Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 78075. [0] [1] [2] [3] [4] ... [780]

Sequence ukvmslylk0yhh

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, more...

integer, monotonic, +, A008619

a(n)=n-a(n-1)
a(0)=1
n≥1
3 operations
Recursive
a(n)=floor(n/2)
n≥2
4 operations
Arithmetic
a(n)=∑[and(1, n)]
and(a,b)=bitwise and
∑(a)=partial sums of a
n≥1
4 operations
Bitwise
a(n)=∑[xor(1, a(n-1))]
a(0)=1
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=round(cosh(log(n)))
n≥1
4 operations
Trigonometric

Sequence v11fgdewsfsvc

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A023976

a(n)=floor(n/38)
n≥0
4 operations
Arithmetic
a(n)=floor(n/38)²
n≥0
5 operations
Power
a(n)=stern(floor(n/39))
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Recursive
a(n)=C(n, 38)%19
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=a(n-1)^(38-n)
a(0)=0
n≥0
5 operations
Recursive

Sequence y0skkbudcnrdp

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A052375

a(n)=floor(n/32)
n≥0
4 operations
Arithmetic
a(n)=stern(and(32, n))
and(a,b)=bitwise and
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Recursive
a(n)=tanh(and(32, n))
and(a,b)=bitwise and
n≥0
4 operations
Trigonometric
a(n)=and(32, n)/32
and(a,b)=bitwise and
n≥0
5 operations
Bitwise
a(n)=or(31, n)%31
or(a,b)=bitwise or
n≥0
5 operations
Divisibility

Sequence anp5szgxpx0nb

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A011745

a(n)=floor(n/31)
n≥0
4 operations
Arithmetic
a(n)=stern(and(32, n))
and(a,b)=bitwise and
stern(n)=Stern-Brocot sequence
n≥1
4 operations
Recursive
a(n)=tanh(and(32, n))
and(a,b)=bitwise and
n≥1
4 operations
Trigonometric
a(n)=and(32, n)/32
and(a,b)=bitwise and
n≥1
5 operations
Bitwise
a(n)=or(31, n)%31
or(a,b)=bitwise or
n≥1
5 operations
Divisibility

Sequence vnlrmtwoeqaig

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A023975

a(n)=floor(n/25)
n≥0
4 operations
Arithmetic
a(n)=floor(sqrt(n)/5)
n≥0
5 operations
Power
a(n)=stern(floor(n/26))
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Recursive
a(n)=C(n, 25)%5
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=a(n-1)^(25-n)
a(0)=0
n≥0
5 operations
Recursive

Sequence iqo2wjn4hg2un

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, more...

integer, monotonic, +, A054900

a(n)=floor(n/16)
n≥0
4 operations
Arithmetic
a(n)=and(48, n)/16
and(a,b)=bitwise and
n≥0
5 operations
Bitwise
a(n)=or(15, n)%5
or(a,b)=bitwise or
n≥0
5 operations
Divisibility
a(n)=ω(pt(and(48, n)))
and(a,b)=bitwise and
pt(n)=Pascals triangle by rows
ω(n)=number of distinct prime divisors of n
n≥0
5 operations
Prime
a(n)=floor(n/root(γ, 5))
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power

Sequence fpd5ib3lwuvyf

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, more...

integer, monotonic, +, A090620

a(n)=floor(n/13)
n≥0
4 operations
Arithmetic
a(n)=∑[char[lcm(n, 13)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=C(n, 13)%13
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=floor((n+a(n-1))/14)
a(0)=0
n≥1
6 operations
Recursive
a(n)=floor(n/exp(log2(6)))
n≥1
6 operations
Power

Sequence wqnoxeq5ratoh

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, more...

integer, monotonic, +, A064459

a(n)=floor(n/12)
n≥0
4 operations
Arithmetic
a(n)=∑[char[lcm(n, 12)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=floor((n+a(n-1))/13)
a(0)=0
n≥1
6 operations
Recursive
a(n)=floor(n/sqrt(exp(5)))
n≥1
6 operations
Power
a(n)=floor((n-ω(n))/12)
ω(n)=number of distinct prime divisors of n
n≥1
7 operations
Prime

