Sequence Database

A database with 497817 machine generated integer and decimal sequences.

Displaying the first 100 results.

Sequence prf3m20mhvu2m

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, monotonic, +0, A000007

a(n)=floor(cos(sin(n)))
n≥0
4 operations
N
nSOf
a(n)=floor(sin(a(n-1)))
a(0)=1
n≥0
3 operations
Recursive
rSf
a(n)=μ(n*n)
μ(n)=Möbius function
n≥1
4 operations
Prime
nn*μ
a(n)=Ω(a(n-1))
a(0)=1
Ω(n)=max factorization terms
n≥0
2 operations
PrimeRecursive

Sequence ugfhjibzkmnhg

2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, monotonic, +0, A033322

a(n)=floor(2/n)
n≥1
4 operations
N
2n/f
a(n)=a(n-1)!-1
a(0)=2
n≥0
4 operations
Recursive
r!1-
a(n)=Ω(a(n-1))
a(0)=2
Ω(n)=max factorization terms
n≥0
2 operations
PrimeRecursive

Sequence yqcqonw3vwoec

0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, more...

integer, non-constant, non-monotonic, -0, A000493

a(n)=floor(sin(n))
n≥0
3 operations
N
nSf

Sequence peyn0olxy0mle

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime
nΛf

Sequence exaows4ocvzac

0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, more...

integer, non-constant, monotonic, +0, A000195

a(n)=floor(ln(n))
n≥1
3 operations
N
nlf

Sequence c2nklqeprztrf

0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -226, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -76, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, more...

integer, non-constant, non-monotonic, +-0, A000503

a(n)=floor(tan(n))
n≥0
3 operations
N
nWf

Sequence e2qbkst0bnmrh

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, non-monotonic, +0, A063524

a(n)=floor(sin(π/n))
Pi (3.141...)
n≥1
5 operations
N
πn/Sf
a(n)=a(n-1)*a(n-2)
a(0)=0
a(1)=1
n≥0
3 operations
Recursive
rs*
a(n)=τ(a(n-1))*a(n-2)
a(0)=0
a(1)=1
τ(n)=number of divisors of n
n≥0
4 operations
PrimeRecursive
rτs*

Sequence kjsr2d50fhgek

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, more...

integer, non-constant, periodic, non-monotonic, +0, A000035

a(n)=n%2
n≥0
3 operations
N
n2%
a(n)=floor(cos(a(n-1)))
a(0)=0
n≥0
3 operations
Recursive
rOf
a(n)=3-p(a(n-1))
a(0)=0
p(n)=nth prime
n≥0
4 operations
PrimeRecursive
3rp-

Sequence xlfybp0wshj5p

0, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, more...

decimal, non-constant, non-monotonic, +0

a(n)=cos(floor(a(n-1)))
a(0)=0
n≥0
3 operations
Recursive
rfO

Sequence xuixh51z1fzfi

0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, more...

integer, non-constant, monotonic, +0, A000196

a(n)=floor(sqrt(n))
n≥0
3 operations
N
nQf
a(n)=round(sqrt(n-a(n-1)))
a(0)=0
n≥0
5 operations
Recursive
nr-QR

Sequence 1ro0h5guok45c

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, more...

integer, non-constant, monotonic, +0

a(n)=round(sqrt(n))
n≥0
3 operations
N
nQR
a(n)=floor(sqrt(n+a(n-1)))
a(0)=0
n≥0
5 operations
Recursive
nr+Qf

Sequence hexbe3joutxph

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, more...

integer, non-constant, periodic, non-monotonic, +0, A010872

a(n)=n%3
n≥0
3 operations
N
n3%
a(n)=floor(sqrt(exp(tan(a(n-1)))))
a(0)=0
n≥0
5 operations
Recursive
rWeQf
a(n)=μ(a(n-1))+1
a(0)=0
μ(n)=Möbius function
n≥0
4 operations
PrimeRecursive
rμ1+

Sequence ubjlwpcnrzfzm

1, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, more...

integer, non-constant, non-monotonic, +-0, A000480

a(n)=floor(cos(n))
n≥0
3 operations
N
nOf

Sequence x1pra0juni4q

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, more...

