequence g1oapuftv2mm

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, more...

integer, monotonic, +, A002264

a(n)=floor(n/3)
n≥0
4 operations
Arithmetic

Sequence pxu5roftflxj

0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, more...

integer, monotonic, +

a(n)=round(n/4)
n≥0
4 operations
Arithmetic

Sequence sgta3ppmvzlyg

0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, more...

integer, monotonic, +

a(n)=round(n/π)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence steuesysupkad

0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, more...

integer, monotonic, +

a(n)=round(n/3)
n≥0
4 operations
Arithmetic
a(n)=floor((n-a(n-1))/2)
a(0)=0
n≥0
6 operations
Recursive

Sequence rqs0vzragjdkn

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, more...

integer, monotonic, +, A004526

a(n)=floor(n/2)
n≥0
4 operations
Arithmetic
a(n)=n-1-a(n-1)
a(0)=0
n≥0
5 operations
Recursive
a(n)=(n-n%2)/2
n≥0
7 operations
Divisibility
a(n)=floor(ζ(a(n-1))+a(n-2))
a(0)=0
a(1)=0
ζ(n)=Riemann Zeta
n≥0
5 operations
Prime
a(n)=floor(n/2)%P(n)
P(n)=Partition numbers
n≥0
7 operations
Combinatoric

Sequence donwd0iifx2ao

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, more...

integer, monotonic, +

a(n)=ceil(n/10)
n≥0
4 operations
Arithmetic

Sequence z4fe1xb4bugag

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, more...

integer, monotonic, +

a(n)=ceil(n/9)
n≥0
4 operations
Arithmetic

Sequence d1310nsmujg3m

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, more...

integer, monotonic, +, A110656

a(n)=ceil(n/8)
n≥0
4 operations
Arithmetic

Sequence uasmztrrr05hp

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, more...

integer, monotonic, +

a(n)=ceil(n/7)
n≥0
4 operations
Arithmetic

Sequence x0o5lzir3u2gh

0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, more...

integer, monotonic, +

a(n)=ceil(n/6)
n≥0
4 operations
Arithmetic

Sequence sk0o4ecibriyb

0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, more...

integer, monotonic, +

a(n)=ceil(n/5)
n≥0
4 operations
Arithmetic

Sequence 14ulug4m45x4f

0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, more...

integer, monotonic, +, A110655

a(n)=ceil(n/4)
n≥0
4 operations
Arithmetic

Sequence tfj5jo3om1nfe

0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, more...

integer, monotonic, +

a(n)=ceil(n/π)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence 0wrezc013drpf

0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, more...

integer, monotonic, +

a(n)=ceil(n/3)
n≥0
4 operations
Arithmetic
a(n)=n-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
5 operations
Recursive
a(n)=(n+a(n-1))%2+a(n-2)
a(0)=0
a(1)=1
n≥0
7 operations
Divisibility

Sequence aowqxobot5eib

0, 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 56, 59, 62, 65, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 113, 116, 119, 122, 125, 128, 131, 135, 138, 141, 144, 147, 150, 153, more...

integer, strictly-monotonic, +, A022844

a(n)=floor(π*n)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence ewfvehr3q41zj

0, 3, 6, 9, 13, 16, 19, 22, 25, 28, 31, 35, 38, 41, 44, 47, 50, 53, 57, 60, 63, 66, 69, 72, 75, 79, 82, 85, 88, 91, 94, 97, 101, 104, 107, 110, 113, 116, 119, 123, 126, 129, 132, 135, 138, 141, 145, 148, 151, 154, more...

integer, strictly-monotonic, +, A022853

a(n)=round(π*n)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence xrxgobxx3pzhe

0, 4, 7, 10, 13, 16, 19, 22, 26, 29, 32, 35, 38, 41, 44, 48, 51, 54, 57, 60, 63, 66, 70, 73, 76, 79, 82, 85, 88, 92, 95, 98, 101, 104, 107, 110, 114, 117, 120, 123, 126, 129, 132, 136, 139, 142, 145, 148, 151, 154, more...

integer, strictly-monotonic, +, A121381

a(n)=ceil(π*n)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence ezvdmx0zeeyjl

1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, more...