Sequence etuhgb52onjpd

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, more...

integer, monotonic, +, A064458

a(n)=floor(n/11)
n≥0
4 operations
Arithmetic
a(n)=C(n, 11)%11
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=∑[char[lcm(n, 11)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=floor(n/root(γ, 4))
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power
a(n)=floor((n+a(n-1))/12)
a(0)=0
n≥1
6 operations
Recursive

Sequence uuh2g5lkrdn1p

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, more...

integer, monotonic, +, A054899

a(n)=floor(n/10)
n≥0
4 operations
Arithmetic
a(n)=floor(n/sqrt(97))
n≥0
5 operations
Power
a(n)=∑[char[lcm(n, 10)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=floor(xor(1, n)/10)
xor(a,b)=bitwise exclusive or
n≥0
6 operations
Bitwise
a(n)=floor((n+a(n-1))/11)
a(0)=0
n≥1
6 operations
Recursive

Sequence gvdis2jutlage

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, more...

integer, monotonic, +, A061217

a(n)=floor(n/10)
n≥1
4 operations
Arithmetic
a(n)=floor(n/sqrt(97))
n≥1
5 operations
Power
a(n)=floor(xor(1, n)/10)
xor(a,b)=bitwise exclusive or
n≥1
6 operations
Bitwise
a(n)=floor((n+a(n-1))/11)
a(0)=0
n≥2
6 operations
Recursive
a(n)=∑[C(n, lcm(n, 10))]
lcm(a,b)=least common multiple
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥1
6 operations
Combinatoric

Sequence xkc30mx3g1elh

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, more...

integer, monotonic, +, A054898

a(n)=floor(n/9)
n≥0
4 operations
Arithmetic
a(n)=floor(n/sqrt(78))
n≥0
5 operations
Power
a(n)=∑[char[lcm(n, 9)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=floor((n+a(n-1))/10)
a(0)=0
n≥1
6 operations
Recursive
a(n)=∑[char[9*stern(n)]]
stern(n)=Stern-Brocot sequence
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
6 operations
Recursive

Sequence myteev5kwyurj

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, more...

integer, monotonic, +, A054897

a(n)=floor(n/8)
n≥0
4 operations
Arithmetic
a(n)=and(56, n)/8
and(a,b)=bitwise and
n≥0
5 operations
Bitwise
a(n)=or(7, n)%7
or(a,b)=bitwise or
n≥0
5 operations
Divisibility
a(n)=floor(n/sqrt(62))
n≥0
5 operations
Power
a(n)=floor((n+a(n-1))/9)
a(0)=0
n≥1
6 operations
Recursive

Sequence 3gvyn3ryaayde

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, more...

integer, monotonic, +, A104407

a(n)=floor(n/8)
n≥1
4 operations
Arithmetic
a(n)=and(56, n)/8
and(a,b)=bitwise and
n≥1
5 operations
Bitwise
a(n)=or(7, n)%7
or(a,b)=bitwise or
n≥1
5 operations
Divisibility
a(n)=floor(n/sqrt(62))
n≥1
5 operations
Power
a(n)=∑[C(and(7, n), 7)]
and(a,b)=bitwise and
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence 2wh5oq4sw0uum

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, more...

integer, monotonic, +, A132270

a(n)=floor(n/7)
n≥0
4 operations
Arithmetic
a(n)=floor(n/sqrt(48))
n≥0
5 operations
Power
a(n)=∑[char[lcm(n, 7)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=∑[char[∑[or(7, n)]]]
or(a,b)=bitwise or
∑(a)=partial sums of a
char(a)=characteristic function of a (in range)
n≥0
6 operations
Bitwise
a(n)=floor((n+a(n-1))/8)
a(0)=0
n≥1
6 operations
Recursive

