Sequence Database

A database with 662107 machine generated integer and decimal sequences.

Displaying the first 100 of 394389 results.

Sequence xeqru1sygmtfp

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0, 1.9459101491, 0.6931471806, 1.0986122887, 0, 2.3978952728, 0, 2.5649493575, 0, 0, 0.6931471806, 2.8332133441, 0, 2.9444389792, 0, 0, 0, 3.1354942159, 0, 1.6094379124, 0, 1.0986122887, 0, 3.36729583, 0, 3.4339872045, 0.6931471806, 0, 0, 0, 0, 3.6109179126, 0, 0, 0, 3.7135720667, 0, 3.7612001157, 0, 0, 0, 3.8501476017, 0, 1.9459101491, 0, more...

decimal, non-monotonic, +

a(n)=Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
2 operations
Prime

Sequence ub3tktmvdthvj

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max factorization terms
n≥1
2 operations
Prime

Sequence 3bmepyefoqlfp

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence 5as1ecrpxvlwn

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime

Sequence 2q1rtmulmg2m

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence okvxpoucbqnai

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime

Sequence 1ouwsby2jnaal

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime

Sequence f01q4ekd0c3wl

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime

Sequence 4rlzjihdzbx0j

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence x4buj5nkwe14e

1.6449340668, 1.2020569032, 1.0823232337, 1.0369277551, 1.017343062, 1.0083492774, 1.0040773562, 1.0020083928, 1.0009945751, 1.0004941886, 1.0002460866, 1.0001227133, 1.0000612481, 1.0000305882, 1.0000152823, 1.0000076372, 1.0000038173, 1.0000019082, 1.000000954, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=ζ(n)
ζ(n)=Riemann Zeta
n≥0
2 operations
Prime

Sequence g0520hmlubygj

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, more...

integer, strictly-monotonic, +, A000040

a(n)=p(n)
p(n)=nth prime
n≥0
2 operations
Prime

Sequence r5glay1yxompn

14.1347251417, 21.0220396388, 25.0108575801, 30.4248761259, 32.9350615877, 37.5861781588, 40.9187190121, 43.3270732809, 48.0051508812, 49.7738324777, 52.9703214777, 56.4462476971, 59.3470440026, 60.8317785246, 65.1125440481, 67.0798105295, 69.5464017112, 72.0671576745, 75.7046906991, 77.1448400689, 79.3373750202, 82.9103808541, 84.7354929805, 87.4252746131, 88.8091112076, 92.4918992706, 94.6513440405, 95.8706342282, 98.8311942182, 101.3178510057, 103.7255380405, 105.4466230523, 107.1686111843, 111.0295355432, 111.874659177, 114.3202209155, 116.2266803209, 118.790782866, 121.3701250024, 122.9468292936, 124.2568185543, 127.5166838796, 129.5787042, 131.0876885309, 133.497737203, 134.7565097534, 138.1160420545, 139.7362089521, 141.123707404, 143.1118458076, more...

decimal, strictly-monotonic, +

a(n)=Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
2 operations
Prime

Sequence qt2ygswno3b4d

0, 2, 5, 13, 43, 193, 1181, 9547, 99523, 1292831, more...

integer, strictly-monotonic, +, A119533

a(n)=p(a(n-1))
a(0)=0
p(n)=nth prime
n≥0
2 operations
Prime

Sequence ouqj0sbam0u2k

1, 3, 7, 19, 71, 359, 2423, 21589, 244481, 3413801, more...

integer, strictly-monotonic, +

a(n)=p(a(n-1))
a(0)=1
p(n)=nth prime
n≥0
2 operations
Prime

Sequence tilu3ymww05gg

2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +, A007497

a(n)=σ(a(n-1))
a(0)=2
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence iejmrcau0ouom

3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +

a(n)=σ(a(n-1))
a(0)=3
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence jzj0xqhwtvxnn

4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +

a(n)=σ(a(n-1))
a(0)=4
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence 0xuugesife4dh

5, 6, 12, 28, 56, 120, 360, 1170, 3276, 10192, 24738, 61440, more...

integer, strictly-monotonic, +, A051572

a(n)=σ(a(n-1))
a(0)=5
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence fgyuzee4ggjki

-14.1347251417, -21.0220396388, -25.0108575801, -30.4248761259, -32.9350615877, -37.5861781588, -40.9187190121, -43.3270732809, -48.0051508812, -49.7738324777, -52.9703214777, -56.4462476971, -59.3470440026, -60.8317785246, -65.1125440481, -67.0798105295, -69.5464017112, -72.0671576745, -75.7046906991, -77.1448400689, -79.3373750202, -82.9103808541, -84.7354929805, -87.4252746131, -88.8091112076, -92.4918992706, -94.6513440405, -95.8706342282, -98.8311942182, -101.3178510057, -103.7255380405, -105.4466230523, -107.1686111843, -111.0295355432, -111.874659177, -114.3202209155, -116.2266803209, -118.790782866, -121.3701250024, -122.9468292936, -124.2568185543, -127.5166838796, -129.5787042, -131.0876885309, -133.497737203, -134.7565097534, -138.1160420545, -139.7362089521, -141.123707404, -143.1118458076, more...

decimal, strictly-monotonic, -

a(n)=-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
3 operations
Prime

Sequence i1dpeurk5yrrd

-2, -3, -5, -7, -11, -13, -17, -19, -23, -29, -31, -37, -41, -43, -47, -53, -59, -61, -67, -71, -73, -79, -83, -89, -97, -101, -103, -107, -109, -113, -127, -131, -137, -139, -149, -151, -157, -163, -167, -173, -179, -181, -191, -193, -197, -199, -211, -223, -227, -229, more...

integer, strictly-monotonic, -

a(n)=-p(n)
p(n)=nth prime
n≥0
3 operations
Prime

Sequence geo35s2jwu4ih

-1.6449340668, -1.2020569032, -1.0823232337, -1.0369277551, -1.017343062, -1.0083492774, -1.0040773562, -1.0020083928, -1.0009945751, -1.0004941886, -1.0002460866, -1.0001227133, -1.0000612481, -1.0000305882, -1.0000152823, -1.0000076372, -1.0000038173, -1.0000019082, -1.000000954, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, more...

decimal, strictly-monotonic, -

a(n)=-ζ(n)
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence qtn4igfox0zfo

-1, -3, -4, -7, -6, -12, -8, -15, -13, -18, -12, -28, -14, -24, -24, -31, -18, -39, -20, -42, -32, -36, -24, -60, -31, -42, -40, -56, -30, -72, -32, -63, -48, -54, -48, -91, -38, -60, -56, -90, -42, -96, -44, -84, -78, -72, -48, -124, -57, -93, more...

