Sequence Database

A database with 899757 machine generated integer and decimal sequences.

Displaying result 0-99 of total 33754. [0] [1] [2] [3] [4] ... [337]

Sequence apkm4drbhxu1k

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence 2d4ccxymyiqf

-1, -1, -1, -2, -1, -1, -1, -3, -2, -1, -1, -2, -1, -1, -1, -5, -1, -2, -1, -2, -1, -1, -1, -3, -2, -1, -3, -2, -1, -1, -1, -7, -1, -1, -1, -4, -1, -1, -1, -3, -1, -1, -1, -2, -2, -1, -1, -5, -2, -2, more...

integer, non-monotonic, -

a(n)=-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence y1aui2jq2wetp

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(n²)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence xjm3qbbrnrthp

1, 1, 1, 4, 1, 1, 1, 9, 4, 1, 1, 4, 1, 1, 1, 25, 1, 4, 1, 4, 1, 1, 1, 9, 4, 1, 9, 4, 1, 1, 1, 49, 1, 1, 1, 16, 1, 1, 1, 9, 1, 1, 1, 4, 4, 1, 1, 25, 4, 4, more...

integer, non-monotonic, +

a(n)=agc(n)²
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence pcvjzcnepnvhl

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, more...

integer, non-monotonic, +

a(n)=stern(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
stern(n)=Stern-Brocot sequence
n≥0
3 operations
Prime

Sequence 32edp0oaxoo4

1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 3, 1, 3, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(stern(n))
stern(n)=Stern-Brocot sequence
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence utwrku4mn40q

-9, -9, -9, -8, -9, -9, -9, -7, -8, -9, -9, -8, -9, -9, -9, -5, -9, -8, -9, -8, -9, -9, -9, -7, -8, -9, -7, -8, -9, -9, -9, -3, -9, -9, -9, -6, -9, -9, -9, -7, -9, -9, -9, -8, -8, -9, -9, -5, -8, -8, more...

integer, non-monotonic, -

a(n)=agc(n)-10
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 2vuvgk0p45rcm

-8, -8, -8, -7, -8, -8, -8, -6, -7, -8, -8, -7, -8, -8, -8, -4, -8, -7, -8, -7, -8, -8, -8, -6, -7, -8, -6, -7, -8, -8, -8, -2, -8, -8, -8, -5, -8, -8, -8, -6, -8, -8, -8, -7, -7, -8, -8, -4, -7, -7, more...

integer, non-monotonic, -

a(n)=agc(n)-9
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence tua4q532kkhuc

-7, -7, -7, -6, -7, -7, -7, -5, -6, -7, -7, -6, -7, -7, -7, -3, -7, -6, -7, -6, -7, -7, -7, -5, -6, -7, -5, -6, -7, -7, -7, -1, -7, -7, -7, -4, -7, -7, -7, -5, -7, -7, -7, -6, -6, -7, -7, -3, -6, -6, more...

integer, non-monotonic, -

a(n)=agc(n)-8
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence pawktqu11dnjl

-6, -6, -6, -5, -6, -6, -6, -4, -5, -6, -6, -5, -6, -6, -6, -2, -6, -5, -6, -5, -6, -6, -6, -4, -5, -6, -4, -5, -6, -6, -6, 0, -6, -6, -6, -3, -6, -6, -6, -4, -6, -6, -6, -5, -5, -6, -6, -2, -5, -5, more...

integer, non-monotonic, -

a(n)=agc(n)-7
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence l2w4tk0gawnrd

-5, -5, -5, -4, -5, -5, -5, -3, -4, -5, -5, -4, -5, -5, -5, -1, -5, -4, -5, -4, -5, -5, -5, -3, -4, -5, -3, -4, -5, -5, -5, 1, -5, -5, -5, -2, -5, -5, -5, -3, -5, -5, -5, -4, -4, -5, -5, -1, -4, -4, more...

integer, non-monotonic, +-

a(n)=agc(n)-6
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence cc4bfjoeckprl

-4, -4, -4, -3, -4, -4, -4, -2, -3, -4, -4, -3, -4, -4, -4, 0, -4, -3, -4, -3, -4, -4, -4, -2, -3, -4, -2, -3, -4, -4, -4, 2, -4, -4, -4, -1, -4, -4, -4, -2, -4, -4, -4, -3, -3, -4, -4, 0, -3, -3, more...