integer, non-monotonic, +

a(n)=abs(1-n)
n≥0
4 operations
Arithmetic
a(n)=(1+a(n-1))%n
a(0)=1
n≥0
5 operations
Divisibility
a(n)=sqrt((1-n)^2)
n≥0
6 operations
Power
a(n)=ceil(n-ζ(a(n-1)))
a(0)=1
ζ(n)=Riemann Zeta
n≥0
5 operations
Prime
a(n)=(1-n)/(1-n+a(n-1))
a(0)=1
n≥0
9 operations
Recursive
a(n)=(1+a(n-1))%P(n)
a(0)=1
P(n)=Partition numbers
n≥0
6 operations
Combinatoric

Sequence nqhbk3vvamhjf

2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, more...

integer, non-monotonic, +

a(n)=abs(2-n)
n≥0
4 operations
Arithmetic
a(n)=sqrt((2-n)^2)
n≥0
6 operations
Power

Sequence vq4ujawt1yeup

3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, more...

integer, non-monotonic, +

a(n)=abs(3-n)
n≥0
4 operations
Arithmetic

Sequence wewxkcof5rttp

3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(3/n)
n≥1
4 operations
Arithmetic
a(n)=gpf(round(3/n))
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime

Sequence yfc1qpmqpbavd

3.1415926536, 2.1415926536, 1.1415926536, 0.1415926536, 0.8584073464, 1.8584073464, 2.8584073464, 3.8584073464, 4.8584073464, 5.8584073464, 6.8584073464, 7.8584073464, 8.8584073464, 9.8584073464, 10.8584073464, 11.8584073464, 12.8584073464, 13.8584073464, 14.8584073464, 15.8584073464, 16.8584073464, 17.8584073464, 18.8584073464, 19.8584073464, 20.8584073464, 21.8584073464, 22.8584073464, 23.8584073464, 24.8584073464, 25.8584073464, 26.8584073464, 27.8584073464, 28.8584073464, 29.8584073464, 30.8584073464, 31.8584073464, 32.8584073464, 33.8584073464, 34.8584073464, 35.8584073464, 36.8584073464, 37.8584073464, 38.8584073464, 39.8584073464, 40.8584073464, 41.8584073464, 42.8584073464, 43.8584073464, 44.8584073464, 45.8584073464, more...

decimal, non-monotonic, +

a(n)=abs(π-n)
π=3.141...
n≥0
4 operations
Arithmetic

Sequence rmc3d1etif1ag

4, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(4/n)
n≥1
4 operations
Arithmetic
a(n)=ϕ(floor(8/n))
ϕ(n)=number of relative primes (Euler's totient)
n≥1
5 operations
Prime

Sequence g35dggsvwbjme

4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, more...

integer, non-monotonic, +

a(n)=abs(4-n)
n≥0
4 operations
Arithmetic

Sequence 1zy1f2f0gcihi

5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(5/n)
n≥1
4 operations
Arithmetic
a(n)=gpf(round(5/n))
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime

Sequence xnms4zo33mxmi

5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, more...

integer, non-monotonic, +

a(n)=abs(5-n)
n≥0
4 operations
Arithmetic

Sequence nbytkf2qa1bc

6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033326

a(n)=floor(6/n)
n≥1
4 operations
Arithmetic

Sequence ehkymnwpbigcg

6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(6/n)
n≥1
4 operations
Arithmetic

Sequence xcpfrruymogie

6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, more...

integer, non-monotonic, +

a(n)=abs(6-n)
n≥0
4 operations
Arithmetic

Sequence gqs554v4c1vjj

7, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033327

a(n)=floor(7/n)
n≥1
4 operations
Arithmetic
a(n)=gpf(floor(7/n))
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime
a(n)=floor(exp(2-log(n)))
n≥1
6 operations
Power

Sequence nwsyec2v42icg

7, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(7/n)
n≥1
4 operations
Arithmetic

Sequence 0k2hqytdnj2ii

7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +

a(n)=ceil(7/n)
n≥1
4 operations
Arithmetic

Sequence h5nmchurgiioh

7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, more...

integer, non-monotonic, +

a(n)=abs(7-n)
n≥0
4 operations
Arithmetic

Sequence yjzfpa0sht0oc

8, 4, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033328

a(n)=floor(8/n)
n≥1
4 operations
Arithmetic

Sequence 3kgawyqk0psbo

8, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(8/n)
n≥1
4 operations
Arithmetic