Sequence 3lybwm34gm1nd

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, more...

integer, monotonic, +, A152467

a(n)=floor(n/6)
n≥0
4 operations
Arithmetic
a(n)=floor(n/sqrt(35))
n≥0
5 operations
Power
a(n)=∑[char[lcm(n, 6)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=floor(xor(1, n)/6)
xor(a,b)=bitwise exclusive or
n≥0
6 operations
Bitwise
a(n)=floor((n+a(n-1))/7)
a(0)=0
n≥1
6 operations
Recursive

Sequence 1pzrt1brbvpqo

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, more...

integer, monotonic, +, A002266

a(n)=floor(n/5)
n≥0
4 operations
Arithmetic
a(n)=floor(n/sqrt(26))
n≥1
5 operations
Power
a(n)=∑[char[lcm(n, 5)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=∑[char[5+a(n-1)]]
a(0)=5
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=∑[char[5*stern(n)]]
stern(n)=Stern-Brocot sequence
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
6 operations
Recursive

Sequence ucgvqrx0u1tac

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, more...

integer, monotonic, +, A002265

a(n)=floor(n/4)
n≥0
4 operations
Arithmetic
a(n)=and(60, n)/4
and(a,b)=bitwise and
n≥0
5 operations
Bitwise
a(n)=floor(n/log(51))
n≥0
5 operations
Power
a(n)=∑[char[lcm(n, 4)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=∑[char[4+a(n-1)]]
a(0)=4
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence qvrfgamnumekh

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, more...

integer, monotonic, +, A002264

a(n)=floor(n/3)
n≥0
4 operations
Arithmetic
a(n)=floor(n/log(19))
n≥0
5 operations
Power
a(n)=∑[char[lcm(n, 3)]]
lcm(a,b)=least common multiple
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥1
5 operations
Divisibility
a(n)=∑[char[3+a(n-1)]]
a(0)=3
char(a)=characteristic function of a (in range)
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=floor(n/log(zetazero(1)))
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
6 operations
Prime

Sequence 3mssrddd33j3l

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, more...

integer, monotonic, +, A004526

a(n)=floor(n/2)
n≥0
4 operations
Arithmetic
a(n)=floor(sinh(log(n)))
n≥1
4 operations
Trigonometric
a(n)=∑[a(n-2)^a(n-1)]
a(0)=0
a(1)=0
∑(a)=partial sums of a
n≥0
4 operations
Recursive
a(n)=∑[C(a(n-2), a(n-1))]
a(0)=0
a(1)=0
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
4 operations
Combinatoric
a(n)=and(62, n)/2
and(a,b)=bitwise and
n≥0
5 operations
Bitwise

Sequence d3ww0hupuvitm

6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033326

a(n)=floor(6/n)
n≥1
4 operations
Arithmetic
a(n)=round((5/n)²)
n≥2
5 operations
Power
a(n)=round(6/P(n))
P(n)=partition numbers
n≥1
5 operations
Combinatoric
a(n)=floor(18/p(n))
p(n)=nth prime
n≥2
5 operations
Prime
a(n)=round(6/∑[stern(n)])
stern(n)=Stern-Brocot sequence
∑(a)=partial sums of a
n≥1
6 operations
Recursive

Sequence ifwghe5my5mwp

7, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033327

a(n)=floor(7/n)
n≥1
4 operations
Arithmetic
a(n)=floor(sqrt(50)/n)
n≥1
5 operations
Power
a(n)=floor(sqrt(zetazero(9))/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
6 operations
Prime
a(n)=floor(and(7, -9)/n)
and(a,b)=bitwise and
n≥1
7 operations
Bitwise
a(n)=floor(14/φ(6*n))
ϕ(n)=number of relative primes (Euler's totient)
n≥1
7 operations
Prime