integer, non-monotonic, +-

a(n)=agc(n)-5
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ktflzu5eajznp

-3, -3, -3, -2, -3, -3, -3, -1, -2, -3, -3, -2, -3, -3, -3, 1, -3, -2, -3, -2, -3, -3, -3, -1, -2, -3, -1, -2, -3, -3, -3, 3, -3, -3, -3, 0, -3, -3, -3, -1, -3, -3, -3, -2, -2, -3, -3, 1, -2, -2, more...

integer, non-monotonic, +-

a(n)=agc(n)-4
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence p1fgkz5oky55k

-2.1415926536, -2.1415926536, -2.1415926536, -1.1415926536, -2.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -1.1415926536, -2.1415926536, -2.1415926536, -1.1415926536, -2.1415926536, -2.1415926536, -2.1415926536, 1.8584073464, -2.1415926536, -1.1415926536, -2.1415926536, -1.1415926536, -2.1415926536, -2.1415926536, -2.1415926536, -0.1415926536, -1.1415926536, more...

decimal, non-monotonic, +-

a(n)=agc(n)-π
agc(n)=number of factorizations into prime powers (abelian group count)
π=3.141...
n≥0
4 operations
Prime

Sequence nkcftlra1es3i

-2, -2, -2, -1, -2, -2, -2, 0, -1, -2, -2, -1, -2, -2, -2, 2, -2, -1, -2, -1, -2, -2, -2, 0, -1, -2, 0, -1, -2, -2, -2, 4, -2, -2, -2, 1, -2, -2, -2, 0, -2, -2, -2, -1, -1, -2, -2, 2, -1, -1, more...

integer, non-monotonic, +-

a(n)=agc(n)-3
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence exavyizlv0r0l

-1, -1, -1, 0, -1, -1, -1, 1, 0, -1, -1, 0, -1, -1, -1, 3, -1, 0, -1, 0, -1, -1, -1, 1, 0, -1, 1, 0, -1, -1, -1, 5, -1, -1, -1, 2, -1, -1, -1, 1, -1, -1, -1, 0, 0, -1, -1, 3, 0, 0, more...

integer, non-monotonic, +-

a(n)=agc(n)-2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence viyy2tyzxfyfm

0, 0, 0, -1, 0, 0, 0, -2, -1, 0, 0, -1, 0, 0, 0, -4, 0, -1, 0, -1, 0, 0, 0, -2, -1, 0, -2, -1, 0, 0, 0, -6, 0, 0, 0, -3, 0, 0, 0, -2, 0, 0, 0, -1, -1, 0, 0, -4, -1, -1, more...

integer, non-monotonic, -

a(n)=1-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence jbrrsw410rdj

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 4, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(n)-1
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence gtmtdwft1a1td

0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.3, 0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.5, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 0.1, 0.3, 0.2, more...

decimal, non-monotonic, +

a(n)=agc(n)/10
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence qtkpf5kpqj5rg

0.1111111111, 0.1111111111, 0.1111111111, 0.2222222222, 0.1111111111, 0.1111111111, 0.1111111111, 0.3333333333, 0.2222222222, 0.1111111111, 0.1111111111, 0.2222222222, 0.1111111111, 0.1111111111, 0.1111111111, 0.5555555556, 0.1111111111, 0.2222222222, 0.1111111111, 0.2222222222, 0.1111111111, 0.1111111111, 0.1111111111, 0.3333333333, 0.2222222222, more...

decimal, non-monotonic, +

a(n)=agc(n)/9
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence a1uu5jhjnwuzo

0.125, 0.125, 0.125, 0.25, 0.125, 0.125, 0.125, 0.375, 0.25, 0.125, 0.125, 0.25, 0.125, 0.125, 0.125, 0.625, 0.125, 0.25, 0.125, 0.25, 0.125, 0.125, 0.125, 0.375, 0.25, more...

decimal, non-monotonic, +

a(n)=agc(n)/8
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 1fuluzqey4idf

0.1428571429, 0.1428571429, 0.1428571429, 0.2857142857, 0.1428571429, 0.1428571429, 0.1428571429, 0.4285714286, 0.2857142857, 0.1428571429, 0.1428571429, 0.2857142857, 0.1428571429, 0.1428571429, 0.1428571429, 0.7142857143, 0.1428571429, 0.2857142857, 0.1428571429, 0.2857142857, 0.1428571429, 0.1428571429, 0.1428571429, 0.4285714286, 0.2857142857, more...

decimal, non-monotonic, +

a(n)=agc(n)/7
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence rghvb0y5yjuwl

