Sequence Database

A database with 951925 machine generated integer and decimal sequences.

Displaying result 0-99 of total 632452. [0] [1] [2] [3] [4] ... [6324]

Sequence cju2uijt3qnml

0, 0.6931471806, 1.0986122887, 0.6931471806, 1.6094379124, 0, 1.9459101491, 0.6931471806, 1.0986122887, 0, 2.3978952728, 0, 2.5649493575, 0, 0, 0.6931471806, 2.8332133441, 0, 2.9444389792, 0, 0, 0, 3.1354942159, 0, 1.6094379124, more...

decimal, non-monotonic, +

a(n)=Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
2 operations
Prime

Sequence ub3tktmvdthvj

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max factorization terms
n≥1
2 operations
Prime

Sequence 3bmepyefoqlfp

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence 5as1ecrpxvlwn

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime

Sequence apkm4drbhxu1k

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence 2q1rtmulmg2m

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, more...

integer, non-monotonic, +, A000010

a(n)=ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
2 operations
Prime

Sequence okvxpoucbqnai

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime

Sequence 1ouwsby2jnaal

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, more...

integer, non-monotonic, +, A020639

a(n)=lpf(n)
lpf(n)=least prime factor of n
n≥1
2 operations
Prime

Sequence f01q4ekd0c3wl

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, more...

integer, non-monotonic, +, A006530

a(n)=gpf(n)
gpf(n)=greatest prime factor of n
n≥1
2 operations
Prime

Sequence 4rlzjihdzbx0j

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, more...

integer, non-monotonic, +, A000203

a(n)=σ(n)
σ(n)=divisor sum of n
n≥1
2 operations
Prime

Sequence ruijxnqgy4eab

1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, more...

integer, strictly-monotonic, +, A018252

a(n)=composite(n)
composite(n)=nth composite number
n≥1
2 operations
Prime

Sequence rgmqt44o3fqsk

1.6449340668, 1.2020569032, 1.0823232337, 1.0369277551, 1.017343062, 1.0083492774, 1.0040773562, 1.0020083928, 1.0009945751, 1.0004941886, 1.0002460866, 1.0001227133, 1.0000612481, 1.0000305882, 1.0000152823, 1.0000076372, 1.0000038173, 1.0000019082, 1.000000954, 1, 1, 1, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=ζ(n)
ζ(n)=Riemann Zeta
n≥0
2 operations
Prime

Sequence g0520hmlubygj

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, more...

integer, strictly-monotonic, +, A000040

a(n)=p(n)
p(n)=nth prime
n≥1
2 operations
Prime

Sequence j0zl4idyr4khi

14.1347251417, 21.0220396388, 25.0108575801, 30.4248761259, 32.9350615877, 37.5861781588, 40.9187190121, 43.3270732809, 48.0051508812, 49.7738324777, 52.9703214777, 56.4462476971, 59.3470440026, 60.8317785246, 65.1125440481, 67.0798105295, 69.5464017112, 72.0671576745, 75.7046906991, 77.1448400689, 79.3373750202, 82.9103808541, 84.7354929805, 87.4252746131, 88.8091112076, more...

decimal, strictly-monotonic, +

a(n)=Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
2 operations
Prime

Sequence tilu3ymww05gg

2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +, A007497

a(n)=σ(a(n-1))
a(0)=2
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence xojyybe3trmub

2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, more...

integer, strictly-monotonic, +, A025003

a(n)=composite(a(n-1))
a(0)=2
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence iejmrcau0ouom

3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +

a(n)=σ(a(n-1))
a(0)=3
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence bu00c0ai1qhqh

3, 5, 11, 31, 127, 709, 5381, 52711, 648391, more...

integer, strictly-monotonic, +

a(n)=p(a(n-1))
a(0)=3
p(n)=nth prime
n≥0
2 operations
Prime

Sequence mbnayqzaowaup

3, 6, 10, 16, 25, 36, 51, 70, 94, 124, 161, 207, 262, 328, 407, 502, 614, 746, 900, 1080, 1288, 1529, 1808, 2127, 2494, 2915, 3393, 3939, 4556, 5253, 6040, 6930, 7931, 9056, 10322, 11729, 13308, 15067, 17031, 19208, 21637, 24340, 27330, 30633, 34296, 38344, 42820, 47742, 53166, more...

integer, strictly-monotonic, +, A025004

a(n)=composite(a(n-1))
a(0)=3
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence jzj0xqhwtvxnn

4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, more...

integer, strictly-monotonic, +

a(n)=σ(a(n-1))
a(0)=4
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence zb4ixodewtb2j

4, 7, 17, 59, 277, 1787, 15299, 167449, 2269733, more...

integer, strictly-monotonic, +, A057450

a(n)=p(a(n-1))
a(0)=4
p(n)=nth prime
n≥0
2 operations
Prime

Sequence u5twwkxrj3hgo

4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103, 42552, 47444, 52835, more...

integer, strictly-monotonic, +

a(n)=composite(a(n-1))
a(0)=4
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence 0xuugesife4dh