integer, non-constant, periodic, non-monotonic, +0, A059841

a(n)=(n+1)%2
n≥0
5 operations
N
n1+2%
a(n)=floor(cos(a(n-1)))
a(0)=1
n≥0
3 operations
Recursive
rOf
a(n)=3-p(a(n-1))
a(0)=1
p(n)=nth prime
n≥0
4 operations
PrimeRecursive
3rp-

Sequence tpvdvy0yrc03n

1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, more...

decimal, non-constant, periodic, non-monotonic, +

a(n)=cos(floor(a(n-1)))
a(0)=1
n≥0
3 operations
Recursive
rfO

Sequence 5ntue2q1i345b

1, 0.8414709848, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, non-constant, monotonic, +0

a(n)=sin(floor(a(n-1)))
a(0)=1
n≥0
3 operations
Recursive
rfS

Sequence t4stn2utndg3p

1, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, more...

decimal, non-constant, monotonic, +

a(n)=tan(floor(a(n-1)))
a(0)=1
n≥0
3 operations
Recursive
rfW

Sequence pa3rugy4h3ozm

1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413, 1202604, 3269017, 8886110, 24154952, 65659969, 178482300, 485165195, 1318815734, 3584912846, 9744803446, 26489122129, 72004899337, more...

integer, non-constant, strictly-monotonic, +, A000149

a(n)=floor(exp(n))
n≥0
3 operations
N
nef

Sequence vicxz5axn2yro

2, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, non-monotonic, +-0

a(n)=floor(tan(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rWf

Sequence cebfoxm2n1xkd

2, -2.1850398633, 0.1425465431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(floor(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rfW

Sequence ribtvfzuitrkc

2, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, more...

integer, non-constant, non-monotonic, +-0

a(n)=floor(cos(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rOf

Sequence 42gfdue2f2irj

2, -0.4161468365, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, 0.5403023059, 1, more...

decimal, non-constant, non-monotonic, +-

a(n)=cos(floor(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rfO

Sequence 5shncxf4ukhle

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, monotonic, +0, A000038

a(n)=round(tan(exp(-n)))
n≥0
5 operations
N
n~eWR
a(n)=floor(sin(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rSf
a(n)=μ(n*n)*2
μ(n)=Möbius function
n≥1
6 operations
Prime
nn*μ2*

Sequence gry40z2pc1y0b

2, 0.9092974268, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

decimal, non-constant, monotonic, +0

a(n)=sin(floor(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rfS

Sequence rjl1vuns3hkzn

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, non-constant, monotonic, +, A054977

a(n)=ceil(2/n)
n≥1
4 operations
N
2n/T
a(n)=floor(sqrt(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rQf

Sequence kvrfzd4hh1h3c

2, 1.4142135624, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

decimal, non-constant, monotonic, +

a(n)=sqrt(floor(a(n-1)))
a(0)=2
n≥0
3 operations
Recursive
rfQ

Sequence gsdy0vnti2laf

-3, -1, -4, 0, -226, 0, 3, 0, 1, 0, -1, -1, 0, -2, -1, -1, -1, 3, 1, -4, 0, 0, 3, 1, -1, 0, -1, 0, -2, -1, 4, -2, -3, 0, 4, 0, -1, -1, 0, 0, -1, -3, -1, 4, -2, 1, 0, -1, 1, -1, more...

integer, non-constant, non-monotonic, +-0, A051512

a(n)=floor(tan(p(n)))
p(n)=nth prime
n≥0
4 operations
Prime
npWf

Sequence i2d3zanr4gyqd

-1, -3, -8, -21, -55, -149, -404, -1097, -2981, -8104, -22027, -59875, -162755, -442414, -1202605, -3269018, -8886111, -24154953, -65659970, -178482301, -485165196, -1318815735, -3584912847, -9744803447, -26489122130, -72004899338, more...

integer, non-constant, strictly-monotonic, -

a(n)=floor(-exp(n))
n≥0
4 operations
N
ne~f

Sequence c3ieu0y00y0bj

-1, -1, -1, 1, -1, 1, 1, 1, -1, -1, more...

integer, non-constant, non-monotonic, +-

a(n)=λ(floor(exp(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
nefλ

Sequence pefnf0jgc5qxj

-1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(-cos(n))
n≥0
4 operations
N
nO~f