integer, non-monotonic, -

a(n)=-σ(n)
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence c5dglrcjdavhh

-1, -2, -3, -2, -5, -3, -7, -2, -3, -5, -11, -3, -13, -7, -5, -2, -17, -3, -19, -5, -7, -11, -23, -3, -5, -13, -3, -7, -29, -5, -31, -2, -11, -17, -7, -3, -37, -19, -13, -5, -41, -7, -43, -11, -5, -23, -47, -3, -7, -5, more...

integer, non-monotonic, -

a(n)=-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence yllw0pgoktc1h

-1, -2, -3, -2, -5, -2, -7, -2, -3, -2, -11, -2, -13, -2, -3, -2, -17, -2, -19, -2, -3, -2, -23, -2, -5, -2, -3, -2, -29, -2, -31, -2, -3, -2, -5, -2, -37, -2, -3, -2, -41, -2, -43, -2, -3, -2, -47, -2, -7, -2, more...

integer, non-monotonic, -

a(n)=-lpf(n)
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence xs5ftugsnt13o

-1, -2, -2, -3, -2, -4, -2, -4, -3, -4, -2, -6, -2, -4, -4, -5, -2, -6, -2, -6, -4, -4, -2, -8, -3, -4, -4, -6, -2, -8, -2, -6, -4, -4, -4, -9, -2, -4, -4, -8, -2, -8, -2, -6, -6, -4, -2, -10, -3, -6, more...

integer, non-monotonic, -

a(n)=-τ(n)
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence fuae1h3b5z4np

-1, -1, -2, -2, -4, -2, -6, -4, -6, -4, -10, -4, -12, -6, -8, -8, -16, -6, -18, -8, -12, -10, -22, -8, -20, -12, -18, -12, -28, -8, -30, -16, -20, -16, -24, -12, -36, -18, -24, -16, -40, -12, -42, -20, -24, -22, -46, -16, -42, -20, more...

integer, non-monotonic, -

a(n)=-ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence dudoyi5ajsrhb

-1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, more...

integer, non-monotonic, +-

a(n)=-λ(n)
λ(n)=Liouville's function
n≥1
3 operations
Prime

Sequence lyu0d1h5rvlyg

-1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=-μ(n)
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence vxxvaleofb2dn

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-monotonic, -

a(n)=-Ω(n)
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence j1jkkulgv1q5j

0, -0.6931471806, -1.0986122887, -0.6931471806, -1.6094379124, 0, -1.9459101491, -0.6931471806, -1.0986122887, 0, -2.3978952728, 0, -2.5649493575, 0, 0, -0.6931471806, -2.8332133441, 0, -2.9444389792, 0, 0, 0, -3.1354942159, 0, -1.6094379124, 0, -1.0986122887, 0, -3.36729583, 0, -3.4339872045, -0.6931471806, 0, 0, 0, 0, -3.6109179126, 0, 0, 0, -3.7135720667, 0, -3.7612001157, 0, 0, 0, -3.8501476017, 0, -1.9459101491, 0, more...

decimal, non-monotonic, -

a(n)=-Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence 4110hryz1zplb

-13.1347251417, -20.0220396388, -24.0108575801, -29.4248761259, -31.9350615877, -36.5861781588, -39.9187190121, -42.3270732809, -47.0051508812, -48.7738324777, -51.9703214777, -55.4462476971, -58.3470440026, -59.8317785246, -64.1125440481, -66.0798105295, -68.5464017112, -71.0671576745, -74.7046906991, -76.1448400689, -78.3373750202, -81.9103808541, -83.7354929805, -86.4252746131, -87.8091112076, -91.4918992706, -93.6513440405, -94.8706342282, -97.8311942182, -100.3178510057, -102.7255380405, -104.4466230523, -106.1686111843, -110.0295355432, -110.874659177, -113.3202209155, -115.2266803209, -117.790782866, -120.3701250024, -121.9468292936, -123.2568185543, -126.5166838796, -128.5787042, -130.0876885309, -132.497737203, -133.7565097534, -137.1160420545, -138.7362089521, -140.123707404, -142.1118458076, more...

decimal, strictly-monotonic, -

a(n)=1-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence 1podcz2zgkbfe

-12.1347251417, -19.0220396388, -23.0108575801, -28.4248761259, -30.9350615877, -35.5861781588, -38.9187190121, -41.3270732809, -46.0051508812, -47.7738324777, -50.9703214777, -54.4462476971, -57.3470440026, -58.8317785246, -63.1125440481, -65.0798105295, -67.5464017112, -70.0671576745, -73.7046906991, -75.1448400689, -77.3373750202, -80.9103808541, -82.7354929805, -85.4252746131, -86.8091112076, -90.4918992706, -92.6513440405, -93.8706342282, -96.8311942182, -99.3178510057, -101.7255380405, -103.4466230523, -105.1686111843, -109.0295355432, -109.874659177, -112.3202209155, -114.2266803209, -116.790782866, -119.3701250024, -120.9468292936, -122.2568185543, -125.5166838796, -127.5787042, -129.0876885309, -131.497737203, -132.7565097534, -136.1160420545, -137.7362089521, -139.123707404, -141.1118458076, more...

decimal, strictly-monotonic, -

a(n)=2-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence l5sktur3dg2hi

-11.1347251417, -18.0220396388, -22.0108575801, -27.4248761259, -29.9350615877, -34.5861781588, -37.9187190121, -40.3270732809, -45.0051508812, -46.7738324777, -49.9703214777, -53.4462476971, -56.3470440026, -57.8317785246, -62.1125440481, -64.0798105295, -66.5464017112, -69.0671576745, -72.7046906991, -74.1448400689, -76.3373750202, -79.9103808541, -81.7354929805, -84.4252746131, -85.8091112076, -89.4918992706, -91.6513440405, -92.8706342282, -95.8311942182, -98.3178510057, -100.7255380405, -102.4466230523, -104.1686111843, -108.0295355432, -108.874659177, -111.3202209155, -113.2266803209, -115.790782866, -118.3701250024, -119.9468292936, -121.2568185543, -124.5166838796, -126.5787042, -128.0876885309, -130.497737203, -131.7565097534, -135.1160420545, -136.7362089521, -138.123707404, -140.1118458076, more...