0.1666666667, 0.1666666667, 0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667, 0.5, 0.3333333333, 0.1666666667, 0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667, 0.8333333333, 0.1666666667, 0.3333333333, 0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667, 0.5, 0.3333333333, more...

decimal, non-monotonic, +

a(n)=agc(n)/6
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence aefmvemkpvn3e

0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.6, 0.4, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 1, 0.2, 0.4, 0.2, 0.4, 0.2, 0.2, 0.2, 0.6, 0.4, more...

decimal, non-monotonic, +

a(n)=agc(n)/5
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence pqibqry4vw51e

0.25, 0.25, 0.25, 0.5, 0.25, 0.25, 0.25, 0.75, 0.5, 0.25, 0.25, 0.5, 0.25, 0.25, 0.25, 1.25, 0.25, 0.5, 0.25, 0.5, 0.25, 0.25, 0.25, 0.75, 0.5, more...

decimal, non-monotonic, +

a(n)=agc(n)/4
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence erngr5w53bl2p

0.3183098862, 0.3183098862, 0.3183098862, 0.6366197724, 0.3183098862, 0.3183098862, 0.3183098862, 0.9549296586, 0.6366197724, 0.3183098862, 0.3183098862, 0.6366197724, 0.3183098862, 0.3183098862, 0.3183098862, 1.5915494309, 0.3183098862, 0.6366197724, 0.3183098862, 0.6366197724, 0.3183098862, 0.3183098862, 0.3183098862, 0.9549296586, 0.6366197724, more...

decimal, non-monotonic, +

a(n)=agc(n)/π
agc(n)=number of factorizations into prime powers (abelian group count)
π=3.141...
n≥0
4 operations
Prime

Sequence 4coxxt4yhrphb

0.3333333333, 0.3333333333, 0.3333333333, 0.6666666667, 0.3333333333, 0.3333333333, 0.3333333333, 1, 0.6666666667, 0.3333333333, 0.3333333333, 0.6666666667, 0.3333333333, 0.3333333333, 0.3333333333, 1.6666666667, 0.3333333333, 0.6666666667, 0.3333333333, 0.6666666667, 0.3333333333, 0.3333333333, 0.3333333333, 1, 0.6666666667, more...

decimal, non-monotonic, +

a(n)=agc(n)/3
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence zlif5gbayubfd

0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1.5, 1, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 2.5, 0.5, 1, 0.5, 1, 0.5, 0.5, 0.5, 1.5, 1, more...

decimal, non-monotonic, +

a(n)=agc(n)/2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence szoh4pvikwnzd

1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 0, 1, 1, 1, -3, 1, 0, 1, 0, 1, 1, 1, -1, 0, 1, -1, 0, 1, 1, 1, -5, 1, 1, 1, -2, 1, 1, 1, -1, 1, 1, 1, 0, 0, 1, 1, -3, 0, 0, more...

integer, non-monotonic, +-

a(n)=2-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence xyqhcy3mgd5ri

1, 1, 1, 0.5, 1, 1, 1, 0.3333333333, 0.5, 1, 1, 0.5, 1, 1, 1, 0.2, 1, 0.5, 1, 0.5, 1, 1, 1, 0.3333333333, 0.5, more...

decimal, non-monotonic, +

a(n)=1/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 0d3dp3fmhxwtb

1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(10*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3jnwtnxlnz2oj

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, more...

integer, non-monotonic, +, A101871

a(n)=agc(2*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence nskvri40dcsbj

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=agc(6*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ncstblpqsgkzi

1, 1, 1, 2, 1, 1, 1, 11, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 3, 7, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(9*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence lessg1voyn4cl

1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(4+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ig5xqussdecgf

1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 5, 1, 1, 7, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 1, 2, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(5*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 33p0sjgqz1h1k

1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, more...

integer, non-monotonic, +, A101873

a(n)=agc(4*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence bw1jn1d0apxbl

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, more...

integer, non-monotonic, +

a(n)=agc(1+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence js1jebxt1pchh

1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(9+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 4tfpmaax5cg0b

1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=agc(5+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence x1l3keely0wzg

1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(2+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence yrkky1f55m2sb

1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 11, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(3*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence jpt5ahcprlx4k

1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(10+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 1miawf42iwsoi

1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(8*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence umh1wwewnm5af

1, 3, 1, 1, 1, 4, 1, 2, 1, 11, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 5, 2, 5, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, 2, 1, 1, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(7*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 1j0wmurnz2mjb

1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(6+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence w1viopisabd0