Sequence 1q5ctcalykwep

-1, -1, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(cos(p(n)))
p(n)=nth prime
n≥0
4 operations
Prime
npOf

Sequence i1lo5tpw1wdln

-1, -1, 0, 0, 0, 1, 0, 0, -1, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(floor(exp(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
nefμ

Sequence kheo01dl1rhpe

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, non-constant, monotonic, +-0

a(n)=floor(ln(ln(n)))
n≥2
4 operations
N
nllf

Sequence 10bnbnc1dvdvi

0, -3.1415926536, -7.1415926536, -11.1415926536, -15.1415926536, -19.1415926536, -23.1415926536, -27.1415926536, -31.1415926536, -35.1415926536, -39.1415926536, -43.1415926536, -47.1415926536, -51.1415926536, -55.1415926536, -59.1415926536, -63.1415926536, -67.1415926536, -71.1415926536, -75.1415926536, -79.1415926536, -83.1415926536, -87.1415926536, -91.1415926536, -95.1415926536, -99.1415926536, -103.1415926536, -107.1415926536, -111.1415926536, -115.1415926536, -119.1415926536, -123.1415926536, -127.1415926536, -131.1415926536, -135.1415926536, -139.1415926536, -143.1415926536, -147.1415926536, -151.1415926536, -155.1415926536, -159.1415926536, -163.1415926536, -167.1415926536, -171.1415926536, -175.1415926536, -179.1415926536, -183.1415926536, -187.1415926536, -191.1415926536, -195.1415926536, more...

decimal, non-constant, strictly-monotonic, -0

a(n)=floor(a(n-1))-π
a(0)=0
Pi (3.141...)
n≥0
4 operations
Recursive
rfπ-

Sequence y5rg2qmzpx3jg

0, -2, 2, 0, -2, 3, 0, -1, 6, 0, -1, 225, 0, -1, -8, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 6, 0, -1, 75, 0, -1, -8, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, more...

integer, non-constant, non-monotonic, +-0

a(n)=floor(tan(-n))
n≥0
4 operations
N
n~Wf

Sequence de3esy3trwkxp

0, -1, -2, -2, -2, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4, -4, -5, -5, -5, -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, more...

integer, non-constant, monotonic, -0

a(n)=floor(-sqrt(n))
n≥0
4 operations
N
nQ~f
a(n)=round(-sqrt(n-a(n-1)))
a(0)=0
n≥0
6 operations
Recursive
nr-Q~R

Sequence r4xrwkohgecg

0, -1, -2, -2, -2, -2, -2, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, more...

integer, non-constant, monotonic, -0

a(n)=floor(-ln(n))
n≥1
4 operations
N
nl~f

Sequence ebb3irmiimzgh

0, -1, -2, -1, -2, 0, -2, -1, -2, 0, -3, 0, -3, 0, 0, -1, -3, 0, -3, 0, 0, 0, -4, 0, -2, 0, -2, 0, -4, 0, -4, -1, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, 0, 0, 0, -4, 0, -2, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(-Λ(n))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛ~f

Sequence kxn4ooznvhdlk

0, -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, -6, -6, -7, -7, -8, -8, -9, -9, -10, -10, -11, -11, -12, -12, -13, -13, -14, -14, -15, -15, -16, -16, -17, -17, -18, -18, -19, -19, -20, -20, -21, -21, -22, -22, -23, -23, -24, -24, -25, more...

integer, non-constant, monotonic, -0

a(n)=floor(-n/2)
n≥0
5 operations
N
n~2/f
a(n)=-n-a(n-1)
a(0)=0
n≥0
4 operations
Recursive
n~r-

Sequence 1gqfsyfvbipkl

0, -1, -1, -2, -2, -2, -2, -3, -3, -3, -3, -3, -3, -4, -4, -4, -4, -4, -4, -4, -4, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -7, -7, -7, -7, -7, -7, -7, more...

integer, non-constant, monotonic, -0

a(n)=round(-sqrt(n))
n≥0
4 operations
N
nQ~R
a(n)=floor(-sqrt(n+a(n-1)))
a(0)=0
n≥0
6 operations
Recursive
nr+Q~f