Sequence ytbf3sx21l5di

8, 4, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033328

a(n)=floor(8/n)
n≥1
4 operations
Arithmetic
a(n)=floor(sqrt(65)/n)
n≥1
5 operations
Power
a(n)=round(8/∑[stern(n)])
stern(n)=Stern-Brocot sequence
∑(a)=partial sums of a
n≥1
6 operations
Recursive
a(n)=floor(and(8, -2)/n)
and(a,b)=bitwise and
n≥1
7 operations
Bitwise
a(n)=Δ[floor(8/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive

Sequence 1byu5owrxjkgb

9, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033329

a(n)=floor(9/n)
n≥1
4 operations
Arithmetic
a(n)=floor(sqrt(82)/n)
n≥1
5 operations
Power
a(n)=floor(and(9, -3)/n)
and(a,b)=bitwise and
n≥1
7 operations
Bitwise
a(n)=Δ[floor(9/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive
a(n)=floor(9/lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime

Sequence hmgw3xwv4uile

10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033330

a(n)=floor(10/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(log2(5))/n)
n≥1
6 operations
Power
a(n)=round(10/∑[pt(n)])
pt(n)=Pascals triangle by rows
∑(a)=partial sums of a
n≥2
6 operations
Combinatoric
a(n)=floor(and(10, -2)/n)
and(a,b)=bitwise and
n≥1
7 operations
Bitwise
a(n)=Δ[floor(10/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive

Sequence o114o5xdfgajf

11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033331

a(n)=floor(11/n)
n≥1
4 operations
Arithmetic
a(n)=floor(root(γ, 4)/n)
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power
a(n)=floor(11/(n-ω(n)))
ω(n)=number of distinct prime divisors of n
n≥2
7 operations
Prime
a(n)=Δ[floor(11/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive
a(n)=floor(11/lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime

Sequence tgqdd041rzvtm

12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033332

a(n)=floor(12/n)
n≥1
4 operations
Arithmetic
a(n)=floor(sqrt(exp(5))/n)
n≥1
6 operations
Power
a(n)=Δ[floor(12/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive
a(n)=floor(12/lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime
a(n)=floor(12/lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime

Sequence 1bni4agxjh12j

13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033333

a(n)=floor(13/n)
n≥1
4 operations
Arithmetic
a(n)=floor(5^ϕ/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power
a(n)=Δ[floor(13/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive
a(n)=floor(13/lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime
a(n)=floor(13/lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime

Sequence kk54mpohl5m2p

14, 7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033334

a(n)=floor(14/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(Khintchine)/n)
Khintchine=2.6854... (Khintchine)
n≥1
5 operations
Power
a(n)=floor(zetazero(0)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=Δ[floor(14/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive
a(n)=floor(14/lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime

Sequence 3ltj0btnz3yen

15, 7, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033335

a(n)=floor(15/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(e)/n)
e=2.7182... (Euler e)
n≥1
5 operations
Power
a(n)=floor(15/(n-ω(n)))
ω(n)=number of distinct prime divisors of n
n≥2
7 operations
Prime
a(n)=Δ[floor(15/n+a(n-1))]
a(0)=1
Δ(a)=differences of a
n≥0
7 operations
Recursive
a(n)=floor(15/lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
n≥1
7 operations
Prime

Sequence i2ressmpbjcw

16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033336

a(n)=floor(16/n)
n≥1
4 operations
Arithmetic
a(n)=floor(root(γ, 5)/n)
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power
a(n)=floor((4*λ(n))²/n)
λ(n)=Liouville's function
n≥1
8 operations
Prime
a(n)=floor(Δ[4+a(n-1)]²/n)
a(0)=1
Δ(a)=differences of a
n≥1
8 operations
Recursive

Sequence 15impgwcy4wkg

17, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033337

a(n)=floor(17/n)
n≥1
4 operations
Arithmetic
a(n)=floor(ϕ^6/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power
a(n)=floor(p(Δ[7*n])/n)
Δ(a)=differences of a
p(n)=nth prime
n≥1
8 operations
Prime