decimal, strictly-monotonic, -

a(n)=3-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence psoqou4rqplio

-10.9931324881, -17.8804469852, -21.8692649266, -27.2832834723, -29.7934689341, -34.4445855052, -37.7771263586, -40.1854806273, -44.8635582276, -46.6322398241, -49.8287288241, -53.3046550435, -56.205451349, -57.690185871, -61.9709513945, -63.9382178759, -66.4048090576, -68.9255650209, -72.5630980455, -74.0032474153, -76.1957823667, -79.7687882005, -81.5939003269, -84.2836819595, -85.667518554, -89.350306617, -91.5097513869, -92.7290415747, -95.6896015646, -98.1762583521, -100.5839453869, -102.3050303987, -104.0270185307, -107.8879428896, -108.7330665234, -111.1786282619, -113.0850876673, -115.6491902124, -118.2285323488, -119.80523664, -121.1152259008, -124.375091226, -126.4371115464, -127.9460958773, -130.3561445494, -131.6149170998, -134.9744494009, -136.5946162985, -137.9821147504, -139.970253154, more...

decimal, strictly-monotonic, -

a(n)=π-Z(n)
π=3.141...
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence sxpa2wslfmvif

-10.1347251417, -17.0220396388, -21.0108575801, -26.4248761259, -28.9350615877, -33.5861781588, -36.9187190121, -39.3270732809, -44.0051508812, -45.7738324777, -48.9703214777, -52.4462476971, -55.3470440026, -56.8317785246, -61.1125440481, -63.0798105295, -65.5464017112, -68.0671576745, -71.7046906991, -73.1448400689, -75.3373750202, -78.9103808541, -80.7354929805, -83.4252746131, -84.8091112076, -88.4918992706, -90.6513440405, -91.8706342282, -94.8311942182, -97.3178510057, -99.7255380405, -101.4466230523, -103.1686111843, -107.0295355432, -107.874659177, -110.3202209155, -112.2266803209, -114.790782866, -117.3701250024, -118.9468292936, -120.2568185543, -123.5166838796, -125.5787042, -127.0876885309, -129.497737203, -130.7565097534, -134.1160420545, -135.7362089521, -137.123707404, -139.1118458076, more...

decimal, strictly-monotonic, -

a(n)=4-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence y0fd3f1gswggb

-10, -9.3068528194, -8.9013877113, -9.3068528194, -8.3905620876, -10, -8.0540898509, -9.3068528194, -8.9013877113, -10, -7.6021047272, -10, -7.4350506425, -10, -10, -9.3068528194, -7.1667866559, -10, -7.0555610208, -10, -10, -10, -6.8645057841, -10, -8.3905620876, -10, -8.9013877113, -10, -6.63270417, -10, -6.5660127955, -9.3068528194, -10, -10, -10, -10, -6.3890820874, -10, -10, -10, -6.2864279333, -10, -6.2387998843, -10, -10, -10, -6.1498523983, -10, -8.0540898509, -10, more...

decimal, non-monotonic, -

a(n)=Λ(n)-10
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence 1hpvnmk2mtt1n

-10, -9, -9, -8, -9, -8, -9, -7, -8, -8, -9, -7, -9, -8, -8, -6, -9, -7, -9, -7, -8, -8, -9, -6, -8, -8, -7, -7, -9, -7, -9, -5, -8, -8, -8, -6, -9, -8, -8, -6, -9, -7, -9, -7, -7, -8, -9, -5, -8, -7, more...

integer, non-monotonic, -

a(n)=Ω(n)-10
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence ecfrvoqucqflm

-9.1347251417, -16.0220396388, -20.0108575801, -25.4248761259, -27.9350615877, -32.5861781588, -35.9187190121, -38.3270732809, -43.0051508812, -44.7738324777, -47.9703214777, -51.4462476971, -54.3470440026, -55.8317785246, -60.1125440481, -62.0798105295, -64.5464017112, -67.0671576745, -70.7046906991, -72.1448400689, -74.3373750202, -77.9103808541, -79.7354929805, -82.4252746131, -83.8091112076, -87.4918992706, -89.6513440405, -90.8706342282, -93.8311942182, -96.3178510057, -98.7255380405, -100.4466230523, -102.1686111843, -106.0295355432, -106.874659177, -109.3202209155, -111.2266803209, -113.790782866, -116.3701250024, -117.9468292936, -119.2568185543, -122.5166838796, -124.5787042, -126.0876885309, -128.497737203, -129.7565097534, -133.1160420545, -134.7362089521, -136.123707404, -138.1118458076, more...

decimal, strictly-monotonic, -

a(n)=5-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence vhbotvpdgojnk

-9, -11, -11, -10, -11, -9, -11, -10, -10, -9, -11, -10, -11, -9, -9, -10, -11, -10, -11, -10, -9, -9, -11, -10, -10, -9, -10, -10, -11, -11, -11, -10, -9, -9, -9, -10, -11, -9, -9, -10, -11, -11, -11, -10, -10, -9, -11, -10, -10, -10, more...

integer, non-monotonic, -

a(n)=μ(n)-10
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence of5k45xlxoywl

-9, -11, -11, -9, -11, -9, -11, -11, -9, -9, -11, -11, -11, -9, -9, -9, -11, -11, -11, -11, -9, -9, -11, -9, -9, -9, -11, -11, -11, -11, -11, -11, -9, -9, -9, -9, -11, -9, -9, -9, -11, -11, -11, -11, -11, -9, -11, -11, -9, -11, more...

integer, non-monotonic, -

a(n)=λ(n)-10
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence 1w3kesgurbqsm

-9, -9, -8, -8, -6, -8, -4, -6, -4, -6, 0, -6, 2, -4, -2, -2, 6, -4, 8, -2, 2, 0, 12, -2, 10, 2, 8, 2, 18, -2, 20, 6, 10, 6, 14, 2, 26, 8, 14, 6, 30, 2, 32, 10, 14, 12, 36, 6, 32, 10, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-10
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime

Sequence ughsh2fggahun

-9, -8.3068528194, -7.9013877113, -8.3068528194, -7.3905620876, -9, -7.0540898509, -8.3068528194, -7.9013877113, -9, -6.6021047272, -9, -6.4350506425, -9, -9, -8.3068528194, -6.1667866559, -9, -6.0555610208, -9, -9, -9, -5.8645057841, -9, -7.3905620876, -9, -7.9013877113, -9, -5.63270417, -9, -5.5660127955, -8.3068528194, -9, -9, -9, -9, -5.3890820874, -9, -9, -9, -5.2864279333, -9, -5.2387998843, -9, -9, -9, -5.1498523983, -9, -7.0540898509, -9, more...

decimal, non-monotonic, -

a(n)=Λ(n)-9
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence 3j5b2lqvnco5j