Sequence stn1cxh1hy5ae

0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, more...

integer, non-constant, monotonic, -0, A057428

a(n)=floor(-abs(sin(n)))
n≥0
5 operations
N
nS|~f
a(n)=-abs(a(n-1))!
a(0)=0
n≥0
4 operations
Recursive
r|!~

Sequence hgksxfgdmnfre

0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, 0, -1, 0, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(cos(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτOf

Sequence 1rzzogec11jh

0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(-n))
n≥0
4 operations
N
n~Sf

Sequence bby0timpinc1d

0, -1, -1, 0, -1, 0, -1, -1, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
nλSf

Sequence d2jup5sigy2ti

0, -1, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, 0, 0, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
nμSf

Sequence xttdhmbmgo1lo

0, -1, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, -0.5403023059, more...

decimal, non-constant, non-monotonic, -0

a(n)=-cos(floor(a(n-1)))
a(0)=0
n≥0
4 operations
Recursive
rfO~

Sequence ozck0dwq2nghi

0, -1, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, -0.3678794412, more...

decimal, non-constant, non-monotonic, -0

a(n)=-exp(floor(a(n-1)))
a(0)=0
n≥0
4 operations
Recursive
rfe~

Sequence ete3bzhzle24l

0, -1, 0, 0, -1, -1, 0, -1, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(cos(exp(n)))
n≥0
4 operations
N
neOf

Sequence co44hcqtza3vl

0, 0, -1, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 0, 0, -1, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, -1, 0, 0, -1, -1, -1, -1, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(cos(ϕ(n)))
ϕ(n)=Euler's totient function
n≥1
4 operations
Prime
nϕOf

Sequence wkhmzj3firusi

0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(cos(n)))
n≥0
4 operations
N
nOSf

Sequence qegcwuwjnaxcd

0, 0, -1, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, more...

integer, non-constant, periodic, non-monotonic, -0

a(n)=floor(sin(tan(n)))
n≥0
4 operations
N
nWSf

Sequence 3wcjkckgf0skm

0, 0, -1, 0, -1, 0, -1, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, -1, -1, -1, -1, 0, -1, 0, -1, 0, -1, -1, 0, 0, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(p(n)))
p(n)=nth prime
n≥0
4 operations
Prime
npSf

Sequence idsm5bivr2e1b

0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(cos(n!))
n≥0
4 operations
N
n!Of

Sequence bqbzz0fulp1ln

0, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(n!))
n≥0
4 operations
N
n!Sf

Sequence cjn5gexsdog4b

0, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, -1.5574077247, -1.5574077247, -1.5574077247, 0, 0, 0, 0, -1.5574077247, -1.5574077247, more...

decimal, non-constant, non-monotonic, -0

a(n)=tan(floor(sin(n)))
n≥0
4 operations
N
nSfW

Sequence 42svyo4byvlik

0, 0, 0, 0, -1, -1, 0, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(exp(n)))
n≥0
4 operations
N
neSf

Sequence 20yqzfhximqlb

0, 0, 0, 0, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 0, 0, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(ϕ(n)))
ϕ(n)=Euler's totient function
n≥1
4 operations
Prime
nϕSf

Sequence r4zvstup4plbn

0, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, -0.8414709848, -0.8414709848, -0.8414709848, 0, 0, 0, 0, -0.8414709848, -0.8414709848, more...

decimal, non-constant, non-monotonic, -0

a(n)=sin(floor(sin(n)))
n≥0
4 operations
N
nSfS

Sequence hzg5xjqzavu1e

0, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, -1, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτSf

Sequence efwtgrz04kzem

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, non-monotonic, -0, A258275

a(n)=floor(sin(sqrt(n)))
n≥0
4 operations
N
nQSf

Sequence e0muszptsc4ep

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, more...

integer, non-constant, non-monotonic, -0, A061126

a(n)=floor(sin(Ω(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩSf

Sequence azw31skpibywb

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, more...

integer, non-constant, monotonic, -0, A061126

a(n)=floor(sin(ln(n)))
n≥1
4 operations
N
nlSf

Sequence oy4fdwhwhvvad

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, more...