Sequence keglgdcynuzkh

8, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +

a(n)=ceil(8/n)
n≥1
4 operations
Arithmetic

Sequence p3qbgfu5mo4ak

8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, more...

integer, non-monotonic, +

a(n)=abs(8-n)
n≥0
4 operations
Arithmetic

Sequence j0u1tt4ugxb2d

9, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033329

a(n)=floor(9/n)
n≥1
4 operations
Arithmetic

Sequence q2bobmqf0fe0l

9, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(9/n)
n≥1
4 operations
Arithmetic

Sequence y4spfdmlgnwgh

9, 5, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +

a(n)=ceil(9/n)
n≥1
4 operations
Arithmetic

Sequence mtwbeyoaim2xm

9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, more...

integer, non-monotonic, +

a(n)=abs(9-n)
n≥0
4 operations
Arithmetic

Sequence zk5uintiykvzl

10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033330

a(n)=floor(10/n)
n≥1
4 operations
Arithmetic

Sequence ewz2c323ijfmh

10, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +

a(n)=round(10/n)
n≥1
4 operations
Arithmetic

Sequence rgearlzhpfibo

10, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +

a(n)=ceil(10/n)
n≥1
4 operations
Arithmetic

Sequence xjzrg341cv5rf

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, more...

integer, non-monotonic, +

a(n)=abs(10-n)
n≥0
4 operations
Arithmetic

Sequence 10bnbnc1dvdvi

0, -3.1415926536, -7.1415926536, -11.1415926536, -15.1415926536, -19.1415926536, -23.1415926536, -27.1415926536, -31.1415926536, -35.1415926536, -39.1415926536, -43.1415926536, -47.1415926536, -51.1415926536, -55.1415926536, -59.1415926536, -63.1415926536, -67.1415926536, -71.1415926536, -75.1415926536, -79.1415926536, -83.1415926536, -87.1415926536, -91.1415926536, -95.1415926536, -99.1415926536, -103.1415926536, -107.1415926536, -111.1415926536, -115.1415926536, -119.1415926536, -123.1415926536, -127.1415926536, -131.1415926536, -135.1415926536, -139.1415926536, -143.1415926536, -147.1415926536, -151.1415926536, -155.1415926536, -159.1415926536, -163.1415926536, -167.1415926536, -171.1415926536, -175.1415926536, -179.1415926536, -183.1415926536, -187.1415926536, -191.1415926536, -195.1415926536, more...

decimal, strictly-monotonic, -

a(n)=floor(a(n-1))-π
a(0)=0
π=3.141...
n≥0
4 operations
Recursive

Sequence lf0itbshsummj

0, -3.1415926536, -6.1415926536, -9.1415926536, -12.1415926536, -15.1415926536, -18.1415926536, -21.1415926536, -24.1415926536, -27.1415926536, -30.1415926536, -33.1415926536, -36.1415926536, -39.1415926536, -42.1415926536, -45.1415926536, -48.1415926536, -51.1415926536, -54.1415926536, -57.1415926536, -60.1415926536, -63.1415926536, -66.1415926536, -69.1415926536, -72.1415926536, -75.1415926536, -78.1415926536, -81.1415926536, -84.1415926536, -87.1415926536, -90.1415926536, -93.1415926536, -96.1415926536, -99.1415926536, -102.1415926536, -105.1415926536, -108.1415926536, -111.1415926536, -114.1415926536, -117.1415926536, -120.1415926536, -123.1415926536, -126.1415926536, -129.1415926536, -132.1415926536, -135.1415926536, -138.1415926536, -141.1415926536, -144.1415926536, -147.1415926536, more...

decimal, strictly-monotonic, -

a(n)=ceil(a(n-1))-π
a(0)=0
π=3.141...
n≥0
4 operations
Recursive

Sequence ahhnaus0czxzo

0, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, -0.8584073464, 3.1415926536, more...

decimal, non-monotonic, +-

a(n)=π-ceil(a(n-1))
a(0)=0
π=3.141...
n≥0
4 operations
Recursive

Sequence fqvym1p4c5v3g

0, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, 0.1415926536, 3.1415926536, more...

decimal, non-monotonic, +

a(n)=π-floor(a(n-1))
a(0)=0
π=3.141...
n≥0
4 operations
Recursive
a(n)=π-gpf(floor(a(n-1)))
a(0)=0
π=3.141...
gpf(n)=greatest prime factor of n
n≥0
5 operations
Prime