-9, -8, -8, -7, -8, -7, -8, -6, -7, -7, -8, -6, -8, -7, -7, -5, -8, -6, -8, -6, -7, -7, -8, -5, -7, -7, -6, -6, -8, -6, -8, -4, -7, -7, -7, -5, -8, -7, -7, -5, -8, -6, -8, -6, -6, -7, -8, -4, -7, -6, more...

integer, non-monotonic, -

a(n)=Ω(n)-9
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence 1fcrhdaizsozj

-9, -8, -8, -7, -8, -6, -8, -6, -7, -6, -8, -4, -8, -6, -6, -5, -8, -4, -8, -4, -6, -6, -8, -2, -7, -6, -6, -4, -8, -2, -8, -4, -6, -6, -6, -1, -8, -6, -6, -2, -8, -2, -8, -4, -4, -6, -8, 0, -7, -4, more...

integer, non-monotonic, -

a(n)=τ(n)-10
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 3gumzpedcmrl

-9, -8, -7, -8, -5, -8, -3, -8, -7, -8, 1, -8, 3, -8, -7, -8, 7, -8, 9, -8, -7, -8, 13, -8, -5, -8, -7, -8, 19, -8, 21, -8, -7, -8, -5, -8, 27, -8, -7, -8, 31, -8, 33, -8, -7, -8, 37, -8, -3, -8, more...

integer, non-monotonic, +-

a(n)=lpf(n)-10
lpf(n)=least prime factor of n
n≥1
4 operations
Prime

Sequence 5btgehfmqy02l

-9, -8, -7, -8, -5, -7, -3, -8, -7, -5, 1, -7, 3, -3, -5, -8, 7, -7, 9, -5, -3, 1, 13, -7, -5, 3, -7, -3, 19, -5, 21, -8, 1, 7, -3, -7, 27, 9, 3, -5, 31, -3, 33, 1, -5, 13, 37, -7, -3, -5, more...

integer, non-monotonic, +-

a(n)=gpf(n)-10
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence uzphzxbqwyiif

-9, -7, -6, -3, -4, 2, -2, 5, 3, 8, 2, 18, 4, 14, 14, 21, 8, 29, 10, 32, 22, 26, 14, 50, 21, 32, 30, 46, 20, 62, 22, 53, 38, 44, 38, 81, 28, 50, 46, 80, 32, 86, 34, 74, 68, 62, 38, 114, 47, 83, more...

integer, non-monotonic, +-

a(n)=σ(n)-10
σ(n)=divisor sum of n
n≥1
4 operations
Prime

Sequence 1jzprl1wzzt2i

-8.3550659332, -8.7979430968, -8.9176767663, -8.9630722449, -8.982656938, -8.9916507226, -8.9959226438, -8.9979916072, -8.9990054249, -8.9995058114, -8.9997539134, -8.9998772867, -8.9999387519, -8.9999694118, -8.9999847177, -8.9999923628, -8.9999961827, -8.9999980918, -8.999999046, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, more...

decimal, monotonic, -

a(n)=ζ(n)-10
ζ(n)=Riemann Zeta
n≥0
4 operations
Prime

Sequence 1pb4uy0k5qn1d

-8.1347251417, -15.0220396388, -19.0108575801, -24.4248761259, -26.9350615877, -31.5861781588, -34.9187190121, -37.3270732809, -42.0051508812, -43.7738324777, -46.9703214777, -50.4462476971, -53.3470440026, -54.8317785246, -59.1125440481, -61.0798105295, -63.5464017112, -66.0671576745, -69.7046906991, -71.1448400689, -73.3373750202, -76.9103808541, -78.7354929805, -81.4252746131, -82.8091112076, -86.4918992706, -88.6513440405, -89.8706342282, -92.8311942182, -95.3178510057, -97.7255380405, -99.4466230523, -101.1686111843, -105.0295355432, -105.874659177, -108.3202209155, -110.2266803209, -112.790782866, -115.3701250024, -116.9468292936, -118.2568185543, -121.5166838796, -123.5787042, -125.0876885309, -127.497737203, -128.7565097534, -132.1160420545, -133.7362089521, -135.123707404, -137.1118458076, more...

decimal, strictly-monotonic, -

a(n)=6-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence dgfy3fvpfa4dg

-8, -10, -10, -9, -10, -8, -10, -9, -9, -8, -10, -9, -10, -8, -8, -9, -10, -9, -10, -9, -8, -8, -10, -9, -9, -8, -9, -9, -10, -10, -10, -9, -8, -8, -8, -9, -10, -8, -8, -9, -10, -10, -10, -9, -9, -8, -10, -9, -9, -9, more...

integer, non-monotonic, -

a(n)=μ(n)-9
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence yg2ux5ep40pik

-8, -10, -10, -8, -10, -8, -10, -10, -8, -8, -10, -10, -10, -8, -8, -8, -10, -10, -10, -10, -8, -8, -10, -8, -8, -8, -10, -10, -10, -10, -10, -10, -8, -8, -8, -8, -10, -8, -8, -8, -10, -10, -10, -10, -10, -8, -10, -10, -8, -10, more...

integer, non-monotonic, -

a(n)=λ(n)-9
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence wxih3dqngztol

-8, -8, -7, -7, -5, -7, -3, -5, -3, -5, 1, -5, 3, -3, -1, -1, 7, -3, 9, -1, 3, 1, 13, -1, 11, 3, 9, 3, 19, -1, 21, 7, 11, 7, 15, 3, 27, 9, 15, 7, 31, 3, 33, 11, 15, 13, 37, 7, 33, 11, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-9
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime

Sequence 4fqojy0ef3y3i

-8, -7.3068528194, -6.9013877113, -7.3068528194, -6.3905620876, -8, -6.0540898509, -7.3068528194, -6.9013877113, -8, -5.6021047272, -8, -5.4350506425, -8, -8, -7.3068528194, -5.1667866559, -8, -5.0555610208, -8, -8, -8, -4.8645057841, -8, -6.3905620876, -8, -6.9013877113, -8, -4.63270417, -8, -4.5660127955, -7.3068528194, -8, -8, -8, -8, -4.3890820874, -8, -8, -8, -4.2864279333, -8, -4.2387998843, -8, -8, -8, -4.1498523983, -8, -6.0540898509, -8, more...

decimal, non-monotonic, -

a(n)=Λ(n)-8
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence 254gx5wm4adbe

-8, -7, -7, -6, -7, -6, -7, -5, -6, -6, -7, -5, -7, -6, -6, -4, -7, -5, -7, -5, -6, -6, -7, -4, -6, -6, -5, -5, -7, -5, -7, -3, -6, -6, -6, -4, -7, -6, -6, -4, -7, -5, -7, -5, -5, -6, -7, -3, -6, -5, more...