2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=agc(3+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ojrdwymn13tnl

2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(8+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence x3abbgyqtiy5g

2, 2, 2, 1, 2, 2, 2, 0, 1, 2, 2, 1, 2, 2, 2, -2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 0, 1, 2, 2, 2, -4, 2, 2, 2, -1, 2, 2, 2, 0, 2, 2, 2, 1, 1, 2, 2, -2, 1, 1, more...

integer, non-monotonic, +-

a(n)=3-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence p0epo5n3ff1dl

2, 2, 2, 1, 2, 2, 2, 0.6666666667, 1, 2, 2, 1, 2, 2, 2, 0.4, 2, 1, 2, 1, 2, 2, 2, 0.6666666667, 1, more...

decimal, non-monotonic, +

a(n)=2/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence cnd1wxymh5eqc

2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 6, 2, 3, 2, 3, 2, 2, 2, 4, 3, 2, 4, 3, 2, 2, 2, 8, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 3, 3, more...

integer, non-monotonic, +

a(n)=1+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence mn21o1kuoay1l

2, 2, 2, 4, 2, 2, 2, 6, 4, 2, 2, 4, 2, 2, 2, 10, 2, 4, 2, 4, 2, 2, 2, 6, 4, 2, 6, 4, 2, 2, 2, 14, 2, 2, 2, 8, 2, 2, 2, 6, 2, 2, 2, 4, 4, 2, 2, 10, 4, 4, more...

integer, non-monotonic, +

a(n)=2*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence byambjsxodhqf

2.1415926536, 2.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 2.1415926536, 2.1415926536, 0.1415926536, 1.1415926536, 2.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 2.1415926536, 2.1415926536, -1.8584073464, 2.1415926536, 1.1415926536, 2.1415926536, 1.1415926536, 2.1415926536, 2.1415926536, 2.1415926536, 0.1415926536, 1.1415926536, more...

decimal, non-monotonic, +-

a(n)=π-agc(n)
π=3.141...
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence d2ocva1hzkld

3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=agc(7+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence a0cx4uihvwmfm

3, 3, 3, 1.5, 3, 3, 3, 1, 1.5, 3, 3, 1.5, 3, 3, 3, 0.6, 3, 1.5, 3, 1.5, 3, 3, 3, 1, 1.5, more...

decimal, non-monotonic, +

a(n)=3/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence hxihwqgio3yue

3, 3, 3, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 3, -1, 3, 2, 3, 2, 3, 3, 3, 1, 2, 3, 1, 2, 3, 3, 3, -3, 3, 3, 3, 0, 3, 3, 3, 1, 3, 3, 3, 2, 2, 3, 3, -1, 2, 2, more...

integer, non-monotonic, +-

a(n)=4-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence aoppv0gyj4d5

3, 3, 3, 4, 3, 3, 3, 5, 4, 3, 3, 4, 3, 3, 3, 7, 3, 4, 3, 4, 3, 3, 3, 5, 4, 3, 5, 4, 3, 3, 3, 9, 3, 3, 3, 6, 3, 3, 3, 5, 3, 3, 3, 4, 4, 3, 3, 7, 4, 4, more...

integer, non-monotonic, +

a(n)=2+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence l0skgkvtrbuii

3, 3, 3, 6, 3, 3, 3, 9, 6, 3, 3, 6, 3, 3, 3, 15, 3, 6, 3, 6, 3, 3, 3, 9, 6, 3, 9, 6, 3, 3, 3, 21, 3, 3, 3, 12, 3, 3, 3, 9, 3, 3, 3, 6, 6, 3, 3, 15, 6, 6, more...

integer, non-monotonic, +

a(n)=3*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence u3fhxjfb5fzgk

3.1415926536, 3.1415926536, 3.1415926536, 1.5707963268, 3.1415926536, 3.1415926536, 3.1415926536, 1.0471975512, 1.5707963268, 3.1415926536, 3.1415926536, 1.5707963268, 3.1415926536, 3.1415926536, 3.1415926536, 0.6283185307, 3.1415926536, 1.5707963268, 3.1415926536, 1.5707963268, 3.1415926536, 3.1415926536, 3.1415926536, 1.0471975512, 1.5707963268, more...

decimal, non-monotonic, +

a(n)=π/agc(n)
π=3.141...
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence cqykanm0ajghf