Sequence dcxrnks0qvpwm

0, 3.1415926536, 6.1415926536, 9.1415926536, 12.1415926536, 15.1415926536, 18.1415926536, 21.1415926536, 24.1415926536, 27.1415926536, 30.1415926536, 33.1415926536, 36.1415926536, 39.1415926536, 42.1415926536, 45.1415926536, 48.1415926536, 51.1415926536, 54.1415926536, 57.1415926536, 60.1415926536, 63.1415926536, 66.1415926536, 69.1415926536, 72.1415926536, 75.1415926536, 78.1415926536, 81.1415926536, 84.1415926536, 87.1415926536, 90.1415926536, 93.1415926536, 96.1415926536, 99.1415926536, 102.1415926536, 105.1415926536, 108.1415926536, 111.1415926536, 114.1415926536, 117.1415926536, 120.1415926536, 123.1415926536, 126.1415926536, 129.1415926536, 132.1415926536, 135.1415926536, 138.1415926536, 141.1415926536, 144.1415926536, 147.1415926536, more...

decimal, strictly-monotonic, +

a(n)=π+floor(a(n-1))
a(0)=0
π=3.141...
n≥0
4 operations
Recursive

Sequence kor32wzajji5d

0, 3.1415926536, 7.1415926536, 11.1415926536, 15.1415926536, 19.1415926536, 23.1415926536, 27.1415926536, 31.1415926536, 35.1415926536, 39.1415926536, 43.1415926536, 47.1415926536, 51.1415926536, 55.1415926536, 59.1415926536, 63.1415926536, 67.1415926536, 71.1415926536, 75.1415926536, 79.1415926536, 83.1415926536, 87.1415926536, 91.1415926536, 95.1415926536, 99.1415926536, 103.1415926536, 107.1415926536, 111.1415926536, 115.1415926536, 119.1415926536, 123.1415926536, 127.1415926536, 131.1415926536, 135.1415926536, 139.1415926536, 143.1415926536, 147.1415926536, 151.1415926536, 155.1415926536, 159.1415926536, 163.1415926536, 167.1415926536, 171.1415926536, 175.1415926536, 179.1415926536, 183.1415926536, 187.1415926536, 191.1415926536, 195.1415926536, more...

decimal, strictly-monotonic, +

a(n)=π+ceil(a(n-1))
a(0)=0
π=3.141...
n≥0
4 operations
Recursive

Sequence ktcv1s4zqrb0l

1, -2.1415926536, -6.1415926536, -10.1415926536, -14.1415926536, -18.1415926536, -22.1415926536, -26.1415926536, -30.1415926536, -34.1415926536, -38.1415926536, -42.1415926536, -46.1415926536, -50.1415926536, -54.1415926536, -58.1415926536, -62.1415926536, -66.1415926536, -70.1415926536, -74.1415926536, -78.1415926536, -82.1415926536, -86.1415926536, -90.1415926536, -94.1415926536, -98.1415926536, -102.1415926536, -106.1415926536, -110.1415926536, -114.1415926536, -118.1415926536, -122.1415926536, -126.1415926536, -130.1415926536, -134.1415926536, -138.1415926536, -142.1415926536, -146.1415926536, -150.1415926536, -154.1415926536, -158.1415926536, -162.1415926536, -166.1415926536, -170.1415926536, -174.1415926536, -178.1415926536, -182.1415926536, -186.1415926536, -190.1415926536, -194.1415926536, more...

decimal, strictly-monotonic, +-

a(n)=floor(a(n-1))-π
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence eut2ey0mddlmm

1, -2.1415926536, -5.1415926536, -8.1415926536, -11.1415926536, -14.1415926536, -17.1415926536, -20.1415926536, -23.1415926536, -26.1415926536, -29.1415926536, -32.1415926536, -35.1415926536, -38.1415926536, -41.1415926536, -44.1415926536, -47.1415926536, -50.1415926536, -53.1415926536, -56.1415926536, -59.1415926536, -62.1415926536, -65.1415926536, -68.1415926536, -71.1415926536, -74.1415926536, -77.1415926536, -80.1415926536, -83.1415926536, -86.1415926536, -89.1415926536, -92.1415926536, -95.1415926536, -98.1415926536, -101.1415926536, -104.1415926536, -107.1415926536, -110.1415926536, -113.1415926536, -116.1415926536, -119.1415926536, -122.1415926536, -125.1415926536, -128.1415926536, -131.1415926536, -134.1415926536, -137.1415926536, -140.1415926536, -143.1415926536, -146.1415926536, more...