5, 6, 12, 28, 56, 120, 360, 1170, 3276, 10192, 24738, 61440, more...

integer, strictly-monotonic, +, A051572

a(n)=σ(a(n-1))
a(0)=5
σ(n)=divisor sum of n
n≥0
2 operations
Prime

Sequence 4hswfjdgkyzcc

5, 9, 15, 24, 35, 50, 69, 93, 123, 160, 206, 261, 327, 406, 501, 612, 744, 898, 1078, 1286, 1527, 1806, 2125, 2492, 2913, 3390, 3936, 4553, 5250, 6036, 6926, 7926, 9051, 10316, 11723, 13302, 15060, 17022, 19198, 21627, 24328, 27317, 30619, 34281, 38326, 42802, 47722, 53143, more...

integer, strictly-monotonic, +, A025005

a(n)=composite(a(n-1))
a(0)=5
composite(n)=nth composite number
n≥0
2 operations
Prime

Sequence 2o2bxc0brjsgp

5, 11, 31, 127, 709, 5381, 52711, 648391, more...

integer, strictly-monotonic, +

a(n)=p(a(n-1))
a(0)=5
p(n)=nth prime
n≥0
2 operations
Prime

Sequence sdngefp0o0lkj

-14.1347251417, -21.0220396388, -25.0108575801, -30.4248761259, -32.9350615877, -37.5861781588, -40.9187190121, -43.3270732809, -48.0051508812, -49.7738324777, -52.9703214777, -56.4462476971, -59.3470440026, -60.8317785246, -65.1125440481, -67.0798105295, -69.5464017112, -72.0671576745, -75.7046906991, -77.1448400689, -79.3373750202, -82.9103808541, -84.7354929805, -87.4252746131, -88.8091112076, more...

decimal, strictly-monotonic, -

a(n)=-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
3 operations
Prime

Sequence i1dpeurk5yrrd

-2, -3, -5, -7, -11, -13, -17, -19, -23, -29, -31, -37, -41, -43, -47, -53, -59, -61, -67, -71, -73, -79, -83, -89, -97, -101, -103, -107, -109, -113, -127, -131, -137, -139, -149, -151, -157, -163, -167, -173, -179, -181, -191, -193, -197, -199, -211, -223, -227, -229, more...

integer, strictly-monotonic, -

a(n)=-p(n)
p(n)=nth prime
n≥1
3 operations
Prime

Sequence u4kucg1vaemob

-1.6449340668, -1.2020569032, -1.0823232337, -1.0369277551, -1.017343062, -1.0083492774, -1.0040773562, -1.0020083928, -1.0009945751, -1.0004941886, -1.0002460866, -1.0001227133, -1.0000612481, -1.0000305882, -1.0000152823, -1.0000076372, -1.0000038173, -1.0000019082, -1.000000954, -1, -1, -1, -1, -1, -1, more...

decimal, strictly-monotonic, -

a(n)=-ζ(n)
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence 1xs3yznmcsgmf

-1, -4, -6, -8, -9, -10, -12, -14, -15, -16, -18, -20, -21, -22, -24, -25, -26, -27, -28, -30, -32, -33, -34, -35, -36, -38, -39, -40, -42, -44, -45, -46, -48, -49, -50, -51, -52, -54, -55, -56, -57, -58, -60, -62, -63, -64, -65, -66, -68, -69, more...

integer, strictly-monotonic, -

a(n)=-composite(n)
composite(n)=nth composite number
n≥1
3 operations
Prime

Sequence qtn4igfox0zfo

-1, -3, -4, -7, -6, -12, -8, -15, -13, -18, -12, -28, -14, -24, -24, -31, -18, -39, -20, -42, -32, -36, -24, -60, -31, -42, -40, -56, -30, -72, -32, -63, -48, -54, -48, -91, -38, -60, -56, -90, -42, -96, -44, -84, -78, -72, -48, -124, -57, -93, more...

integer, non-monotonic, -

a(n)=-σ(n)
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence c5dglrcjdavhh

-1, -2, -3, -2, -5, -3, -7, -2, -3, -5, -11, -3, -13, -7, -5, -2, -17, -3, -19, -5, -7, -11, -23, -3, -5, -13, -3, -7, -29, -5, -31, -2, -11, -17, -7, -3, -37, -19, -13, -5, -41, -7, -43, -11, -5, -23, -47, -3, -7, -5, more...

integer, non-monotonic, -

a(n)=-gpf(n)
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence yllw0pgoktc1h

-1, -2, -3, -2, -5, -2, -7, -2, -3, -2, -11, -2, -13, -2, -3, -2, -17, -2, -19, -2, -3, -2, -23, -2, -5, -2, -3, -2, -29, -2, -31, -2, -3, -2, -5, -2, -37, -2, -3, -2, -41, -2, -43, -2, -3, -2, -47, -2, -7, -2, more...

integer, non-monotonic, -

a(n)=-lpf(n)
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence xs5ftugsnt13o

-1, -2, -2, -3, -2, -4, -2, -4, -3, -4, -2, -6, -2, -4, -4, -5, -2, -6, -2, -6, -4, -4, -2, -8, -3, -4, -4, -6, -2, -8, -2, -6, -4, -4, -4, -9, -2, -4, -4, -8, -2, -8, -2, -6, -6, -4, -2, -10, -3, -6, more...

integer, non-monotonic, -

a(n)=-τ(n)
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence fuae1h3b5z4np

-1, -1, -2, -2, -4, -2, -6, -4, -6, -4, -10, -4, -12, -6, -8, -8, -16, -6, -18, -8, -12, -10, -22, -8, -20, -12, -18, -12, -28, -8, -30, -16, -20, -16, -24, -12, -36, -18, -24, -16, -40, -12, -42, -20, -24, -22, -46, -16, -42, -20, more...

integer, non-monotonic, -

a(n)=-ϕ(n)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence 2d4ccxymyiqf

-1, -1, -1, -2, -1, -1, -1, -3, -2, -1, -1, -2, -1, -1, -1, -5, -1, -2, -1, -2, -1, -1, -1, -3, -2, -1, -3, -2, -1, -1, -1, -7, -1, -1, -1, -4, -1, -1, -1, -3, -1, -1, -1, -2, -2, -1, -1, -5, -2, -2, more...

integer, non-monotonic, -

a(n)=-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence dudoyi5ajsrhb

-1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, more...

integer, non-monotonic, +-

a(n)=-λ(n)
λ(n)=Liouville's function
n≥1
3 operations
Prime

Sequence lyu0d1h5rvlyg

-1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=-μ(n)
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence vxxvaleofb2dn

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-monotonic, -

a(n)=-Ω(n)
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence 5sfwvs5xbm2bh

0, -0.6931471806, -1.0986122887, -0.6931471806, -1.6094379124, 0, -1.9459101491, -0.6931471806, -1.0986122887, 0, -2.3978952728, 0, -2.5649493575, 0, 0, -0.6931471806, -2.8332133441, 0, -2.9444389792, 0, 0, 0, -3.1354942159, 0, -1.6094379124, more...

decimal, non-monotonic, -

a(n)=-Λ(n)
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence cxr53r3zzfqcf

0, 0.4804530139, 1.2069489608, 0.4804530139, 2.590290394, 0, 3.7865663082, 0.4804530139, 1.2069489608, 0, 5.7499017393, 0, 6.5789652063, 0, 0, 0.4804530139, 8.0270978529, 0, 8.669720902, 0, 0, 0, 9.8313239781, 0, 2.590290394, more...

decimal, non-monotonic, +

a(n)=Λ(n)²
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence 0wgg5olzoixrd

0, 1, 1, 4, 1, 4, 1, 9, 4, 4, 1, 9, 1, 4, 4, 16, 1, 9, 1, 9, 4, 4, 1, 16, 4, 4, 9, 9, 1, 9, 1, 25, 4, 4, 4, 16, 1, 4, 4, 16, 1, 9, 1, 9, 9, 4, 1, 25, 4, 9, more...

integer, non-monotonic, +

a(n)=Ω(n)²
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence rvjewxl0eexag

0, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 6, 2, 4, 4, 8, 2, 6, 2, 6, 4, 4, 2, 8, 4, 4, 6, 6, 2, 6, 2, 10, 4, 4, 4, 8, 2, 4, 4, 8, 2, 6, 2, 6, 6, 4, 2, 10, 4, 6, more...

integer, non-monotonic, +, A255201

a(n)=Ω(n²)
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence 04dsdnlkqak4n

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, more...

integer, non-monotonic, +, A008966

a(n)=μ(n)²
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence y1aui2jq2wetp

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(n²)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence xjm3qbbrnrthp

1, 1, 1, 4, 1, 1, 1, 9, 4, 1, 1, 4, 1, 1, 1, 25, 1, 4, 1, 4, 1, 1, 1, 9, 4, 1, 9, 4, 1, 1, 1, 49, 1, 1, 1, 16, 1, 1, 1, 9, 1, 1, 1, 4, 4, 1, 1, 25, 4, 4, more...

integer, non-monotonic, +

a(n)=agc(n)²
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence 43zc32dqwowvn

1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, more...

integer, non-monotonic, +, A127473

a(n)=ϕ(n)²
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence fopj3izyyyfzb

1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000, more...

integer, non-monotonic, +, A002618

a(n)=ϕ(n²)
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence eltyaqg32p5ck

1, 3, 3, 5, 3, 9, 3, 7, 5, 9, 3, 15, 3, 9, 9, 9, 3, 15, 3, 15, 9, 9, 3, 21, 5, 9, 7, 15, 3, 27, 3, 11, 9, 9, 9, 25, 3, 9, 9, 21, 3, 27, 3, 15, 15, 9, 3, 27, 5, 15, more...

integer, non-monotonic, +, A048691

a(n)=τ(n²)
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence bsv3lacrfornp

1, 4, 4, 9, 4, 16, 4, 16, 9, 16, 4, 36, 4, 16, 16, 25, 4, 36, 4, 36, 16, 16, 4, 64, 9, 16, 16, 36, 4, 64, 4, 36, 16, 16, 16, 81, 4, 16, 16, 64, 4, 64, 4, 36, 36, 16, 4, 100, 9, 36, more...

integer, non-monotonic, +, A035116

a(n)=τ(n)²
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence sh325sbulwxbe

1, 4, 9, 4, 25, 4, 49, 4, 9, 4, 121, 4, 169, 4, 9, 4, 289, 4, 361, 4, 9, 4, 529, 4, 25, 4, 9, 4, 841, 4, 961, 4, 9, 4, 25, 4, 1369, 4, 9, 4, 1681, 4, 1849, 4, 9, 4, 2209, 4, 49, 4, more...

integer, non-monotonic, +, A088377

a(n)=lpf(n)²
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence 3jm3rablurcpn

1, 4, 9, 4, 25, 9, 49, 4, 9, 25, 121, 9, 169, 49, 25, 4, 289, 9, 361, 25, 49, 121, 529, 9, 25, 169, 9, 49, 841, 25, 961, 4, 121, 289, 49, 9, 1369, 361, 169, 25, 1681, 49, 1849, 121, 25, 529, 2209, 9, 49, 25, more...

integer, non-monotonic, +

a(n)=gpf(n)²
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence aefbil5k01xmc

1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643, 2801, 5467, more...

integer, non-monotonic, +, A065764

a(n)=σ(n²)
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence wubcxmj5paeag

1, 8, 15, 25, 36, 51, 68, 87, 110, 132, 158, 186, 216, 249, 286, 322, 361, 403, 447, 494, 540, 591, 646, 702, 759, 817, 880, 944, 1010, 1080, 1150, 1224, 1300, 1376, 1456, 1538, 1626, 1711, 1799, 1890, 1980, 2076, 2175, 2274, 2376, 2483, 2585, 2696, 2810, 2922, more...

integer, strictly-monotonic, +

a(n)=composite(n²)
composite(n)=nth composite number
n≥1
3 operations
Prime

Sequence z1wbfz52zf3m

1, 9, 16, 49, 36, 144, 64, 225, 169, 324, 144, 784, 196, 576, 576, 961, 324, 1521, 400, 1764, 1024, 1296, 576, 3600, 961, 1764, 1600, 3136, 900, 5184, 1024, 3969, 2304, 2916, 2304, 8281, 1444, 3600, 3136, 8100, 1764, 9216, 1936, 7056, 6084, 5184, 2304, 15376, 3249, 8649, more...

integer, non-monotonic, +, A072861

a(n)=σ(n)²
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence zx0xk2fkxjqtn

1, 16, 36, 64, 81, 100, 144, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2304, 2401, 2500, 2601, 2704, 2916, 3025, 3136, 3249, 3364, 3600, 3844, 3969, 4096, 4225, 4356, 4624, 4761, more...

integer, strictly-monotonic, +, A062312

a(n)=composite(n)²
composite(n)=nth composite number
n≥1
3 operations
Prime

Sequence yij1auqfaavzm

1.6449340668, 1.2020569032, 1.017343062, 1.0004941886, 1.0000038173, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

decimal, monotonic, +

a(n)=ζ(n²)
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence 4vesv3dnzuthe

2, 7, 23, 53, 97, 151, 227, 311, 419, 541, 661, 827, 1009, 1193, 1427, 1619, 1879, 2143, 2437, 2741, 3083, 3461, 3803, 4211, 4637, 5051, 5519, 6007, 6481, 6997, 7573, 8161, 8737, 9341, 9931, 10627, 11321, 12049, 12743, 13499, 14327, 15101, 15877, 16747, 17609, 18461, 19471, 20393, 21391, 22307, more...

integer, strictly-monotonic, +, A011757

a(n)=p(n²)
p(n)=nth prime
n≥1
3 operations
Prime

Sequence z5dxchc1jkzqi

2.7058080843, 1.4449407984, 1.1714235822, 1.0752191694, 1.0349869058, 1.0167682652, 1.0081713372, 1.0040208193, 1.0019901394, 1.0009886214, 1.0004922337, 1.0002454418, 1.0001225, 1.0000611774, 1.0000305648, 1.0000152745, 1.0000076346, 1.0000038164, 1.0000019079, 1.0000009539, 1, 1, 1, 1, 1, more...

decimal, strictly-monotonic, +

a(n)=ζ(n)²
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence 1hgq1tl32ljgd

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, more...

integer, strictly-monotonic, +, A001248

a(n)=p(n)²
p(n)=nth prime
n≥1
3 operations
Prime

Sequence 1z00cjm3kenuj

14.1347251417, 21.0220396388, 32.9350615877, 49.7738324777, 69.5464017112, 92.4918992706, 116.2266803209, 143.1118458076, 173.4115365196, 204.1896718031, 237.7698204809, 273.4596091884, 311.1651415304, 350.4084193492, 392.2450833395, 436.1610064326, 481.8303393763, 528.4062138523, 577.0390034721, 628.3258623595, 681.8949915332, 735.7654592086, 792.4277076086, 849.8622743487, 910.1863340572, more...

decimal, strictly-monotonic, +

a(n)=Z(n²)
Z(n)=non trivial zeros of Zeta
n≥0
3 operations
Prime

Sequence j31abo3mlmb4n

199.7904548324, 441.9261505741, 625.5429968943, 925.6730872739, 1084.7182817882, 1412.720788587, 1674.3415655951, 1877.2352790898, 2304.4945111236, 2477.4343995154, 2805.8549574524, 3186.1788790782, 3522.0716318468, 3700.5052784672, 4239.6433924134, 4499.7009806728, 4836.701990972, 5193.6752152786, 5731.200193844, 5951.3263492523, 6294.4190751037, 6874.1312533696, 7180.1037706513, 7643.1786411804, 7887.05823349, more...

decimal, strictly-monotonic, +

a(n)=Z(n)²
Z(n)=non trivial zeros of Zeta
n≥0
3 operations
Prime

Sequence xohav4rkka3eo

0, 0, 0.6931471806, 0, 1.0986122887, 0.6931471806, 1.0986122887, 0, 0.6931471806, 1.0986122887, 1.6094379124, 0.6931471806, 1.6094379124, 1.0986122887, 0.6931471806, 0, 1.6094379124, 0.6931471806, 1.9459101491, 1.0986122887, 0.6931471806, 1.6094379124, 1.9459101491, 0.6931471806, 1.9459101491, more...

decimal, non-monotonic, +

a(n)=Λ(stern(n))
stern(n)=Stern-Brocot sequence
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime

Sequence adfuooxrcsxoo

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 0, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=Ω(stern(n))
stern(n)=Stern-Brocot sequence
Ω(n)=max factorization terms
n≥1
3 operations
Prime

Sequence fhpwn2cxzrwwc

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, more...

integer, non-monotonic, +

a(n)=stern(Ω(n))
Ω(n)=max factorization terms
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence htxcu5kbjh3zc

1, 1, -1, 1, -1, -1, -1, 1, 0, -1, -1, -1, -1, -1, 0, 1, -1, 0, -1, -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, 1, 1, -1, 0, 0, -1, -1, 1, -1, -1, 0, -1, -1, 0, -1, 0, -1, 0, -1, more...

integer, non-monotonic, +-

a(n)=μ(stern(n))
stern(n)=Stern-Brocot sequence
μ(n)=Möbius function
n≥1
3 operations
Prime

Sequence dxzgdf0njecig

1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, more...

integer, non-monotonic, +-

a(n)=λ(stern(n))
stern(n)=Stern-Brocot sequence
λ(n)=Liouville's function
n≥1
3 operations
Prime

Sequence pcvjzcnepnvhl

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, more...

integer, non-monotonic, +

a(n)=stern(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
stern(n)=Stern-Brocot sequence
n≥0
3 operations
Prime

Sequence 1akznwv5e0ljd

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 2, 4, 1, 2, 3, 5, 1, 3, 2, 4, 2, 3, 1, 4, 1, 3, 1, 2, 2, 4, 4, 2, 1, 3, 2, 8, 3, 2, 5, 7, 1, 8, 3, more...

integer, non-monotonic, +

a(n)=stern(ϕ(n))
ϕ(n)=number of relative primes (Euler's totient)
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence 32edp0oaxoo4

1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 3, 1, 3, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(stern(n))
stern(n)=Stern-Brocot sequence
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence gmysk4tgxf0sn

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 1, 4, 2, 2, 1, 4, 2, 6, 2, 4, 4, 6, 1, 6, 4, 4, 2, 6, 2, 4, 1, 2, 4, 6, 2, 10, 6, 4, 2, 10, 4, 12, 4, 4, 6, 6, 1, 6, 6, more...

integer, non-monotonic, +

a(n)=ϕ(stern(n))
stern(n)=Stern-Brocot sequence
ϕ(n)=number of relative primes (Euler's totient)
n≥1
3 operations
Prime

Sequence b3rflu2wpvl5b

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, more...

integer, non-monotonic, +

a(n)=stern(τ(n))
τ(n)=number of divisors of n
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence zzdntneg3uhqi

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 1, 4, 2, 3, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 3, 2, 3, 2, more...

integer, non-monotonic, +

a(n)=τ(stern(n))
stern(n)=Stern-Brocot sequence
τ(n)=number of divisors of n
n≥1
3 operations
Prime

Sequence qoq1drzc2u12n

1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 7, 1, 2, 1, 7, 1, 3, 1, 2, 1, 7, 1, 5, 1, 2, 1, 3, 1, 11, 1, 2, 1, 11, 1, 13, 1, 2, 1, 9, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=stern(lpf(n))
lpf(n)=least prime factor of n
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence via0f5dbei4ve

1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 5, 2, 5, 3, 2, 1, 5, 2, 7, 3, 2, 5, 7, 2, 7, 5, 2, 3, 7, 2, 5, 1, 2, 5, 3, 2, 11, 7, 2, 3, 11, 2, 13, 5, 2, 7, 3, 2, 3, 7, more...

integer, non-monotonic, +

a(n)=lpf(stern(n))
stern(n)=Stern-Brocot sequence
lpf(n)=least prime factor of n
n≥1
3 operations
Prime

Sequence 4vuj3dinq5a1m

1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 5, 2, 5, 3, 2, 1, 5, 2, 7, 3, 2, 5, 7, 2, 7, 5, 2, 3, 7, 2, 5, 1, 3, 5, 3, 2, 11, 7, 5, 3, 11, 2, 13, 5, 3, 7, 3, 2, 3, 7, more...

integer, non-monotonic, +

a(n)=gpf(stern(n))
stern(n)=Stern-Brocot sequence
gpf(n)=greatest prime factor of n
n≥1
3 operations
Prime

Sequence 4pmnba10tdooo

1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 5, 2, 5, 3, 3, 1, 5, 2, 7, 3, 3, 5, 7, 2, 3, 5, 2, 3, 7, 3, 5, 1, 5, 5, 3, 2, 11, 7, 5, 3, 11, 3, 13, 5, 3, 7, 9, 2, 3, 3, more...

integer, non-monotonic, +

a(n)=stern(gpf(n))
gpf(n)=greatest prime factor of n
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence ubthh4gqmr3nh

1, 1, 2, 1, 4, 3, 2, 3, 4, 1, 4, 3, 8, 5, 2, 7, 5, 8, 3, 4, 1, 6, 5, 9, 4, 7, 10, 3, 8, 5, 12, 7, 2, 9, 7, 12, 5, 8, 11, 3, 10, 7, 4, 5, 6, 1, 7, 6, 5, 14, more...

integer, non-monotonic, +

a(n)=stern(composite(n))
composite(n)=nth composite number
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence ixqvudtt542ec

1, 1, 3, 1, 4, 3, 4, 1, 7, 4, 6, 3, 6, 4, 7, 1, 6, 7, 8, 4, 15, 6, 8, 3, 8, 6, 15, 4, 8, 7, 6, 1, 12, 6, 13, 7, 12, 8, 18, 4, 12, 15, 14, 6, 28, 8, 13, 3, 13, 8, more...

integer, non-monotonic, +

a(n)=σ(stern(n))
stern(n)=Stern-Brocot sequence
σ(n)=divisor sum of n
n≥1
3 operations
Prime

Sequence fdji3xkdhoo5k

1, 1, 4, 1, 6, 4, 6, 1, 8, 6, 9, 4, 9, 6, 8, 1, 9, 8, 12, 6, 14, 9, 12, 4, 12, 9, 14, 6, 12, 8, 9, 1, 10, 9, 15, 8, 18, 12, 16, 6, 18, 14, 21, 9, 20, 12, 15, 4, 15, 12, more...

integer, non-monotonic, +

a(n)=composite(stern(n))
stern(n)=Stern-Brocot sequence
composite(n)=nth composite number
n≥1
3 operations
Prime

Sequence bg1403ulfke3p

1, 2, 1, 3, 2, 2, 1, 4, 5, 4, 2, 3, 3, 2, 2, 5, 4, 10, 3, 8, 1, 4, 2, 4, 5, 8, 3, 3, 4, 4, 1, 6, 2, 8, 2, 19, 7, 4, 3, 12, 8, 2, 5, 8, 10, 4, 2, 5, 10, 16, more...

integer, non-monotonic, +

a(n)=stern(σ(n))
σ(n)=divisor sum of n
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence pakpzsbcfmqjl

1, 2, 3, 3, 5, 5, 5, 7, 7, 7, 5, 11, 11, 13, 9, 13, 11, 9, 11, 13, 15, 13, 19, 17, 11, 19, 17, 21, 19, 13, 7, 13, 19, 23, 29, 25, 23, 25, 27, 31, 29, 31, 13, 13, 25, 23, 31, 17, 23, 27, more...

integer, non-monotonic, +, A261179

a(n)=stern(p(n))
p(n)=nth prime
stern(n)=Stern-Brocot sequence
n≥1
3 operations
Prime

Sequence mk5o303yvfsfe

1.6449340668, 1.2020569032, 1.2020569032, 1.0823232337, 1.2020569032, 1.0369277551, 1.0823232337, 1.0369277551, 1.2020569032, 1.017343062, 1.0369277551, 1.0083492774, 1.0823232337, 1.0083492774, 1.0369277551, 1.017343062, 1.2020569032, 1.0083492774, 1.017343062, 1.0020083928, 1.0369277551, 1.0009945751, 1.0083492774, 1.0020083928, 1.0823232337, more...

decimal, non-monotonic, +

a(n)=ζ(stern(n))
stern(n)=Stern-Brocot sequence
ζ(n)=Riemann Zeta
n≥0
3 operations
Prime

Sequence 0ra1agl5d4qyj

2, 2, 3, 2, 5, 3, 5, 2, 7, 5, 11, 3, 11, 5, 7, 2, 11, 7, 17, 5, 19, 11, 17, 3, 17, 11, 19, 5, 17, 7, 11, 2, 13, 11, 23, 7, 31, 17, 29, 5, 31, 19, 41, 11, 37, 17, 23, 3, 23, 17, more...

integer, non-monotonic, +

a(n)=p(stern(n))
stern(n)=Stern-Brocot sequence
p(n)=nth prime
n≥1
3 operations
Prime

Sequence wzrrtivhju5sg

14.1347251417, 21.0220396388, 21.0220396388, 25.0108575801, 21.0220396388, 30.4248761259, 25.0108575801, 30.4248761259, 21.0220396388, 32.9350615877, 30.4248761259, 37.5861781588, 25.0108575801, 37.5861781588, 30.4248761259, 32.9350615877, 21.0220396388, 37.5861781588, 32.9350615877, 43.3270732809, 30.4248761259, 48.0051508812, 37.5861781588, 43.3270732809, 25.0108575801, more...

decimal, non-monotonic, +

a(n)=Z(stern(n))
stern(n)=Stern-Brocot sequence
Z(n)=non trivial zeros of Zeta
n≥0
3 operations
Prime

Sequence atqz1c02x1lgj

-13.1347251417, -20.0220396388, -24.0108575801, -29.4248761259, -31.9350615877, -36.5861781588, -39.9187190121, -42.3270732809, -47.0051508812, -48.7738324777, -51.9703214777, -55.4462476971, -58.3470440026, -59.8317785246, -64.1125440481, -66.0798105295, -68.5464017112, -71.0671576745, -74.7046906991, -76.1448400689, -78.3373750202, -81.9103808541, -83.7354929805, -86.4252746131, -87.8091112076, more...

decimal, strictly-monotonic, -

a(n)=1-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence gk3on45hlm13f

-12.1347251417, -19.0220396388, -23.0108575801, -28.4248761259, -30.9350615877, -35.5861781588, -38.9187190121, -41.3270732809, -46.0051508812, -47.7738324777, -50.9703214777, -54.4462476971, -57.3470440026, -58.8317785246, -63.1125440481, -65.0798105295, -67.5464017112, -70.0671576745, -73.7046906991, -75.1448400689, -77.3373750202, -80.9103808541, -82.7354929805, -85.4252746131, -86.8091112076, more...

decimal, strictly-monotonic, -

a(n)=2-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence ppwxjigpml30n

-11.1347251417, -18.0220396388, -22.0108575801, -27.4248761259, -29.9350615877, -34.5861781588, -37.9187190121, -40.3270732809, -45.0051508812, -46.7738324777, -49.9703214777, -53.4462476971, -56.3470440026, -57.8317785246, -62.1125440481, -64.0798105295, -66.5464017112, -69.0671576745, -72.7046906991, -74.1448400689, -76.3373750202, -79.9103808541, -81.7354929805, -84.4252746131, -85.8091112076, more...

decimal, strictly-monotonic, -

a(n)=3-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence 3v4n22ncgzncp

-10.9931324881, -17.8804469852, -21.8692649266, -27.2832834723, -29.7934689341, -34.4445855052, -37.7771263586, -40.1854806273, -44.8635582276, -46.6322398241, -49.8287288241, -53.3046550435, -56.205451349, -57.690185871, -61.9709513945, -63.9382178759, -66.4048090576, -68.9255650209, -72.5630980455, -74.0032474153, -76.1957823667, -79.7687882005, -81.5939003269, -84.2836819595, -85.667518554, more...

decimal, strictly-monotonic, -

a(n)=π-Z(n)
π=3.141...
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence hooq10nhvchbd

-10.1347251417, -17.0220396388, -21.0108575801, -26.4248761259, -28.9350615877, -33.5861781588, -36.9187190121, -39.3270732809, -44.0051508812, -45.7738324777, -48.9703214777, -52.4462476971, -55.3470440026, -56.8317785246, -61.1125440481, -63.0798105295, -65.5464017112, -68.0671576745, -71.7046906991, -73.1448400689, -75.3373750202, -78.9103808541, -80.7354929805, -83.4252746131, -84.8091112076, more...

decimal, strictly-monotonic, -

a(n)=4-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence cqmb1ofbl1owo

-10, -9.3068528194, -8.9013877113, -9.3068528194, -8.3905620876, -10, -8.0540898509, -9.3068528194, -8.9013877113, -10, -7.6021047272, -10, -7.4350506425, -10, -10, -9.3068528194, -7.1667866559, -10, -7.0555610208, -10, -10, -10, -6.8645057841, -10, -8.3905620876, more...

decimal, non-monotonic, -

a(n)=Λ(n)-10
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence 1hpvnmk2mtt1n

-10, -9, -9, -8, -9, -8, -9, -7, -8, -8, -9, -7, -9, -8, -8, -6, -9, -7, -9, -7, -8, -8, -9, -6, -8, -8, -7, -7, -9, -7, -9, -5, -8, -8, -8, -6, -9, -8, -8, -6, -9, -7, -9, -7, -7, -8, -9, -5, -8, -7, more...

integer, non-monotonic, -

a(n)=Ω(n)-10
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence 531kthjzaqnhm

-9.1347251417, -16.0220396388, -20.0108575801, -25.4248761259, -27.9350615877, -32.5861781588, -35.9187190121, -38.3270732809, -43.0051508812, -44.7738324777, -47.9703214777, -51.4462476971, -54.3470440026, -55.8317785246, -60.1125440481, -62.0798105295, -64.5464017112, -67.0671576745, -70.7046906991, -72.1448400689, -74.3373750202, -77.9103808541, -79.7354929805, -82.4252746131, -83.8091112076, more...

decimal, strictly-monotonic, -

a(n)=5-Z(n)
Z(n)=non trivial zeros of Zeta
n≥0
4 operations
Prime

Sequence vhbotvpdgojnk

-9, -11, -11, -10, -11, -9, -11, -10, -10, -9, -11, -10, -11, -9, -9, -10, -11, -10, -11, -10, -9, -9, -11, -10, -10, -9, -10, -10, -11, -11, -11, -10, -9, -9, -9, -10, -11, -9, -9, -10, -11, -11, -11, -10, -10, -9, -11, -10, -10, -10, more...

integer, non-monotonic, -

a(n)=μ(n)-10
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence of5k45xlxoywl

-9, -11, -11, -9, -11, -9, -11, -11, -9, -9, -11, -11, -11, -9, -9, -9, -11, -11, -11, -11, -9, -9, -11, -9, -9, -9, -11, -11, -11, -11, -11, -11, -9, -9, -9, -9, -11, -9, -9, -9, -11, -11, -11, -11, -11, -9, -11, -11, -9, -11, more...

integer, non-monotonic, -

a(n)=λ(n)-10
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence utwrku4mn40q

-9, -9, -9, -8, -9, -9, -9, -7, -8, -9, -9, -8, -9, -9, -9, -5, -9, -8, -9, -8, -9, -9, -9, -7, -8, -9, -7, -8, -9, -9, -9, -3, -9, -9, -9, -6, -9, -9, -9, -7, -9, -9, -9, -8, -8, -9, -9, -5, -8, -8, more...

integer, non-monotonic, -

a(n)=agc(n)-10
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 1w3kesgurbqsm

-9, -9, -8, -8, -6, -8, -4, -6, -4, -6, 0, -6, 2, -4, -2, -2, 6, -4, 8, -2, 2, 0, 12, -2, 10, 2, 8, 2, 18, -2, 20, 6, 10, 6, 14, 2, 26, 8, 14, 6, 30, 2, 32, 10, 14, 12, 36, 6, 32, 10, more...

integer, non-monotonic, +-

a(n)=ϕ(n)-10
ϕ(n)=number of relative primes (Euler's totient)
n≥1
4 operations
Prime

Sequence xdhvhtny5plfc

-9, -8.3068528194, -7.9013877113, -8.3068528194, -7.3905620876, -9, -7.0540898509, -8.3068528194, -7.9013877113, -9, -6.6021047272, -9, -6.4350506425, -9, -9, -8.3068528194, -6.1667866559, -9, -6.0555610208, -9, -9, -9, -5.8645057841, -9, -7.3905620876, more...

decimal, non-monotonic, -

a(n)=Λ(n)-9
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime

Sequence 3j5b2lqvnco5j

-9, -8, -8, -7, -8, -7, -8, -6, -7, -7, -8, -6, -8, -7, -7, -5, -8, -6, -8, -6, -7, -7, -8, -5, -7, -7, -6, -6, -8, -6, -8, -4, -7, -7, -7, -5, -8, -7, -7, -5, -8, -6, -8, -6, -6, -7, -8, -4, -7, -6, more...

integer, non-monotonic, -

a(n)=Ω(n)-9
Ω(n)=max factorization terms
n≥1
4 operations
Prime

Sequence 1fcrhdaizsozj

-9, -8, -8, -7, -8, -6, -8, -6, -7, -6, -8, -4, -8, -6, -6, -5, -8, -4, -8, -4, -6, -6, -8, -2, -7, -6, -6, -4, -8, -2, -8, -4, -6, -6, -6, -1, -8, -6, -6, -2, -8, -2, -8, -4, -4, -6, -8, 0, -7, -4, more...

integer, non-monotonic, -

a(n)=τ(n)-10
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 3gumzpedcmrl

-9, -8, -7, -8, -5, -8, -3, -8, -7, -8, 1, -8, 3, -8, -7, -8, 7, -8, 9, -8, -7, -8, 13, -8, -5, -8, -7, -8, 19, -8, 21, -8, -7, -8, -5, -8, 27, -8, -7, -8, 31, -8, 33, -8, -7, -8, 37, -8, -3, -8, more...

integer, non-monotonic, +-

a(n)=lpf(n)-10
lpf(n)=least prime factor of n
n≥1
4 operations
Prime

[0] [1] [2] [3] [4] ... [6324]