3.1415926536, 3.1415926536, 3.1415926536, 6.2831853072, 3.1415926536, 3.1415926536, 3.1415926536, 9.4247779608, 6.2831853072, 3.1415926536, 3.1415926536, 6.2831853072, 3.1415926536, 3.1415926536, 3.1415926536, 15.7079632679, 3.1415926536, 6.2831853072, 3.1415926536, 6.2831853072, 3.1415926536, 3.1415926536, 3.1415926536, 9.4247779608, 6.2831853072, more...

decimal, non-monotonic, +

a(n)=π*agc(n)
π=3.141...
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 2fr4te35yuiac

4, 4, 4, 2, 4, 4, 4, 1.3333333333, 2, 4, 4, 2, 4, 4, 4, 0.8, 4, 2, 4, 2, 4, 4, 4, 1.3333333333, 2, more...

decimal, non-monotonic, +

a(n)=4/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence lvj1ha115cjdi

4, 4, 4, 3, 4, 4, 4, 2, 3, 4, 4, 3, 4, 4, 4, 0, 4, 3, 4, 3, 4, 4, 4, 2, 3, 4, 2, 3, 4, 4, 4, -2, 4, 4, 4, 1, 4, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 0, 3, 3, more...

integer, non-monotonic, +-

a(n)=5-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence jryvvx2wsudpd

4, 4, 4, 5, 4, 4, 4, 6, 5, 4, 4, 5, 4, 4, 4, 8, 4, 5, 4, 5, 4, 4, 4, 6, 5, 4, 6, 5, 4, 4, 4, 10, 4, 4, 4, 7, 4, 4, 4, 6, 4, 4, 4, 5, 5, 4, 4, 8, 5, 5, more...

integer, non-monotonic, +

a(n)=3+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence db0j33pcf5sue

4, 4, 4, 8, 4, 4, 4, 12, 8, 4, 4, 8, 4, 4, 4, 20, 4, 8, 4, 8, 4, 4, 4, 12, 8, 4, 12, 8, 4, 4, 4, 28, 4, 4, 4, 16, 4, 4, 4, 12, 4, 4, 4, 8, 8, 4, 4, 20, 8, 8, more...

integer, non-monotonic, +

a(n)=4*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ep5hyvs4hauzl

4.1415926536, 4.1415926536, 4.1415926536, 5.1415926536, 4.1415926536, 4.1415926536, 4.1415926536, 6.1415926536, 5.1415926536, 4.1415926536, 4.1415926536, 5.1415926536, 4.1415926536, 4.1415926536, 4.1415926536, 8.1415926536, 4.1415926536, 5.1415926536, 4.1415926536, 5.1415926536, 4.1415926536, 4.1415926536, 4.1415926536, 6.1415926536, 5.1415926536, more...

decimal, non-monotonic, +

a(n)=π+agc(n)
π=3.141...
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence r4yf3xind112m

5, 5, 5, 2.5, 5, 5, 5, 1.6666666667, 2.5, 5, 5, 2.5, 5, 5, 5, 1, 5, 2.5, 5, 2.5, 5, 5, 5, 1.6666666667, 2.5, more...

decimal, non-monotonic, +

a(n)=5/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 1waj0tql4kxpe

5, 5, 5, 4, 5, 5, 5, 3, 4, 5, 5, 4, 5, 5, 5, 1, 5, 4, 5, 4, 5, 5, 5, 3, 4, 5, 3, 4, 5, 5, 5, -1, 5, 5, 5, 2, 5, 5, 5, 3, 5, 5, 5, 4, 4, 5, 5, 1, 4, 4, more...

integer, non-monotonic, +-

a(n)=6-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence garkezdwhla5l

5, 5, 5, 6, 5, 5, 5, 7, 6, 5, 5, 6, 5, 5, 5, 9, 5, 6, 5, 6, 5, 5, 5, 7, 6, 5, 7, 6, 5, 5, 5, 11, 5, 5, 5, 8, 5, 5, 5, 7, 5, 5, 5, 6, 6, 5, 5, 9, 6, 6, more...

integer, non-monotonic, +

a(n)=4+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence joapd3gbz134i

5, 5, 5, 10, 5, 5, 5, 15, 10, 5, 5, 10, 5, 5, 5, 25, 5, 10, 5, 10, 5, 5, 5, 15, 10, 5, 15, 10, 5, 5, 5, 35, 5, 5, 5, 20, 5, 5, 5, 15, 5, 5, 5, 10, 10, 5, 5, 25, 10, 10, more...