Sequence kcunqoayaigxo

18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033338

a(n)=floor(18/n)
n≥1
4 operations
Arithmetic
a(n)=floor(6^ϕ/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power

Sequence 5rj3fiwngmgle

19, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033339

a(n)=floor(19/n)
n≥1
4 operations
Arithmetic
a(n)=floor(3^e/n)
e=2.7182... (Euler e)
n≥1
6 operations
Power

Sequence qozkxolrrs2jc

20, 10, 6, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033340

a(n)=floor(20/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(3)/n)
n≥1
5 operations
Power

Sequence 3wjs0ypd1tr4h

21, 10, 7, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033341

a(n)=floor(21/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(1)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((1+exp(3))/n)
n≥1
7 operations
Power

Sequence jl1xfau5t5vc

22, 11, 7, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033342

a(n)=floor(22/n)
n≥1
4 operations
Arithmetic
a(n)=floor(root(γ, 6)/n)
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power

Sequence 1fuqvxjq4njxp

23, 11, 7, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033343

a(n)=floor(23/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(π)/n)
π Pi=3.1415... (Pi)
n≥1
5 operations
Power
a(n)=floor(p(τ(p(n)²)²)/n)
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
9 operations
Prime

Sequence fiuj2fhr1xa2n

24, 12, 8, 6, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033344

a(n)=floor(24/n)
n≥1
4 operations
Arithmetic
a(n)=floor((4+exp(3))/n)
n≥1
7 operations
Power

Sequence r2um0wgns3h5i

25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033345

a(n)=floor(25/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(2)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((5/sqrt(n))²)
n≥1
6 operations
Power
a(n)=floor((5*λ(n))²/n)
λ(n)=Liouville's function
n≥1
8 operations
Prime
a(n)=floor(Δ[5+a(n-1)]²/n)
a(0)=1
Δ(a)=differences of a
n≥1
8 operations
Recursive

Sequence rvlfbq4dcvl4p

26, 13, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033346

a(n)=floor(26/n)
n≥1
4 operations
Arithmetic
a(n)=floor((6+exp(3))/n)
n≥1
7 operations
Power

Sequence ezoyfdouj0kod

27, 13, 9, 6, 5, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033347

a(n)=floor(27/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(log2(10))/n)
n≥1
6 operations
Power

Sequence vgmwwp0ak3qsi

28, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033348

a(n)=floor(28/n)
n≥1
4 operations
Arithmetic
a(n)=floor(8^ϕ/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power

Sequence sstxfwrvwkwwl

29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033349

a(n)=floor(29/n)
n≥1
4 operations
Arithmetic
a(n)=floor(root(γ, 7)/n)
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power

Sequence qrlbcqpgfahtj

30, 15, 10, 7, 6, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033350

a(n)=floor(30/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(3)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((11/2)²/n)
n≥1
7 operations
Power

Sequence liqiwgpsna5bh

31, 15, 10, 7, 6, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033351

a(n)=floor(31/n)
n≥1
4 operations
Arithmetic
a(n)=floor(3^π/n)
π Pi=3.1415... (Pi)
n≥1
6 operations
Power

Sequence rncq3vrbez43p

32, 16, 10, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033352

a(n)=floor(32/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(4)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(6^log(7)/n)
n≥1
7 operations
Power

Sequence 05ggvinkxat0n

33, 16, 11, 8, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033353

a(n)=floor(33/n)
n≥1
4 operations
Arithmetic
a(n)=floor(sqrt(exp(7))/n)
n≥1
6 operations
Power

Sequence qukwq15socj0

34, 17, 11, 8, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033354

a(n)=floor(34/n)
n≥1
4 operations
Arithmetic
a(n)=floor(9^ϕ/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power

Sequence 1nt0tmdgyde1p

35, 17, 11, 8, 7, 5, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033355

a(n)=floor(35/n)
n≥1
4 operations
Arithmetic
a(n)=floor(sqrt(6)^4/n)
n≥1
7 operations
Power