decimal, strictly-monotonic, +-

a(n)=ceil(a(n-1))-π
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence tkd23zeyfc5oo

1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, -1, -2.1415926536, more...

decimal, non-monotonic, +-

a(n)=abs(a(n-1))-π
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence 2fzojh5nw4q4d

1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/10
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^6/10
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/10
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/10
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence rbgj1fw2c5hhp

1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/10
a(0)=1
n≥0
4 operations
Recursive
a(n)=10^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/10
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/10
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/10
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence 3vnvrxrhnjssk

1, 0.1111111111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/9
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^6/9
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/9
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/9
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence j0ffyfgbsj0td

1, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, 0.1111111111, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/9
a(0)=1
n≥0
4 operations
Recursive
a(n)=9^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/9
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/9
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/9
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence 0r1wefhfx4fuf

1, 0.125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/8
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^6/8
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/8
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/8
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence vzlptgvzbpc5d

1, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/8
a(0)=1
n≥0
4 operations
Recursive
a(n)=8^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/8
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/8
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/8
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence b0zsxhfpskdzh

1, 0.1428571429, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/7
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^7/7
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/7
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/7
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence lwjbgnnxeycoj

1, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, 0.1428571429, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/7
a(0)=1
n≥0
4 operations
Recursive
a(n)=7^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/7
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/7
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/7
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence hit3kcth0er3i

1, 0.1666666667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/6
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^8/6
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/6
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/6
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence v0b1zmichjnyk

1, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, 0.1666666667, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/6
a(0)=1
n≥0
4 operations
Recursive
a(n)=6^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/6
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/6
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/6
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence lfjqwoxd2fjnj

1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/5
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^9/5
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/5
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/5
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence fmfupktw412fp

1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/5
a(0)=1
n≥0
4 operations
Recursive
a(n)=5^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/5
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/5
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/5
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence 4dlfnawfngk0e

1, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/4
a(0)=1
n≥0
4 operations
Recursive
a(n)=a(n-1)^10/4
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/4
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/4
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence o4ffeovkjlbi

1, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/4
a(0)=1
n≥0
4 operations
Recursive
a(n)=4^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/4
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/4
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/4
a(0)=1
λ(n)=Liouville's function
n≥0
5 operations
Prime

Sequence bl1w02i2bqkai

1, 0.3183098862, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/π
a(0)=1
π=3.141...
n≥0
4 operations
Recursive
a(n)=sqrt(floor(a(n-1)))/π
a(0)=1
π=3.141...
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/π
a(0)=1
π=3.141...
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/π
a(0)=1
σ(n)=divisor sum of n
π=3.141...
n≥0
5 operations
Prime

Sequence efctlo0p22xzl

1, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, 0.3183098862, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/π
a(0)=1
π=3.141...
n≥0
4 operations
Recursive
a(n)=π^floor(-a(n-1))
a(0)=1
π=3.141...
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/π
a(0)=1
π=3.141...
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/π
a(0)=1
π=3.141...
n≥0
5 operations
Combinatoric
a(n)=λ(floor(a(n-1)))/π
a(0)=1
λ(n)=Liouville's function
π=3.141...
n≥0
5 operations
Prime

Sequence gou2prrn25qhd

1, 0.3333333333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/3
a(0)=1
n≥0
4 operations
Recursive
a(n)=sqrt(floor(a(n-1))/9)
a(0)=1
n≥0
5 operations
Power
a(n)=round(sin(a(n-1)))/3
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=σ(floor(a(n-1)))/3
a(0)=1
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence la2wnwbftnv5o

1, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, 0.3333333333, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/3
a(0)=1
n≥0
4 operations
Recursive
a(n)=3^floor(-a(n-1))
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/3
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/3
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=1/p(ceil(a(n-1)))
a(0)=1
p(n)=nth prime
n≥0
5 operations
Prime