integer, non-monotonic, +

a(n)=5*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence csxh5waxazmze

6, 6, 6, 3, 6, 6, 6, 2, 3, 6, 6, 3, 6, 6, 6, 1.2, 6, 3, 6, 3, 6, 6, 6, 2, 3, more...

decimal, non-monotonic, +

a(n)=6/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence pp0rjm555wjlp

6, 6, 6, 5, 6, 6, 6, 4, 5, 6, 6, 5, 6, 6, 6, 2, 6, 5, 6, 5, 6, 6, 6, 4, 5, 6, 4, 5, 6, 6, 6, 0, 6, 6, 6, 3, 6, 6, 6, 4, 6, 6, 6, 5, 5, 6, 6, 2, 5, 5, more...

integer, non-monotonic, +

a(n)=7-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence v2nlkxf20ermf

6, 6, 6, 7, 6, 6, 6, 8, 7, 6, 6, 7, 6, 6, 6, 10, 6, 7, 6, 7, 6, 6, 6, 8, 7, 6, 8, 7, 6, 6, 6, 12, 6, 6, 6, 9, 6, 6, 6, 8, 6, 6, 6, 7, 7, 6, 6, 10, 7, 7, more...

integer, non-monotonic, +

a(n)=5+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ephxpnsmff0ul

6, 6, 6, 12, 6, 6, 6, 18, 12, 6, 6, 12, 6, 6, 6, 30, 6, 12, 6, 12, 6, 6, 6, 18, 12, 6, 18, 12, 6, 6, 6, 42, 6, 6, 6, 24, 6, 6, 6, 18, 6, 6, 6, 12, 12, 6, 6, 30, 12, 12, more...

integer, non-monotonic, +

a(n)=6*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence jstpkeazdtdmg

7, 7, 7, 3.5, 7, 7, 7, 2.3333333333, 3.5, 7, 7, 3.5, 7, 7, 7, 1.4, 7, 3.5, 7, 3.5, 7, 7, 7, 2.3333333333, 3.5, more...

decimal, non-monotonic, +

a(n)=7/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence zvi2tx0hsnopc

7, 7, 7, 6, 7, 7, 7, 5, 6, 7, 7, 6, 7, 7, 7, 3, 7, 6, 7, 6, 7, 7, 7, 5, 6, 7, 5, 6, 7, 7, 7, 1, 7, 7, 7, 4, 7, 7, 7, 5, 7, 7, 7, 6, 6, 7, 7, 3, 6, 6, more...

integer, non-monotonic, +

a(n)=8-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 2b0bigtwpi4li

7, 7, 7, 8, 7, 7, 7, 9, 8, 7, 7, 8, 7, 7, 7, 11, 7, 8, 7, 8, 7, 7, 7, 9, 8, 7, 9, 8, 7, 7, 7, 13, 7, 7, 7, 10, 7, 7, 7, 9, 7, 7, 7, 8, 8, 7, 7, 11, 8, 8, more...

integer, non-monotonic, +

a(n)=6+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 21e0xm1kbmgrb

7, 7, 7, 14, 7, 7, 7, 21, 14, 7, 7, 14, 7, 7, 7, 35, 7, 14, 7, 14, 7, 7, 7, 21, 14, 7, 21, 14, 7, 7, 7, 49, 7, 7, 7, 28, 7, 7, 7, 21, 7, 7, 7, 14, 14, 7, 7, 35, 14, 14, more...

integer, non-monotonic, +

a(n)=7*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence drjvoxgfe10v

8, 8, 8, 4, 8, 8, 8, 2.6666666667, 4, 8, 8, 4, 8, 8, 8, 1.6, 8, 4, 8, 4, 8, 8, 8, 2.6666666667, 4, more...

decimal, non-monotonic, +

a(n)=8/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 40r2acogi4bpb

8, 8, 8, 7, 8, 8, 8, 6, 7, 8, 8, 7, 8, 8, 8, 4, 8, 7, 8, 7, 8, 8, 8, 6, 7, 8, 6, 7, 8, 8, 8, 2, 8, 8, 8, 5, 8, 8, 8, 6, 8, 8, 8, 7, 7, 8, 8, 4, 7, 7, more...

integer, non-monotonic, +

a(n)=9-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 33bfs5a3y1qji

8, 8, 8, 9, 8, 8, 8, 10, 9, 8, 8, 9, 8, 8, 8, 12, 8, 9, 8, 9, 8, 8, 8, 10, 9, 8, 10, 9, 8, 8, 8, 14, 8, 8, 8, 11, 8, 8, 8, 10, 8, 8, 8, 9, 9, 8, 8, 12, 9, 9, more...

integer, non-monotonic, +

a(n)=7+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence bqunl5px11vae

8, 8, 8, 16, 8, 8, 8, 24, 16, 8, 8, 16, 8, 8, 8, 40, 8, 16, 8, 16, 8, 8, 8, 24, 16, 8, 24, 16, 8, 8, 8, 56, 8, 8, 8, 32, 8, 8, 8, 24, 8, 8, 8, 16, 16, 8, 8, 40, 16, 16, more...

integer, non-monotonic, +

a(n)=8*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 13zc42i1iwrsd

9, 9, 9, 4.5, 9, 9, 9, 3, 4.5, 9, 9, 4.5, 9, 9, 9, 1.8, 9, 4.5, 9, 4.5, 9, 9, 9, 3, 4.5, more...

decimal, non-monotonic, +

a(n)=9/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence p4uv5pk20pfhn

9, 9, 9, 8, 9, 9, 9, 7, 8, 9, 9, 8, 9, 9, 9, 5, 9, 8, 9, 8, 9, 9, 9, 7, 8, 9, 7, 8, 9, 9, 9, 3, 9, 9, 9, 6, 9, 9, 9, 7, 9, 9, 9, 8, 8, 9, 9, 5, 8, 8, more...

integer, non-monotonic, +

a(n)=10-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ewwcavk4lxsdh

9, 9, 9, 10, 9, 9, 9, 11, 10, 9, 9, 10, 9, 9, 9, 13, 9, 10, 9, 10, 9, 9, 9, 11, 10, 9, 11, 10, 9, 9, 9, 15, 9, 9, 9, 12, 9, 9, 9, 11, 9, 9, 9, 10, 10, 9, 9, 13, 10, 10, more...

integer, non-monotonic, +

a(n)=8+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence cu1vjtakxswke

9, 9, 9, 18, 9, 9, 9, 27, 18, 9, 9, 18, 9, 9, 9, 45, 9, 18, 9, 18, 9, 9, 9, 27, 18, 9, 27, 18, 9, 9, 9, 63, 9, 9, 9, 36, 9, 9, 9, 27, 9, 9, 9, 18, 18, 9, 9, 45, 18, 18, more...

integer, non-monotonic, +

a(n)=9*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence sinrfox3kxo0b

10, 10, 10, 5, 10, 10, 10, 3.3333333333, 5, 10, 10, 5, 10, 10, 10, 2, 10, 5, 10, 5, 10, 10, 10, 3.3333333333, 5, more...

decimal, non-monotonic, +

a(n)=10/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 2xrvkex0i1lkb

10, 10, 10, 11, 10, 10, 10, 12, 11, 10, 10, 11, 10, 10, 10, 14, 10, 11, 10, 11, 10, 10, 10, 12, 11, 10, 12, 11, 10, 10, 10, 16, 10, 10, 10, 13, 10, 10, 10, 12, 10, 10, 10, 11, 11, 10, 10, 14, 11, 11, more...

integer, non-monotonic, +

a(n)=9+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence vjvxctip3sbm

10, 10, 10, 20, 10, 10, 10, 30, 20, 10, 10, 20, 10, 10, 10, 50, 10, 20, 10, 20, 10, 10, 10, 30, 20, 10, 30, 20, 10, 10, 10, 70, 10, 10, 10, 40, 10, 10, 10, 30, 10, 10, 10, 20, 20, 10, 10, 50, 20, 20, more...

integer, non-monotonic, +

a(n)=10*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ezwcv4mnfrtfi

11, 11, 11, 12, 11, 11, 11, 13, 12, 11, 11, 12, 11, 11, 11, 15, 11, 12, 11, 12, 11, 11, 11, 13, 12, 11, 13, 12, 11, 11, 11, 17, 11, 11, 11, 14, 11, 11, 11, 13, 11, 11, 11, 12, 12, 11, 11, 15, 12, 12, more...

integer, non-monotonic, +

a(n)=10+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence kyyyuukjjvluo

0, 0, 1, -1, 0, 0, 2, -1, -1, 0, 1, -1, 0, 0, 4, -4, 1, -1, 1, -1, 0, 0, 2, -1, -1, 2, -1, -1, 0, 0, 6, -6, 0, 0, 3, -3, 0, 0, 2, -2, 0, 0, 1, 0, -1, 0, 4, -3, 0, -1, more...

integer, non-monotonic, +-

a(n)=Δ(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
Δ(a)=differences of a
n≥0
3 operations
Prime

Sequence fdpqmkdytpmbd

1, 1, 1, 2, 2, 2, 2, 6, 12, 12, 12, 24, 24, 24, 24, 120, 120, 240, 240, 480, 480, 480, 480, 1440, 2880, 2880, 8640, 17280, 17280, 17280, 17280, 120960, 120960, 120960, 120960, 483840, 483840, 483840, 483840, 1451520, 1451520, 1451520, 1451520, 2903040, 5806080, 5806080, 5806080, 29030400, 58060800, 116121600, more...

integer, monotonic, +

a(n)=∏(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
∏(a)=partial products of a
n≥0
3 operations
Prime

Sequence yewfmej4zqhb

1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 11, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(∑(n))
∑(a)=partial sums of a
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence moycqu5rdchmo

1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 15, 17, 18, 19, 20, 25, 26, 28, 29, 31, 32, 33, 34, 37, 39, 40, 43, 45, 46, 47, 48, 55, 56, 57, 58, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 76, 77, 82, 84, 86, more...

integer, strictly-monotonic, +, A063966

a(n)=∑(agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
∑(a)=partial sums of a
n≥0
3 operations
Prime

Sequence t4llc13tepnre

-1, 0, 1, 1, 3, 4, 5, 4, 6, 8, 9, 9, 11, 12, 13, 10, 15, 15, 17, 17, 19, 20, 21, 20, 22, 24, 23, 25, 27, 28, 29, 24, 31, 32, 33, 31, 35, 36, 37, 36, 39, 40, 41, 41, 42, 44, 45, 42, 46, 47, more...

integer, non-monotonic, +-

a(n)=n-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence x3yi5wcvtu52

0, 1, 2, 1.5, 4, 5, 6, 2.3333333333, 4, 9, 10, 5.5, 12, 13, 14, 3, 16, 8.5, 18, 9.5, 20, 21, 22, 7.6666666667, 12, more...

decimal, non-monotonic, +

a(n)=n/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence mgq3vq52ml3jm

0, 1, 2, 6, 4, 5, 6, 21, 16, 9, 10, 22, 12, 13, 14, 75, 16, 34, 18, 38, 20, 21, 22, 69, 48, 25, 78, 54, 28, 29, 30, 217, 32, 33, 34, 140, 36, 37, 38, 117, 40, 41, 42, 86, 88, 45, 46, 235, 96, 98, more...

integer, non-monotonic, +

a(n)=n*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence v1kfbyjw2atdg

1, 0, -1, -1, -3, -4, -5, -4, -6, -8, -9, -9, -11, -12, -13, -10, -15, -15, -17, -17, -19, -20, -21, -20, -22, -24, -23, -25, -27, -28, -29, -24, -31, -32, -33, -31, -35, -36, -37, -36, -39, -40, -41, -41, -42, -44, -45, -42, -46, -47, more...

integer, non-monotonic, +-

a(n)=agc(n)-n
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence dnivu0defunug

1, 0.5, 0.6666666667, 0.25, 0.2, 0.1666666667, 0.4285714286, 0.25, 0.1111111111, 0.1, 0.1818181818, 0.0833333333, 0.0769230769, 0.0714285714, 0.3333333333, 0.0625, 0.1176470588, 0.0555555556, 0.1052631579, 0.05, 0.0476190476, 0.0454545455, 0.1304347826, 0.0833333333, 0.04, more...

decimal, non-monotonic, +

a(n)=agc(n)/n
agc(n)=number of factorizations into prime powers (abelian group count)
n≥1
4 operations
Prime

Sequence sxhjcpc21x1fi

1, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 13, 13, 14, 15, 20, 17, 19, 19, 21, 21, 22, 23, 26, 26, 26, 29, 29, 29, 30, 31, 38, 33, 34, 35, 39, 37, 38, 39, 42, 41, 42, 43, 45, 46, 46, 47, 52, 50, 51, more...

integer, non-monotonic, +

a(n)=n+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence n1jrpxoad5wnl

-1, -1, -1, -4, -1, -1, -1, -9, -4, -1, -1, -4, -1, -1, -1, -25, -1, -4, -1, -4, -1, -1, -1, -9, -4, -1, -9, -4, -1, -1, -1, -49, -1, -1, -1, -16, -1, -1, -1, -9, -1, -1, -1, -4, -4, -1, -1, -25, -4, -4, more...

integer, non-monotonic, -

a(n)=-agc(n)²
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

[0] [1] [2] [3] [4] ... [337]