integer, non-monotonic, -

a(n)=Ω(n)-8
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence ntbbeent133wf

-8, -7, -7, -6, -7, -5, -7, -5, -6, -5, -7, -3, -7, -5, -5, -4, -7, -3, -7, -3, -5, -5, -7, -1, -6, -5, -5, -3, -7, -1, -7, -3, -5, -5, -5, 0, -7, -5, -5, -1, -7, -1, -7, -3, -3, -5, -7, 1, -6, -3, more...

integer, non-monotonic, +-

a(n)=τ(n)-9
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence ybv4he44kuq0j

-8, -7, -6, -7, -4, -7, -2, -7, -6, -7, 2, -7, 4, -7, -6, -7, 8, -7, 10, -7, -6, -7, 14, -7, -4, -7, -6, -7, 20, -7, 22, -7, -6, -7, -4, -7, 28, -7, -6, -7, 32, -7, 34, -7, -6, -7, 38, -7, -2, -7, more...

integer, non-monotonic, +-

a(n)=lpf(n)-9
lpf(n)=least prime factor of n
n≥1
4 operations
Prime

Sequence v1jaqvqusezso

-8, -7, -6, -7, -4, -6, -2, -7, -6, -4, 2, -6, 4, -2, -4, -7, 8, -6, 10, -4, -2, 2, 14, -6, -4, 4, -6, -2, 20, -4, 22, -7, 2, 8, -2, -6, 28, 10, 4, -4, 32, -2, 34, 2, -4, 14, 38, -6, -2, -4, more...

integer, non-monotonic, +-

a(n)=gpf(n)-9
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 4dah2jjudgtzi

-8, -7, -5, -3, 1, 3, 7, 9, 13, 19, 21, 27, 31, 33, 37, 43, 49, 51, 57, 61, 63, 69, 73, 79, 87, 91, 93, 97, 99, 103, 117, 121, 127, 129, 139, 141, 147, 153, 157, 163, 169, 171, 181, 183, 187, 189, 201, 213, 217, 219, more...

integer, strictly-monotonic, +-

a(n)=p(n)-10
p(n)=nth prime
n≥0
4 operations
Prime

Sequence tw4nas1clarmn

-8, -6, -5, -2, -3, 3, -1, 6, 4, 9, 3, 19, 5, 15, 15, 22, 9, 30, 11, 33, 23, 27, 15, 51, 22, 33, 31, 47, 21, 63, 23, 54, 39, 45, 39, 82, 29, 51, 47, 81, 33, 87, 35, 75, 69, 63, 39, 115, 48, 84, more...

integer, non-monotonic, +-

a(n)=σ(n)-9
σ(n)=divisor sum of n
n≥1
4 operations
Prime

Sequence uvwzmbmxr4g0

-7.3550659332, -7.7979430968, -7.9176767663, -7.9630722449, -7.982656938, -7.9916507226, -7.9959226438, -7.9979916072, -7.9990054249, -7.9995058114, -7.9997539134, -7.9998772867, -7.9999387519, -7.9999694118, -7.9999847177, -7.9999923628, -7.9999961827, -7.9999980918, -7.999999046, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, more...

decimal, strictly-monotonic, -

a(n)=ζ(n)-9
ζ(n)=Riemann Zeta
n≥0
4 operations
Prime

Sequence m42idpsbupusb

-7.1347251417, -14.0220396388, -18.0108575801, -23.4248761259, -25.9350615877, -30.5861781588, -33.9187190121, -36.3270732809, -41.0051508812, -42.7738324777, -45.9703214777, -49.4462476971, -52.3470440026, -53.8317785246, -58.1125440481, -60.0798105295, -62.5464017112, -65.0671576745, -68.7046906991, -70.1448400689, -72.3373750202, -75.9103808541, -77.7354929805, -80.4252746131, -81.8091112076, -85.4918992706, -87.6513440405, -88.8706342282, -91.8311942182, -94.3178510057, -96.7255380405, -98.4466230523, -100.1686111843, -104.0295355432, -104.874659177, -107.3202209155, -109.2266803209, -111.790782866, -114.3701250024, -115.9468292936, -117.2568185543, -120.5166838796, -122.5787042, -124.0876885309, -126.497737203, -127.7565097534, -131.1160420545, -132.7362089521, -134.123707404, -136.1118458076, more...

decimal, strictly-monotonic, -

a(n)=7-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence csubb45bqreqb

-7, -9, -9, -8, -9, -7, -9, -8, -8, -7, -9, -8, -9, -7, -7, -8, -9, -8, -9, -8, -7, -7, -9, -8, -8, -7, -8, -8, -9, -9, -9, -8, -7, -7, -7, -8, -9, -7, -7, -8, -9, -9, -9, -8, -8, -7, -9, -8, -8, -8, more...

integer, non-monotonic, -

a(n)=μ(n)-8
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 2bm1fwwynnjup

-7, -9, -9, -7, -9, -7, -9, -9, -7, -7, -9, -9, -9, -7, -7, -7, -9, -9, -9, -9, -7, -7, -9, -7, -7, -7, -9, -9, -9, -9, -9, -9, -7, -7, -7, -7, -9, -7, -7, -7, -9, -9, -9, -9, -9, -7, -9, -9, -7, -9, more...

integer, non-monotonic, -

a(n)=λ(n)-8
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence k4mkqcfexcomm

-7, -7, -6, -6, -4, -6, -2, -4, -2, -4, 2, -4, 4, -2, 0, 0, 8, -2, 10, 0, 4, 2, 14, 0, 12, 4, 10, 4, 20, 0, 22, 8, 12, 8, 16, 4, 28, 10, 16, 8, 32, 4, 34, 12, 16, 14, 38, 8, 34, 12, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-8
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime

Sequence pgirs0aiehrbj

-7, -6.3068528194, -5.9013877113, -6.3068528194, -5.3905620876, -7, -5.0540898509, -6.3068528194, -5.9013877113, -7, -4.6021047272, -7, -4.4350506425, -7, -7, -6.3068528194, -4.1667866559, -7, -4.0555610208, -7, -7, -7, -3.8645057841, -7, -5.3905620876, -7, -5.9013877113, -7, -3.63270417, -7, -3.5660127955, -6.3068528194, -7, -7, -7, -7, -3.3890820874, -7, -7, -7, -3.2864279333, -7, -3.2387998843, -7, -7, -7, -3.1498523983, -7, -5.0540898509, -7, more...

decimal, non-monotonic, -

a(n)=Λ(n)-7
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence sdtg4josr2ozb