Sequence lnyubvpza2foe

36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033356

a(n)=floor(36/n)
n≥1
4 operations
Arithmetic
a(n)=floor(root(γ, 8)/n)
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power
a(n)=floor((6*λ(n))²/n)
λ(n)=Liouville's function
n≥1
8 operations
Prime
a(n)=floor(Δ[6+a(n-1)]²/n)
a(0)=1
Δ(a)=differences of a
n≥1
8 operations
Recursive

Sequence gshpdql3tuxui

37, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033357

a(n)=floor(37/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(5)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(exp(5)/(4*n))
n≥1
7 operations
Power

Sequence mnaopvddracbe

38, 19, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033358

a(n)=floor(38/n)
n≥1
4 operations
Arithmetic

Sequence jadowolenkzog

39, 19, 13, 9, 7, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033359

a(n)=floor(39/n)
n≥1
4 operations
Arithmetic
a(n)=floor(4^sqrt(7)/n)
n≥1
7 operations
Power

Sequence kcaohtqdgpgao

40, 20, 13, 10, 8, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033360

a(n)=floor(40/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(6)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(2*exp(3)/n)
n≥1
7 operations
Power

Sequence fbirsk32ewzgn

41, 20, 13, 10, 8, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033361

a(n)=floor(41/n)
n≥1
4 operations
Arithmetic
a(n)=floor(10^ϕ/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power

Sequence fozu5jarjwr3e

42, 21, 14, 10, 8, 7, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033362

a(n)=floor(42/n)
n≥1
4 operations
Arithmetic
a(n)=floor((13/2)²/n)
n≥1
7 operations
Power

Sequence bsxkqqqz34k3p

43, 21, 14, 10, 8, 7, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033363

a(n)=floor(43/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(7)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(4^e/n)
e=2.7182... (Euler e)
n≥1
6 operations
Power

Sequence ec1hca2moa1mb

44, 22, 14, 11, 8, 7, 6, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033364

a(n)=floor(44/n)
n≥1
4 operations
Arithmetic
a(n)=floor(root(γ, 9)/n)
γ EulerGamma=0.5772... (Euler Gamma)
root(n,a)=the n-th root of a
n≥1
6 operations
Power

Sequence rajqdcwlpss0p

45, 22, 15, 11, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, more...

integer, monotonic, +, A033365

a(n)=floor(45/n)
n≥1
4 operations
Arithmetic

Sequence dltc4wj1vnhvi

46, 23, 15, 11, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, more...

integer, monotonic, +, A033366

a(n)=floor(46/n)
n≥1
4 operations
Arithmetic
a(n)=floor(ϕ^8/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power

Sequence jszpdms12xidf

47, 23, 15, 11, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, more...

integer, monotonic, +, A033367

a(n)=floor(47/n)
n≥1
4 operations
Arithmetic
a(n)=floor((exp(4)-7)/n)
n≥1
7 operations
Power

Sequence pyrxddkqd1oem

48, 24, 16, 12, 9, 8, 6, 6, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, more...

integer, monotonic, +, A033368

a(n)=floor(48/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(8)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((exp(4)-6)/n)
n≥1
7 operations
Power

Sequence p2kugg4wlt00h

49, 24, 16, 12, 9, 8, 7, 6, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, more...

integer, monotonic, +, A033369

a(n)=floor(49/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(9)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((exp(4)-5)/n)
n≥1
7 operations
Power
a(n)=floor((7*λ(n))²/n)
λ(n)=Liouville's function
n≥1
8 operations
Prime
a(n)=floor(Δ[7+a(n-1)]²/n)
a(0)=1
Δ(a)=differences of a
n≥1
8 operations
Recursive

Sequence pk1gmm5cjbwni

50, 25, 16, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033370

a(n)=floor(50/n)
n≥1
4 operations
Arithmetic
a(n)=floor((exp(4)-4)/n)
n≥1
7 operations
Power