Sequence xt11e5brw5h3

1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, monotonic, +

a(n)=floor(a(n-1))/2
a(0)=1
n≥0
4 operations
Recursive
a(n)=floor(2/n)/2
n≥1
6 operations
Arithmetic
a(n)=sqrt(floor(a(n-1))/4)
a(0)=1
n≥0
5 operations
Power
a(n)=floor(a(n-1))%2/2
a(0)=1
n≥0
6 operations
Divisibility
a(n)=round(sin(a(n-1)))/2
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=Ω(2*a(n-1))/2
a(0)=1
Ω(n)=max factorization terms
n≥0
6 operations
Prime
a(n)=1-1/P(a(n-1)+a(n-1))
a(0)=1
P(n)=Partition numbers
n≥0
8 operations
Combinatoric

Sequence lotey45pyrm5f

1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, more...

decimal, monotonic, +

a(n)=ceil(a(n-1))/2
a(0)=1
n≥0
4 operations
Recursive
a(n)=(a(n-1)/2)^a(n-1)
a(0)=1
n≥0
5 operations
Power
a(n)=ceil(cos(a(n-1)))/2
a(0)=1
n≥0
5 operations
Trigonometric
a(n)=floor(a(n-1))!/2
a(0)=1
n≥0
5 operations
Combinatoric
a(n)=1/gpf(2/a(n-1))
a(0)=1
gpf(n)=greatest prime factor of n
n≥0
6 operations
Prime
a(n)=a(n-1)/(2*a(n-1))%n
a(0)=1
n≥2
7 operations
Divisibility

Sequence lvof0zr140inm

1, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, 0.1415926536, 2.1415926536, more...

decimal, non-monotonic, +

a(n)=π-ceil(a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive
a(n)=π-P(ceil(a(n-1)))
a(0)=1
π=3.141...
P(n)=Partition numbers
n≥0
5 operations
Combinatoric
a(n)=π-gpf(ceil(a(n-1)))
a(0)=1
π=3.141...
gpf(n)=greatest prime factor of n
n≥0
5 operations
Prime

Sequence qqmf4asch42mg

1, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, more...

decimal, non-monotonic, +

a(n)=π-floor(a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive
a(n)=π-floor(a(n-1))!
a(0)=1
π=3.141...
n≥0
5 operations
Combinatoric
a(n)=π-τ(floor(a(n-1)))
a(0)=1
π=3.141...
τ(n)=number of divisors of n
n≥0
5 operations
Prime

Sequence qiw2xtcrsjixf

1, 3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262213, 823766, 2587937, 8130243, 25541911, 80242279, 252088554, 791959549, 2488014301, 7816327450, 24555716894, 77144059797, more...

integer, strictly-monotonic, +, A134915

a(n)=floor(π*a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence qgadiaixc2f5m

1, 3, 9, 28, 88, 276, 867, 2724, 8558, 26886, 84465, 265355, 833637, 2618948, 8227668, 25847981, 81203827, 255109346, 801449647, 2517828323, 7909990963, 24849969499, 78068481620, more...

integer, strictly-monotonic, +, A095716

a(n)=round(π*a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence uo3gfuqh4ujii

1, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, 0.7853981634, 3.1415926536, more...

decimal, non-monotonic, +

a(n)=π/ceil(a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive
a(n)=π/σ(round(a(n-1)))
a(0)=1
π=3.141...
σ(n)=divisor sum of n
n≥0
5 operations
Prime

Sequence 2fzepbx0kmene

1, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, 1.0471975512, 3.1415926536, more...

decimal, non-monotonic, +

a(n)=π/floor(a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive
a(n)=π/P(floor(a(n-1)))
a(0)=1
π=3.141...
P(n)=Partition numbers
n≥0
5 operations
Combinatoric
a(n)=π/gpf(floor(a(n-1)))
a(0)=1
π=3.141...
gpf(n)=greatest prime factor of n
n≥0
5 operations
Prime

Sequence x1oaxk2ywnl3j

1, 4, 13, 41, 129, 406, 1276, 4009, 12595, 39569, 124310, 390532, 1226893, 3854399, 12108952, 38041395, 119510568, 375453523, 1179522030, 3705577745, 11641415821, 36572586421, more...

integer, strictly-monotonic, +

a(n)=ceil(π*a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence a5pzucjorx5af

1, 4.1415926536, 7.1415926536, 10.1415926536, 13.1415926536, 16.1415926536, 19.1415926536, 22.1415926536, 25.1415926536, 28.1415926536, 31.1415926536, 34.1415926536, 37.1415926536, 40.1415926536, 43.1415926536, 46.1415926536, 49.1415926536, 52.1415926536, 55.1415926536, 58.1415926536, 61.1415926536, 64.1415926536, 67.1415926536, 70.1415926536, 73.1415926536, 76.1415926536, 79.1415926536, 82.1415926536, 85.1415926536, 88.1415926536, 91.1415926536, 94.1415926536, 97.1415926536, 100.1415926536, 103.1415926536, 106.1415926536, 109.1415926536, 112.1415926536, 115.1415926536, 118.1415926536, 121.1415926536, 124.1415926536, 127.1415926536, 130.1415926536, 133.1415926536, 136.1415926536, 139.1415926536, 142.1415926536, 145.1415926536, 148.1415926536, more...

decimal, strictly-monotonic, +

a(n)=π+floor(a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence aej4xxyz31qr

1, 4.1415926536, 8.1415926536, 12.1415926536, 16.1415926536, 20.1415926536, 24.1415926536, 28.1415926536, 32.1415926536, 36.1415926536, 40.1415926536, 44.1415926536, 48.1415926536, 52.1415926536, 56.1415926536, 60.1415926536, 64.1415926536, 68.1415926536, 72.1415926536, 76.1415926536, 80.1415926536, 84.1415926536, 88.1415926536, 92.1415926536, 96.1415926536, 100.1415926536, 104.1415926536, 108.1415926536, 112.1415926536, 116.1415926536, 120.1415926536, 124.1415926536, 128.1415926536, 132.1415926536, 136.1415926536, 140.1415926536, 144.1415926536, 148.1415926536, 152.1415926536, 156.1415926536, 160.1415926536, 164.1415926536, 168.1415926536, 172.1415926536, 176.1415926536, 180.1415926536, 184.1415926536, 188.1415926536, 192.1415926536, 196.1415926536, more...

decimal, strictly-monotonic, +

a(n)=π+ceil(a(n-1))
a(0)=1
π=3.141...
n≥0
4 operations
Recursive

Sequence 0gleljplgye1o

2, -1.1415926536, -5.1415926536, -9.1415926536, -13.1415926536, -17.1415926536, -21.1415926536, -25.1415926536, -29.1415926536, -33.1415926536, -37.1415926536, -41.1415926536, -45.1415926536, -49.1415926536, -53.1415926536, -57.1415926536, -61.1415926536, -65.1415926536, -69.1415926536, -73.1415926536, -77.1415926536, -81.1415926536, -85.1415926536, -89.1415926536, -93.1415926536, -97.1415926536, -101.1415926536, -105.1415926536, -109.1415926536, -113.1415926536, -117.1415926536, -121.1415926536, -125.1415926536, -129.1415926536, -133.1415926536, -137.1415926536, -141.1415926536, -145.1415926536, -149.1415926536, -153.1415926536, -157.1415926536, -161.1415926536, -165.1415926536, -169.1415926536, -173.1415926536, -177.1415926536, -181.1415926536, -185.1415926536, -189.1415926536, -193.1415926536, more...

decimal, strictly-monotonic, +-

a(n)=floor(a(n-1))-π
a(0)=2
π=3.141...
n≥0
4 operations
Recursive

Sequence p2f3i01lk0dbh

2, -1.1415926536, -4.1415926536, -7.1415926536, -10.1415926536, -13.1415926536, -16.1415926536, -19.1415926536, -22.1415926536, -25.1415926536, -28.1415926536, -31.1415926536, -34.1415926536, -37.1415926536, -40.1415926536, -43.1415926536, -46.1415926536, -49.1415926536, -52.1415926536, -55.1415926536, -58.1415926536, -61.1415926536, -64.1415926536, -67.1415926536, -70.1415926536, -73.1415926536, -76.1415926536, -79.1415926536, -82.1415926536, -85.1415926536, -88.1415926536, -91.1415926536, -94.1415926536, -97.1415926536, -100.1415926536, -103.1415926536, -106.1415926536, -109.1415926536, -112.1415926536, -115.1415926536, -118.1415926536, -121.1415926536, -124.1415926536, -127.1415926536, -130.1415926536, -133.1415926536, -136.1415926536, -139.1415926536, -142.1415926536, -145.1415926536, more...

decimal, strictly-monotonic, +-

a(n)=ceil(a(n-1))-π
a(0)=2
π=3.141...
n≥0
4 operations
Recursive