-7, -6, -6, -5, -6, -5, -6, -4, -5, -5, -6, -4, -6, -5, -5, -3, -6, -4, -6, -4, -5, -5, -6, -3, -5, -5, -4, -4, -6, -4, -6, -2, -5, -5, -5, -3, -6, -5, -5, -3, -6, -4, -6, -4, -4, -5, -6, -2, -5, -4, more...

integer, non-monotonic, -

a(n)=Ω(n)-7
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence ry4jwmeafi0jd

-7, -6, -6, -5, -6, -4, -6, -4, -5, -4, -6, -2, -6, -4, -4, -3, -6, -2, -6, -2, -4, -4, -6, 0, -5, -4, -4, -2, -6, 0, -6, -2, -4, -4, -4, 1, -6, -4, -4, 0, -6, 0, -6, -2, -2, -4, -6, 2, -5, -2, more...

integer, non-monotonic, +-

a(n)=τ(n)-8
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence sn3bq0xgkpnvm

-7, -6, -5, -6, -3, -6, -1, -6, -5, -6, 3, -6, 5, -6, -5, -6, 9, -6, 11, -6, -5, -6, 15, -6, -3, -6, -5, -6, 21, -6, 23, -6, -5, -6, -3, -6, 29, -6, -5, -6, 33, -6, 35, -6, -5, -6, 39, -6, -1, -6, more...

integer, non-monotonic, +-

a(n)=lpf(n)-8
lpf(n)=least prime factor of n
n≥1
4 operations
Prime

Sequence tv533nxhtonih

-7, -6, -5, -6, -3, -5, -1, -6, -5, -3, 3, -5, 5, -1, -3, -6, 9, -5, 11, -3, -1, 3, 15, -5, -3, 5, -5, -1, 21, -3, 23, -6, 3, 9, -1, -5, 29, 11, 5, -3, 33, -1, 35, 3, -3, 15, 39, -5, -1, -3, more...

integer, non-monotonic, +-

a(n)=gpf(n)-8
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence nxlim3u2nq0j

-7, -6, -4, -2, 2, 4, 8, 10, 14, 20, 22, 28, 32, 34, 38, 44, 50, 52, 58, 62, 64, 70, 74, 80, 88, 92, 94, 98, 100, 104, 118, 122, 128, 130, 140, 142, 148, 154, 158, 164, 170, 172, 182, 184, 188, 190, 202, 214, 218, 220, more...

integer, strictly-monotonic, +-

a(n)=p(n)-9
p(n)=nth prime
n≥0
4 operations
Prime

Sequence shqylv0qeotwf

-7, -5, -4, -1, -2, 4, 0, 7, 5, 10, 4, 20, 6, 16, 16, 23, 10, 31, 12, 34, 24, 28, 16, 52, 23, 34, 32, 48, 22, 64, 24, 55, 40, 46, 40, 83, 30, 52, 48, 82, 34, 88, 36, 76, 70, 64, 40, 116, 49, 85, more...

integer, non-monotonic, +-

a(n)=σ(n)-8
σ(n)=divisor sum of n
n≥1
4 operations
Prime

Sequence mb0x4apivdfob

-6.3550659332, -6.7979430968, -6.9176767663, -6.9630722449, -6.982656938, -6.9916507226, -6.9959226438, -6.9979916072, -6.9990054249, -6.9995058114, -6.9997539134, -6.9998772867, -6.9999387519, -6.9999694118, -6.9999847177, -6.9999923628, -6.9999961827, -6.9999980918, -6.999999046, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, more...

decimal, strictly-monotonic, -

a(n)=ζ(n)-8
ζ(n)=Riemann Zeta
n≥0
4 operations
Prime

Sequence flnvmobhks5rp

-6.1347251417, -13.0220396388, -17.0108575801, -22.4248761259, -24.9350615877, -29.5861781588, -32.9187190121, -35.3270732809, -40.0051508812, -41.7738324777, -44.9703214777, -48.4462476971, -51.3470440026, -52.8317785246, -57.1125440481, -59.0798105295, -61.5464017112, -64.0671576745, -67.7046906991, -69.1448400689, -71.3373750202, -74.9103808541, -76.7354929805, -79.4252746131, -80.8091112076, -84.4918992706, -86.6513440405, -87.8706342282, -90.8311942182, -93.3178510057, -95.7255380405, -97.4466230523, -99.1686111843, -103.0295355432, -103.874659177, -106.3202209155, -108.2266803209, -110.790782866, -113.3701250024, -114.9468292936, -116.2568185543, -119.5166838796, -121.5787042, -123.0876885309, -125.497737203, -126.7565097534, -130.1160420545, -131.7362089521, -133.123707404, -135.1118458076, more...

decimal, strictly-monotonic, -

a(n)=8-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence z2tdmua4tx3mh

-6, -8, -8, -7, -8, -6, -8, -7, -7, -6, -8, -7, -8, -6, -6, -7, -8, -7, -8, -7, -6, -6, -8, -7, -7, -6, -7, -7, -8, -8, -8, -7, -6, -6, -6, -7, -8, -6, -6, -7, -8, -8, -8, -7, -7, -6, -8, -7, -7, -7, more...

integer, non-monotonic, -

a(n)=μ(n)-7
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence u2cf5n0ecpihf

-6, -8, -8, -6, -8, -6, -8, -8, -6, -6, -8, -8, -8, -6, -6, -6, -8, -8, -8, -8, -6, -6, -8, -6, -6, -6, -8, -8, -8, -8, -8, -8, -6, -6, -6, -6, -8, -6, -6, -6, -8, -8, -8, -8, -8, -6, -8, -8, -6, -8, more...

integer, non-monotonic, -

a(n)=λ(n)-7
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence vk44aw2ahbnrg

-6, -6, -5, -5, -3, -5, -1, -3, -1, -3, 3, -3, 5, -1, 1, 1, 9, -1, 11, 1, 5, 3, 15, 1, 13, 5, 11, 5, 21, 1, 23, 9, 13, 9, 17, 5, 29, 11, 17, 9, 33, 5, 35, 13, 17, 15, 39, 9, 35, 13, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-7
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime

Sequence xhuzozdivctxc

-6, -5.3068528194, -4.9013877113, -5.3068528194, -4.3905620876, -6, -4.0540898509, -5.3068528194, -4.9013877113, -6, -3.6021047272, -6, -3.4350506425, -6, -6, -5.3068528194, -3.1667866559, -6, -3.0555610208, -6, -6, -6, -2.8645057841, -6, -4.3905620876, -6, -4.9013877113, -6, -2.63270417, -6, -2.5660127955, -5.3068528194, -6, -6, -6, -6, -2.3890820874, -6, -6, -6, -2.2864279333, -6, -2.2387998843, -6, -6, -6, -2.1498523983, -6, -4.0540898509, -6, more...