Sequence ubednqkersamd

51, 25, 17, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033371

a(n)=floor(51/n)
n≥1
4 operations
Arithmetic
a(n)=floor((exp(4)-3)/n)
n≥1
7 operations
Power

Sequence jsdu2epfyos2i

52, 26, 17, 13, 10, 8, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033372

a(n)=floor(52/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(10)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((exp(4)-2)/n)
n≥1
7 operations
Power

Sequence 0cnw2ydemohvm

53, 26, 17, 13, 10, 8, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033373

a(n)=floor(53/n)
n≥1
4 operations
Arithmetic
a(n)=floor((exp(4)-1)/n)
n≥1
7 operations
Power

Sequence hnq0h0fjvvccd

54, 27, 18, 13, 10, 9, 7, 6, 6, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033374

a(n)=floor(54/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(4)/n)
n≥1
5 operations
Power

Sequence ouinwstt33duk

55, 27, 18, 13, 11, 9, 7, 6, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033375

a(n)=floor(55/n)
n≥1
4 operations
Arithmetic
a(n)=floor((1+exp(4))/n)
n≥1
7 operations
Power

Sequence qqq5md1mhlucp

56, 28, 18, 14, 11, 9, 8, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033376

a(n)=floor(56/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(11)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((2+exp(4))/n)
n≥1
7 operations
Power

Sequence cpfwvijiz4qaj

57, 28, 19, 14, 11, 9, 8, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033377

a(n)=floor(57/n)
n≥1
4 operations
Arithmetic
a(n)=floor((3+exp(4))/n)
n≥1
7 operations
Power

Sequence spzxmx2bllrwl

58, 29, 19, 14, 11, 9, 8, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033378

a(n)=floor(58/n)
n≥1
4 operations
Arithmetic
a(n)=floor((4+exp(4))/n)
n≥1
7 operations
Power

Sequence 550vfu01fd3le

59, 29, 19, 14, 11, 9, 8, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033379

a(n)=floor(59/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(12)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((5+exp(4))/n)
n≥1
7 operations
Power

Sequence bdtvvdeaumkuo

60, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033380

a(n)=floor(60/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(13)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(3*exp(3)/n)
n≥1
7 operations
Power

Sequence eveywkykpstdf

61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033381

a(n)=floor(61/n)
n≥1
4 operations
Arithmetic
a(n)=floor((7+exp(4))/n)
n≥1
7 operations
Power

Sequence lszozhu21n0rg

62, 31, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033382

a(n)=floor(62/n)
n≥1
4 operations
Arithmetic

Sequence liicx5ljihxbd

63, 31, 21, 15, 12, 10, 9, 7, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033383

a(n)=floor(63/n)
n≥1
4 operations
Arithmetic

Sequence csnlcjt5r14ji

64, 32, 21, 16, 12, 10, 9, 8, 7, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033384

a(n)=floor(64/n)
n≥1
4 operations
Arithmetic
a(n)=floor((-2)^6/n)
n≥1
7 operations
Power
a(n)=floor((8*λ(n))²/n)
λ(n)=Liouville's function
n≥1
8 operations
Prime
a(n)=floor(Δ[-a(n-1)]^6/n)
a(0)=1
Δ(a)=differences of a
n≥1
8 operations
Recursive

Sequence beyrnlxuxh02g

65, 32, 21, 16, 13, 10, 9, 8, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033385

a(n)=floor(65/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(14)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(6^(7/3)/n)
n≥1
8 operations
Power

Sequence pejw4vamcrx3n

66, 33, 22, 16, 13, 11, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033386

a(n)=floor(66/n)
n≥1
4 operations
Arithmetic

Sequence dvhpmyn50musd

67, 33, 22, 16, 13, 11, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033387

a(n)=floor(67/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(15)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(exp(6)/(6*n))
n≥1
7 operations
Power

Sequence j2lmrszrcjp3

68, 34, 22, 17, 13, 11, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033388

a(n)=floor(68/n)
n≥1
4 operations
Arithmetic

Sequence 2zwwp40hh5exn

69, 34, 23, 17, 13, 11, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033389

a(n)=floor(69/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(16)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor((7/3)^5/n)
n≥1
8 operations
Power

Sequence mpkn5dshafhtl

70, 35, 23, 17, 14, 11, 10, 8, 7, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033390

a(n)=floor(70/n)
n≥1
4 operations
Arithmetic
a(n)=floor(5^sqrt(7)/n)
n≥1
7 operations
Power

Sequence vdttxvmbljtzn

71, 35, 23, 17, 14, 11, 10, 8, 7, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033391

a(n)=floor(71/n)
n≥1
4 operations
Arithmetic

Sequence vcccsweoqnl5i

72, 36, 24, 18, 14, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033392

a(n)=floor(72/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(17)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime

Sequence cd3x0oov2engn

73, 36, 24, 18, 14, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033393

a(n)=floor(73/n)
n≥1
4 operations
Arithmetic

Sequence 1w5jghcf4nsre

74, 37, 24, 18, 14, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033394

a(n)=floor(74/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(5)/(2*n))
n≥1
7 operations
Power

Sequence 0kmas0oamhrdm

75, 37, 25, 18, 15, 12, 10, 9, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033395

a(n)=floor(75/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(18)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime

Sequence yndxlt2nlgrgf

76, 38, 25, 19, 15, 12, 10, 9, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033396

a(n)=floor(76/n)
n≥1
4 operations
Arithmetic
a(n)=floor(ϕ^9/n)
ϕ GoldenRatio=1.618... (Golden Ratio)
n≥1
6 operations
Power

Sequence b12umzu5fmp3g

77, 38, 25, 19, 15, 12, 11, 9, 8, 7, 7, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033397

a(n)=floor(77/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(19)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(4^π/n)
π Pi=3.1415... (Pi)
n≥1
6 operations
Power

Sequence hholhuj12h2fg

78, 39, 26, 19, 15, 13, 11, 9, 8, 7, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033398

a(n)=floor(78/n)
n≥1
4 operations
Arithmetic

Sequence t2ttlmf3niadb

79, 39, 26, 19, 15, 13, 11, 9, 8, 7, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033399

a(n)=floor(79/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(20)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime
a(n)=floor(5^e/n)
e=2.7182... (Euler e)
n≥1
6 operations
Power

Sequence 20ietnnnzvo3

80, 40, 26, 20, 16, 13, 11, 10, 8, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033400

a(n)=floor(80/n)
n≥1
4 operations
Arithmetic
a(n)=floor(exp(3)/(n/4))
n≥1
7 operations
Power

Sequence 5ybczuy24tysi

81, 40, 27, 20, 16, 13, 11, 10, 9, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033401

a(n)=floor(81/n)
n≥1
4 operations
Arithmetic
a(n)=floor((-3)^4/n)
n≥1
7 operations
Power
a(n)=floor((9*λ(n))²/n)
λ(n)=Liouville's function
n≥1
8 operations
Prime

Sequence btptmjyrg2xg

82, 41, 27, 20, 16, 13, 11, 10, 9, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033402

a(n)=floor(82/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(21)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime

Sequence h42ztoa2lzaxk

83, 41, 27, 20, 16, 13, 11, 10, 9, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033403

a(n)=floor(83/n)
n≥1
4 operations
Arithmetic

Sequence ngocfpgmniq3j

84, 42, 28, 21, 16, 14, 12, 10, 9, 8, 7, 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033404

a(n)=floor(84/n)
n≥1
4 operations
Arithmetic
a(n)=floor(zetazero(22)/n)
zetazero(n)=non trivial zeros of Riemann zeta
n≥1
5 operations
Prime

Sequence 2y2vdtiat1kbk

85, 42, 28, 21, 17, 14, 12, 10, 9, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, monotonic, +, A033405

a(n)=floor(85/n)
n≥1
4 operations
Arithmetic

[0] [1] [2] [3] [4] ... [780]