integer, non-constant, non-monotonic, -0, A061126

a(n)=floor(sin(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛSf

Sequence ogvwqe0grf0yg

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0, 1.0986122887, 0, 0, 0, 0, 0, 1.0986122887, 0, 1.0986122887, 0, 0, 0, 0, 0, 1.0986122887, 0, 0, 0, 1.0986122887, 0, 1.0986122887, 0, 0, 0, 1.0986122887, 0, 0, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(floor(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛfΛ

Sequence ijoirlgtl1rj

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, more...

integer, non-constant, monotonic, +0, A054899

a(n)=floor(n/10)
n≥0
4 operations
N
n10/f

Sequence osupob4yuo4ql

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, more...

integer, non-constant, monotonic, +0, A054898

a(n)=floor(n/9)
n≥0
4 operations
N
n9/f

Sequence j5p1mjiwf0ylg

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, more...

integer, non-constant, monotonic, +0, A054897

a(n)=floor(n/8)
n≥0
4 operations
N
n8/f

Sequence khpjeukdvd2dj

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(Λ(Ω(n)))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛf

Sequence 0mhocmop2jfzl

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, non-constant, monotonic, +0

a(n)=floor(ln(sqrt(n)))
n≥1
4 operations
N
nQlf
a(n)=a(n-1)^(7-n)
a(0)=0
n≥0
5 operations
Recursive
r7n-^

Sequence vfodn4rv1ejnp

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, more...

integer, non-constant, monotonic, +0, A132270

a(n)=floor(n/7)
n≥0
4 operations
N
n7/f

Sequence 5cc14iv44c0bd

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlf

Sequence 1csiyc0a2fqs

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, more...

integer, non-constant, monotonic, +0, A152467

a(n)=floor(n/6)
n≥0
4 operations
N
n6/f

Sequence uziproz30uome

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, more...

integer, non-constant, monotonic, +0, A002266

a(n)=floor(n/5)
n≥0
4 operations
N
n5/f

Sequence neye513wgk1og

0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(ln(ϕ(n)))
ϕ(n)=Euler's totient function
n≥1
4 operations
Prime
nϕlf

Sequence qxajx0kofi1me

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, more...

integer, non-constant, monotonic, +0, A002265

a(n)=floor(n/4)
n≥0
4 operations
N
n4/f

Sequence e0qiz3vtfm1cc

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, more...

integer, non-constant, monotonic, +0, A032615

a(n)=floor(n/π)
Pi (3.141...)
n≥0
4 operations
N
nπ/f

Sequence e5j2h3vrr0sf

0, 0, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.9459101491, 1.9459101491, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(floor(sqrt(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nQfΛ

Sequence febgyrdhdy1f

0, 0, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.3862943611, 1.3862943611, 1.3862943611, 1.3862943611, 1.3862943611, 1.3862943611, 1.3862943611, 1.3862943611, 1.3862943611, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.6094379124, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.9459101491, 1.9459101491, more...

decimal, non-constant, monotonic, +0

a(n)=ln(floor(sqrt(n)))
n≥1
4 operations
N
nQfl

Sequence x3r1iqnyl1bpj

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛf

Sequence lisu1oxwzfdci

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, more...

integer, non-constant, non-monotonic, +0, A107078

a(n)=floor(cos(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
nμOf

Sequence j5u0towdkytej

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlf

Sequence f0ncw20galbwh

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(floor(sqrt(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nQfΩ

Sequence g1oapuftv2mm

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, more...

integer, non-constant, monotonic, +0, A002264

a(n)=floor(n/3)
n≥0
4 operations
N
n3/f

Sequence 0iblnurbfviqc

0, 0, 0, 1, 3, 4, 6, 8, 10, 12, 15, 17, 19, 22, 25, more...

integer, non-constant, monotonic, +0

a(n)=floor(ln(n!))
n≥0
4 operations
N
n!lf

Sequence cv2n40eaqnunl

0, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.9092974268, 0, 0.9092974268, 0, 0, 0, 0.9092974268, 0, 0.9092974268, 0, 0, 0, 0.1411200081, 0, 0.8414709848, 0, 0.8414709848, 0, 0.1411200081, 0, 0.1411200081, 0, 0, 0, 0, 0, 0.1411200081, 0, 0, 0, 0.1411200081, 0, 0.1411200081, 0, 0, 0, 0.1411200081, 0, 0.8414709848, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(floor(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛfS

Sequence mxutm2mcgw4bi

0, 0, 0.8414709848, 0.8414709848, 0.8414709848, 0.8414709848, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(floor(ln(n)))
n≥1
4 operations
N
nlfS

Sequence re34siiccmu2h

0, 0, 1, 0, -26, 0, -3, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -26, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, more...

integer, non-constant, non-monotonic, +-0

a(n)=floor(tan(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛWf

Sequence ws4uuhpzllwno

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(floor(Λ(n)))
Λ(n)=Von Mangoldt's function
μ(n)=Möbius function
n≥1
4 operations
Prime
nΛfμ

Sequence env11m4hj2hsk

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0, A174275

a(n)=floor(sqrt(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛQf

Sequence pcxra1z541kck

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1.4142135624, 0, 1.4142135624, 0, 0, 0, 1.4142135624, 0, 1.4142135624, 0, 0, 0, 1.7320508076, 0, 1, 0, 1, 0, 1.7320508076, 0, 1.7320508076, 0, 0, 0, 0, 0, 1.7320508076, 0, 0, 0, 1.7320508076, 0, 1.7320508076, 0, 0, 0, 1.7320508076, 0, 1, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(floor(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛfQ

Sequence f1x4wzbbmhmwe

0, 0, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(floor(ln(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
nlfμ

Sequence byyvzwhxtnfnj

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, non-constant, monotonic, +0, A157928

a(n)=floor(sqrt(ln(n)))
n≥1
4 operations
N
nlQf
a(n)=a(n-1)!%n
a(0)=0
n≥0
4 operations
Recursive
r!n%

Sequence zznjlgxng3ate

0, 0, 1, 1, 1, 1, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, more...

decimal, non-constant, monotonic, +0

a(n)=sqrt(floor(ln(n)))
n≥1
4 operations
N
nlfQ

Sequence rqs0vzragjdkn

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, more...

integer, non-constant, monotonic, +0, A004526

a(n)=floor(n/2)
n≥0
4 operations
N
n2/f
a(n)=n-a(n-1)-1
a(0)=0
n≥0
5 operations
Recursive
nr-1-

Sequence kxxlxlu0wpf5p

0, 0, 1, 5, -26, -5, -3, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, non-monotonic, +-0

a(n)=floor(tan(ln(n)))
n≥1
4 operations
N
nlWf

Sequence g5l5wqrymmohe

0, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, -2.1850398633, 0, -2.1850398633, 0, 0, 0, -2.1850398633, 0, -2.1850398633, 0, 0, 0, -0.1425465431, 0, 1.5574077247, 0, 1.5574077247, 0, -0.1425465431, 0, -0.1425465431, 0, 0, 0, 0, 0, -0.1425465431, 0, 0, 0, -0.1425465431, 0, -0.1425465431, 0, 0, 0, -0.1425465431, 0, 1.5574077247, 0, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(floor(Λ(n)))
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΛfW

Sequence lmo3szfvcczpe

0, 0, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(floor(ln(n)))
n≥1
4 operations
N
nlfW

Sequence h5xosthvs1jtm

0, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, 0.5403023059, more...

decimal, non-constant, monotonic, +0

a(n)=cos(floor(a(n-1))!)
a(0)=0
n≥0
4 operations
Recursive
rf!O

Sequence 2xbsvrn1w2ycd

0, 0.5403023059, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

decimal, non-constant, monotonic, +0

a(n)=cos(floor(cos(a(n-1))))
a(0)=0
n≥0
4 operations
Recursive
rOfO

Sequence gqc2vqsem31kh

0, 0.6931471806, 1.9459101491, 2.9957322736, 3.9889840466, 4.9972122738, 5.9989365619, 6.9994224675, 7.9996785795, 8.9999896425, 9.9999788527, 10.9999976331, 11.9999951373, 12.9999991139, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, more...

decimal, non-constant, strictly-monotonic, +0

a(n)=ln(floor(exp(n)))
n≥0
4 operations
N
nefl