decimal, non-monotonic, -

a(n)=Λ(n)-6
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence 303lfmvwozndf

-6, -5, -5, -4, -5, -4, -5, -3, -4, -4, -5, -3, -5, -4, -4, -2, -5, -3, -5, -3, -4, -4, -5, -2, -4, -4, -3, -3, -5, -3, -5, -1, -4, -4, -4, -2, -5, -4, -4, -2, -5, -3, -5, -3, -3, -4, -5, -1, -4, -3, more...

integer, non-monotonic, -

a(n)=Ω(n)-6
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence aigj5vdn5zgvb

-6, -5, -5, -4, -5, -3, -5, -3, -4, -3, -5, -1, -5, -3, -3, -2, -5, -1, -5, -1, -3, -3, -5, 1, -4, -3, -3, -1, -5, 1, -5, -1, -3, -3, -3, 2, -5, -3, -3, 1, -5, 1, -5, -1, -1, -3, -5, 3, -4, -1, more...

integer, non-monotonic, +-

a(n)=τ(n)-7
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence zvclbjkpzdmyl

-6, -5, -4, -5, -2, -5, 0, -5, -4, -5, 4, -5, 6, -5, -4, -5, 10, -5, 12, -5, -4, -5, 16, -5, -2, -5, -4, -5, 22, -5, 24, -5, -4, -5, -2, -5, 30, -5, -4, -5, 34, -5, 36, -5, -4, -5, 40, -5, 0, -5, more...

integer, non-monotonic, +-

a(n)=lpf(n)-7
lpf(n)=least prime factor of n
n≥1
4 operations
Prime

Sequence sin4tmv0qlimi

-6, -5, -4, -5, -2, -4, 0, -5, -4, -2, 4, -4, 6, 0, -2, -5, 10, -4, 12, -2, 0, 4, 16, -4, -2, 6, -4, 0, 22, -2, 24, -5, 4, 10, 0, -4, 30, 12, 6, -2, 34, 0, 36, 4, -2, 16, 40, -4, 0, -2, more...

integer, non-monotonic, +-

a(n)=gpf(n)-7
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence azglhxfdxotph

-6, -5, -3, -1, 3, 5, 9, 11, 15, 21, 23, 29, 33, 35, 39, 45, 51, 53, 59, 63, 65, 71, 75, 81, 89, 93, 95, 99, 101, 105, 119, 123, 129, 131, 141, 143, 149, 155, 159, 165, 171, 173, 183, 185, 189, 191, 203, 215, 219, 221, more...

integer, strictly-monotonic, +-

a(n)=p(n)-8
p(n)=nth prime
n≥0
4 operations
Prime

Sequence xadezooqbqije

-6, -4, -3, 0, -1, 5, 1, 8, 6, 11, 5, 21, 7, 17, 17, 24, 11, 32, 13, 35, 25, 29, 17, 53, 24, 35, 33, 49, 23, 65, 25, 56, 41, 47, 41, 84, 31, 53, 49, 83, 35, 89, 37, 77, 71, 65, 41, 117, 50, 86, more...

integer, non-monotonic, +-

a(n)=σ(n)-7
σ(n)=divisor sum of n
n≥1
4 operations
Prime

Sequence kc4osa0d25qk

-5.3550659332, -5.7979430968, -5.9176767663, -5.9630722449, -5.982656938, -5.9916507226, -5.9959226438, -5.9979916072, -5.9990054249, -5.9995058114, -5.9997539134, -5.9998772867, -5.9999387519, -5.9999694118, -5.9999847177, -5.9999923628, -5.9999961827, -5.9999980918, -5.999999046, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, more...

decimal, strictly-monotonic, -

a(n)=ζ(n)-7
ζ(n)=Riemann Zeta
n≥0
4 operations
Prime

Sequence fomzcydyxsyxo

-5.1347251417, -12.0220396388, -16.0108575801, -21.4248761259, -23.9350615877, -28.5861781588, -31.9187190121, -34.3270732809, -39.0051508812, -40.7738324777, -43.9703214777, -47.4462476971, -50.3470440026, -51.8317785246, -56.1125440481, -58.0798105295, -60.5464017112, -63.0671576745, -66.7046906991, -68.1448400689, -70.3373750202, -73.9103808541, -75.7354929805, -78.4252746131, -79.8091112076, -83.4918992706, -85.6513440405, -86.8706342282, -89.8311942182, -92.3178510057, -94.7255380405, -96.4466230523, -98.1686111843, -102.0295355432, -102.874659177, -105.3202209155, -107.2266803209, -109.790782866, -112.3701250024, -113.9468292936, -115.2568185543, -118.5166838796, -120.5787042, -122.0876885309, -124.497737203, -125.7565097534, -129.1160420545, -130.7362089521, -132.123707404, -134.1118458076, more...

decimal, strictly-monotonic, -

a(n)=9-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence d1k1svzna2cho

-5, -7, -7, -6, -7, -5, -7, -6, -6, -5, -7, -6, -7, -5, -5, -6, -7, -6, -7, -6, -5, -5, -7, -6, -6, -5, -6, -6, -7, -7, -7, -6, -5, -5, -5, -6, -7, -5, -5, -6, -7, -7, -7, -6, -6, -5, -7, -6, -6, -6, more...

integer, non-monotonic, -

a(n)=μ(n)-6
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 2j3uigrjpwsjb

-5, -7, -7, -5, -7, -5, -7, -7, -5, -5, -7, -7, -7, -5, -5, -5, -7, -7, -7, -7, -5, -5, -7, -5, -5, -5, -7, -7, -7, -7, -7, -7, -5, -5, -5, -5, -7, -5, -5, -5, -7, -7, -7, -7, -7, -5, -7, -7, -5, -7, more...

integer, non-monotonic, -

a(n)=λ(n)-6
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence fu23tjaybn1dk

-5, -5, -4, -4, -2, -4, 0, -2, 0, -2, 4, -2, 6, 0, 2, 2, 10, 0, 12, 2, 6, 4, 16, 2, 14, 6, 12, 6, 22, 2, 24, 10, 14, 10, 18, 6, 30, 12, 18, 10, 34, 6, 36, 14, 18, 16, 40, 10, 36, 14, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-6
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime

Sequence lgtueypm3lwab

-5, -4.3068528194, -3.9013877113, -4.3068528194, -3.3905620876, -5, -3.0540898509, -4.3068528194, -3.9013877113, -5, -2.6021047272, -5, -2.4350506425, -5, -5, -4.3068528194, -2.1667866559, -5, -2.0555610208, -5, -5, -5, -1.8645057841, -5, -3.3905620876, -5, -3.9013877113, -5, -1.63270417, -5, -1.5660127955, -4.3068528194, -5, -5, -5, -5, -1.3890820874, -5, -5, -5, -1.2864279333, -5, -1.2387998843, -5, -5, -5, -1.1498523983, -5, -3.0540898509, -5, more...

decimal, non-monotonic, -

a(n)=Λ(n)-5
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence xbre55evjn2so

-5, -4, -4, -3, -4, -3, -4, -2, -3, -3, -4, -2, -4, -3, -3, -1, -4, -2, -4, -2, -3, -3, -4, -1, -3, -3, -2, -2, -4, -2, -4, 0, -3, -3, -3, -1, -4, -3, -3, -1, -4, -2, -4, -2, -2, -3, -4, 0, -3, -2, more...

integer, non-monotonic, -

a(n)=Ω(n)-5
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence lgp331peligqe

-5, -4, -4, -3, -4, -2, -4, -2, -3, -2, -4, 0, -4, -2, -2, -1, -4, 0, -4, 0, -2, -2, -4, 2, -3, -2, -2, 0, -4, 2, -4, 0, -2, -2, -2, 3, -4, -2, -2, 2, -4, 2, -4, 0, 0, -2, -4, 4, -3, 0, more...

integer, non-monotonic, +-

a(n)=τ(n)-6
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence n3lqi1vuceqn

-5, -4, -3, -4, -1, -4, 1, -4, -3, -4, 5, -4, 7, -4, -3, -4, 11, -4, 13, -4, -3, -4, 17, -4, -1, -4, -3, -4, 23, -4, 25, -4, -3, -4, -1, -4, 31, -4, -3, -4, 35, -4, 37, -4, -3, -4, 41, -4, 1, -4, more...

integer, non-monotonic, +-

a(n)=lpf(n)-6
lpf(n)=least prime factor of n
n≥1
4 operations
Prime

Sequence hgqrvrjse3nrd

-5, -4, -3, -4, -1, -3, 1, -4, -3, -1, 5, -3, 7, 1, -1, -4, 11, -3, 13, -1, 1, 5, 17, -3, -1, 7, -3, 1, 23, -1, 25, -4, 5, 11, 1, -3, 31, 13, 7, -1, 35, 1, 37, 5, -1, 17, 41, -3, 1, -1, more...

integer, non-monotonic, +-

a(n)=gpf(n)-6
gpf(n)=greatest prime factor of n
n≥1
4 operations
Prime

Sequence 5xdxnq4ix4kgm

-5, -4, -2, 0, 4, 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 46, 52, 54, 60, 64, 66, 72, 76, 82, 90, 94, 96, 100, 102, 106, 120, 124, 130, 132, 142, 144, 150, 156, 160, 166, 172, 174, 184, 186, 190, 192, 204, 216, 220, 222, more...

integer, strictly-monotonic, +-

a(n)=p(n)-7
p(n)=nth prime
n≥0
4 operations
Prime

Sequence dydnvj1kbu5if

-5, -3, -2, 1, 0, 6, 2, 9, 7, 12, 6, 22, 8, 18, 18, 25, 12, 33, 14, 36, 26, 30, 18, 54, 25, 36, 34, 50, 24, 66, 26, 57, 42, 48, 42, 85, 32, 54, 50, 84, 36, 90, 38, 78, 72, 66, 42, 118, 51, 87, more...

integer, non-monotonic, +-

a(n)=σ(n)-6
σ(n)=divisor sum of n
n≥1
4 operations
Prime

Sequence 1pvjctpwxwgjg

-4.3550659332, -4.7979430968, -4.9176767663, -4.9630722449, -4.982656938, -4.9916507226, -4.9959226438, -4.9979916072, -4.9990054249, -4.9995058114, -4.9997539134, -4.9998772867, -4.9999387519, -4.9999694118, -4.9999847177, -4.9999923628, -4.9999961827, -4.9999980918, -4.999999046, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, more...

decimal, strictly-monotonic, -

a(n)=ζ(n)-6
ζ(n)=Riemann Zeta
n≥0
4 operations
Prime

Sequence ovfevib5hwlcc

-4.1347251417, -11.0220396388, -15.0108575801, -20.4248761259, -22.9350615877, -27.5861781588, -30.9187190121, -33.3270732809, -38.0051508812, -39.7738324777, -42.9703214777, -46.4462476971, -49.3470440026, -50.8317785246, -55.1125440481, -57.0798105295, -59.5464017112, -62.0671576745, -65.7046906991, -67.1448400689, -69.3373750202, -72.9103808541, -74.7354929805, -77.4252746131, -78.8091112076, -82.4918992706, -84.6513440405, -85.8706342282, -88.8311942182, -91.3178510057, -93.7255380405, -95.4466230523, -97.1686111843, -101.0295355432, -101.874659177, -104.3202209155, -106.2266803209, -108.790782866, -111.3701250024, -112.9468292936, -114.2568185543, -117.5166838796, -119.5787042, -121.0876885309, -123.497737203, -124.7565097534, -128.1160420545, -129.7362089521, -131.123707404, -133.1118458076, more...

decimal, strictly-monotonic, -

a(n)=10-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence fgkn3pbcjpcjb

-4, -6, -6, -5, -6, -4, -6, -5, -5, -4, -6, -5, -6, -4, -4, -5, -6, -5, -6, -5, -4, -4, -6, -5, -5, -4, -5, -5, -6, -6, -6, -5, -4, -4, -4, -5, -6, -4, -4, -5, -6, -6, -6, -5, -5, -4, -6, -5, -5, -5, more...

integer, non-monotonic, -

a(n)=μ(n)-5
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 4qnldx5thaukn

-4, -6, -6, -4, -6, -4, -6, -6, -4, -4, -6, -6, -6, -4, -4, -4, -6, -6, -6, -6, -4, -4, -6, -4, -4, -4, -6, -6, -6, -6, -6, -6, -4, -4, -4, -4, -6, -4, -4, -4, -6, -6, -6, -6, -6, -4, -6, -6, -4, -6, more...

integer, non-monotonic, -

a(n)=λ(n)-5
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence tgetzqa0otovh

-4, -4, -3, -3, -1, -3, 1, -1, 1, -1, 5, -1, 7, 1, 3, 3, 11, 1, 13, 3, 7, 5, 17, 3, 15, 7, 13, 7, 23, 3, 25, 11, 15, 11, 19, 7, 31, 13, 19, 11, 35, 7, 37, 15, 19, 17, 41, 11, 37, 15, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-5
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime