Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 44599. [0] [1] [2] [3] [4] ... [445]

Sequence pvurlm0y53im

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, more...

integer, non-monotonic, +, A000688

a(n)=agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
2 operations
Prime

Sequence mhlwaxxkanlrj

-1, -1, -1, -2, -1, -1, -1, -3, -2, -1, -1, -2, -1, -1, -1, -5, -1, -2, -1, -2, -1, -1, -1, -3, -2, -1, -3, -2, -1, -1, -1, -7, -1, -1, -1, -4, -1, -1, -1, -3, -1, -1, -1, -2, -2, -1, -1, -5, -2, -2, more...

integer, non-monotonic, -

a(n)=-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
3 operations
Prime

Sequence 2a5olnkltjwde

-9, -9, -9, -8, -9, -9, -9, -7, -8, -9, -9, -8, -9, -9, -9, -5, -9, -8, -9, -8, -9, -9, -9, -7, -8, -9, -7, -8, -9, -9, -9, -3, -9, -9, -9, -6, -9, -9, -9, -7, -9, -9, -9, -8, -8, -9, -9, -5, -8, -8, more...

integer, non-monotonic, -

a(n)=agc(n)-10
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 0vmt2fjwddihb

-8, -8, -8, -7, -8, -8, -8, -6, -7, -8, -8, -7, -8, -8, -8, -4, -8, -7, -8, -7, -8, -8, -8, -6, -7, -8, -6, -7, -8, -8, -8, -2, -8, -8, -8, -5, -8, -8, -8, -6, -8, -8, -8, -7, -7, -8, -8, -4, -7, -7, more...

integer, non-monotonic, -

a(n)=agc(n)-9
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=xor(7, -agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
xor(a,b)=bitwise exclusive or
n≥0
5 operations
Prime

Sequence 3htgdnuzdnvln

-7, -7, -7, -6, -7, -7, -7, -5, -6, -7, -7, -6, -7, -7, -7, -3, -7, -6, -7, -6, -7, -7, -7, -5, -6, -7, -5, -6, -7, -7, -7, -1, -7, -7, -7, -4, -7, -7, -7, -5, -7, -7, -7, -6, -6, -7, -7, -3, -6, -6, more...

integer, non-monotonic, -

a(n)=agc(n)-8
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=xor(-8, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
xor(a,b)=bitwise exclusive or
n≥0
5 operations
Prime
a(n)=or(-8, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
or(a,b)=bitwise or
n≥0
5 operations
Prime

Sequence bzzbfs5d1gbgc

-6, -6, -6, -5, -6, -6, -6, -4, -5, -6, -6, -5, -6, -6, -6, -2, -6, -5, -6, -5, -6, -6, -6, -4, -5, -6, -4, -5, -6, -6, -6, 0, -6, -6, -6, -3, -6, -6, -6, -4, -6, -6, -6, -5, -5, -6, -6, -2, -5, -5, more...

integer, non-monotonic, -

a(n)=agc(n)-7
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ee5rn4rkbcvof

-5, -5, -5, -4, -5, -5, -5, -3, -4, -5, -5, -4, -5, -5, -5, -1, -5, -4, -5, -4, -5, -5, -5, -3, -4, -5, -3, -4, -5, -5, -5, 1, -5, -5, -5, -2, -5, -5, -5, -3, -5, -5, -5, -4, -4, -5, -5, -1, -4, -4, more...

integer, non-monotonic, +-

a(n)=agc(n)-6
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence byhsvz513bchl

-4, -4, -4, -3, -4, -4, -4, -2, -3, -4, -4, -3, -4, -4, -4, 0, -4, -3, -4, -3, -4, -4, -4, -2, -3, -4, -2, -3, -4, -4, -4, 2, -4, -4, -4, -1, -4, -4, -4, -2, -4, -4, -4, -3, -3, -4, -4, 0, -3, -3, more...

integer, non-monotonic, +-

a(n)=agc(n)-5
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 5lmvajk024tni

-3, -3, -3, -2, -3, -3, -3, -1, -2, -3, -3, -2, -3, -3, -3, 1, -3, -2, -3, -2, -3, -3, -3, -1, -2, -3, -1, -2, -3, -3, -3, 3, -3, -3, -3, 0, -3, -3, -3, -1, -3, -3, -3, -2, -2, -3, -3, 1, -2, -2, more...

integer, non-monotonic, +-

a(n)=agc(n)-4
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ld4vzbxfo5mzo

-2, -2, -2, -1, -2, -2, -2, 0, -1, -2, -2, -1, -2, -2, -2, 2, -2, -1, -2, -1, -2, -2, -2, 0, -1, -2, 0, -1, -2, -2, -2, 4, -2, -2, -2, 1, -2, -2, -2, 0, -2, -2, -2, -1, -1, -2, -2, 2, -1, -1, more...

integer, non-monotonic, +-

a(n)=agc(n)-3
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence mq5atohqgcwdp

-1, -1, -1, 0, -1, -1, -1, 1, 0, -1, -1, 0, -1, -1, -1, 3, -1, 0, -1, 0, -1, -1, -1, 1, 0, -1, 1, 0, -1, -1, -1, 5, -1, -1, -1, 2, -1, -1, -1, 1, -1, -1, -1, 0, 0, -1, -1, 3, 0, 0, more...

integer, non-monotonic, +-

a(n)=agc(n)-2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ylpeuxlysnacf

0, 0, 0, -1, 0, 0, 0, -2, -1, 0, 0, -1, 0, 0, 0, -4, 0, -1, 0, -1, 0, 0, 0, -2, -1, 0, -2, -1, 0, 0, 0, -6, 0, 0, 0, -3, 0, 0, 0, -2, 0, 0, 0, -1, -1, 0, 0, -4, -1, -1, more...

integer, non-monotonic, -

a(n)=1-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 4tanfhrwnanyf

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 4, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(n)-1
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=round(log(catalan(agc(n))))
agc(n)=number of factorizations into prime powers (abelian group count)
catalan(n)=the catalan numbers
n≥0
5 operations
Prime

Sequence 5dxbhmddq3f2j

0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.3, 0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.5, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 0.1, 0.3, 0.2, more...

decimal, non-monotonic, +

a(n)=agc(n)/10
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence dokwqlksql35

0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.3333333333333333, 0.2222222222222222, 0.1111111111111111, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.5555555555555556, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.3333333333333333, 0.2222222222222222, more...

decimal, non-monotonic, +

a(n)=agc(n)/9
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence rmbmpl2nakb3l

0.125, 0.125, 0.125, 0.25, 0.125, 0.125, 0.125, 0.375, 0.25, 0.125, 0.125, 0.25, 0.125, 0.125, 0.125, 0.625, 0.125, 0.25, 0.125, 0.25, 0.125, 0.125, 0.125, 0.375, 0.25, more...

decimal, non-monotonic, +

a(n)=agc(n)/8
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence qjrkn0i3i0k4b

0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 0.2857142857142857, 0.14285714285714285, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.7142857142857143, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 0.2857142857142857, more...

decimal, non-monotonic, +

a(n)=agc(n)/7
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence vtageip4dos4l

0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.5, 0.3333333333333333, 0.16666666666666666, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.8333333333333334, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.5, 0.3333333333333333, more...

decimal, non-monotonic, +

a(n)=agc(n)/6
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence crzcm23eavpyc

0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.6, 0.4, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 1, 0.2, 0.4, 0.2, 0.4, 0.2, 0.2, 0.2, 0.6, 0.4, more...

decimal, non-monotonic, +

a(n)=agc(n)/5
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ymtndhn1hlfon

0.25, 0.25, 0.25, 0.5, 0.25, 0.25, 0.25, 0.75, 0.5, 0.25, 0.25, 0.5, 0.25, 0.25, 0.25, 1.25, 0.25, 0.5, 0.25, 0.5, 0.25, 0.25, 0.25, 0.75, 0.5, more...

decimal, non-monotonic, +

a(n)=agc(n)/4
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence unu4d1gnzywim

0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 1, 0.6666666666666666, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 1.6666666666666667, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 1, 0.6666666666666666, more...

decimal, non-monotonic, +

a(n)=agc(n)/3
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence sg224oir3qw5o

0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1.5, 1, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 2.5, 0.5, 1, 0.5, 1, 0.5, 0.5, 0.5, 1.5, 1, more...

decimal, non-monotonic, +

a(n)=agc(n)/2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence xhtsuirhpl21l

1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 0, 1, 1, 1, -3, 1, 0, 1, 0, 1, 1, 1, -1, 0, 1, -1, 0, 1, 1, 1, -5, 1, 1, 1, -2, 1, 1, 1, -1, 1, 1, 1, 0, 0, 1, 1, -3, 0, 0, more...

integer, non-monotonic, +-

a(n)=2-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence sufzvygcwicck

1, 1, 1, 0.5, 1, 1, 1, 0.3333333333333333, 0.5, 1, 1, 0.5, 1, 1, 1, 0.2, 1, 0.5, 1, 0.5, 1, 1, 1, 0.3333333333333333, 0.5, more...

decimal, non-monotonic, +

a(n)=1/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence q42i3ba5kxdzp

1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(10*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence vwssm0enackrg

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, more...

integer, non-monotonic, +, A101871

a(n)=agc(2*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=gpf(agc(n+n))
agc(n)=number of factorizations into prime powers (abelian group count)
gpf(n)=greatest prime factor of n
n≥0
5 operations
Prime
a(n)=lpf(agc(n+n))
agc(n)=number of factorizations into prime powers (abelian group count)
lpf(n)=least prime factor of n
n≥0
5 operations
Prime

Sequence eubzucsxpgfto

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=agc(6*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence bahnej3trd0x

1, 1, 1, 2, 1, 1, 1, 11, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 3, 7, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(9*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence hpnmvlow5l0th

1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(4+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3osmjpapbnvfg

1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 5, 1, 1, 7, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 1, 2, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(5*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence j3eymr1durbob

1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, more...

integer, non-monotonic, +, A101873

a(n)=agc(4*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence v1rvhaq4oh3ah

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, more...

integer, non-monotonic, +

a(n)=agc(1+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence lqh4qnh00jkge

1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(9+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence yucgislllpluc

1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=agc(5+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence g0ihd3nry3vep

1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(2+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence qkcutaldk4q1l

1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 11, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(3*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 0vylf4stqvm4n

1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(10+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence eo1zr1f5jey3p

1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(8*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence u2syr0yrrecon

1, 3, 1, 1, 1, 4, 1, 2, 1, 11, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 5, 2, 5, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, 2, 1, 1, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(7*n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence fpkgk402te53i

1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(6+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence va2gw4kab34ub

2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=agc(3+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence v0uo2xouqykjo

2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(8+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence fk4wofilnec3

2, 2, 2, 1, 2, 2, 2, 0, 1, 2, 2, 1, 2, 2, 2, -2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 0, 1, 2, 2, 2, -4, 2, 2, 2, -1, 2, 2, 2, 0, 2, 2, 2, 1, 1, 2, 2, -2, 1, 1, more...

integer, non-monotonic, +-

a(n)=3-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence bl2bkrgvpsjim

2, 2, 2, 1, 2, 2, 2, 0.6666666666666666, 1, 2, 2, 1, 2, 2, 2, 0.4, 2, 1, 2, 1, 2, 2, 2, 0.6666666666666666, 1, more...

decimal, non-monotonic, +

a(n)=2/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence aqjhxmdehz53c

2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 6, 2, 3, 2, 3, 2, 2, 2, 4, 3, 2, 4, 3, 2, 2, 2, 8, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 3, 3, more...

integer, non-monotonic, +

a(n)=1+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=τ(2^agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
τ(n)=number of divisors of n
n≥0
5 operations
Prime

Sequence 1oqopz4iuj1zh

2, 2, 2, 4, 2, 2, 2, 6, 4, 2, 2, 4, 2, 2, 2, 10, 2, 4, 2, 4, 2, 2, 2, 6, 4, 2, 6, 4, 2, 2, 2, 14, 2, 2, 2, 8, 2, 2, 2, 6, 2, 2, 2, 4, 4, 2, 2, 10, 4, 4, more...

integer, non-monotonic, +

a(n)=2*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=Ω(4^agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
Ω(n)=max distinct factors of n
n≥0
5 operations
Prime
a(n)=log(exp(agc(n))²)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
5 operations
Prime
a(n)=lpf(a(n-1))*agc(n)
a(0)=2
lpf(n)=least prime factor of n
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
5 operations
Prime

Sequence nl1qezm2bpkne

3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=agc(7+n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence isc2vmxfhdzyj

3, 3, 3, 1.5, 3, 3, 3, 1, 1.5, 3, 3, 1.5, 3, 3, 3, 0.6, 3, 1.5, 3, 1.5, 3, 3, 3, 1, 1.5, more...

decimal, non-monotonic, +

a(n)=3/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence naamoqxmjjael

3, 3, 3, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 3, -1, 3, 2, 3, 2, 3, 3, 3, 1, 2, 3, 1, 2, 3, 3, 3, -3, 3, 3, 3, 0, 3, 3, 3, 1, 3, 3, 3, 2, 2, 3, 3, -1, 2, 2, more...

integer, non-monotonic, +-

a(n)=4-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence z2qt1eo2e1wxb

3, 3, 3, 4, 3, 3, 3, 5, 4, 3, 3, 4, 3, 3, 3, 7, 3, 4, 3, 4, 3, 3, 3, 5, 4, 3, 5, 4, 3, 3, 3, 9, 3, 3, 3, 6, 3, 3, 3, 5, 3, 3, 3, 4, 4, 3, 3, 7, 4, 4, more...

integer, non-monotonic, +

a(n)=2+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence pfl0n3sgxwmam

3, 3, 3, 6, 3, 3, 3, 9, 6, 3, 3, 6, 3, 3, 3, 15, 3, 6, 3, 6, 3, 3, 3, 9, 6, 3, 9, 6, 3, 3, 3, 21, 3, 3, 3, 12, 3, 3, 3, 9, 3, 3, 3, 6, 6, 3, 3, 15, 6, 6, more...

integer, non-monotonic, +

a(n)=3*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3heac1cf3ic3g

4, 4, 4, 2, 4, 4, 4, 1.3333333333333333, 2, 4, 4, 2, 4, 4, 4, 0.8, 4, 2, 4, 2, 4, 4, 4, 1.3333333333333333, 2, more...

decimal, non-monotonic, +

a(n)=4/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence hly2actyt0xkp

4, 4, 4, 3, 4, 4, 4, 2, 3, 4, 4, 3, 4, 4, 4, 0, 4, 3, 4, 3, 4, 4, 4, 2, 3, 4, 2, 3, 4, 4, 4, -2, 4, 4, 4, 1, 4, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 0, 3, 3, more...

integer, non-monotonic, +-

a(n)=5-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence yripjl1s5nc0f

4, 4, 4, 5, 4, 4, 4, 6, 5, 4, 4, 5, 4, 4, 4, 8, 4, 5, 4, 5, 4, 4, 4, 6, 5, 4, 6, 5, 4, 4, 4, 10, 4, 4, 4, 7, 4, 4, 4, 6, 4, 4, 4, 5, 5, 4, 4, 8, 5, 5, more...

integer, non-monotonic, +

a(n)=3+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ncjgwepsw5fk

4, 4, 4, 8, 4, 4, 4, 12, 8, 4, 4, 8, 4, 4, 4, 20, 4, 8, 4, 8, 4, 4, 4, 12, 8, 4, 12, 8, 4, 4, 4, 28, 4, 4, 4, 16, 4, 4, 4, 12, 4, 4, 4, 8, 8, 4, 4, 20, 8, 8, more...

integer, non-monotonic, +

a(n)=4*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence b1otwrqtahnbi

5, 5, 5, 2.5, 5, 5, 5, 1.6666666666666667, 2.5, 5, 5, 2.5, 5, 5, 5, 1, 5, 2.5, 5, 2.5, 5, 5, 5, 1.6666666666666667, 2.5, more...

decimal, non-monotonic, +

a(n)=5/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 5poa40y1r5olj

5, 5, 5, 4, 5, 5, 5, 3, 4, 5, 5, 4, 5, 5, 5, 1, 5, 4, 5, 4, 5, 5, 5, 3, 4, 5, 3, 4, 5, 5, 5, -1, 5, 5, 5, 2, 5, 5, 5, 3, 5, 5, 5, 4, 4, 5, 5, 1, 4, 4, more...

integer, non-monotonic, +-

a(n)=6-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 0gdlrbobl0bgh

5, 5, 5, 6, 5, 5, 5, 7, 6, 5, 5, 6, 5, 5, 5, 9, 5, 6, 5, 6, 5, 5, 5, 7, 6, 5, 7, 6, 5, 5, 5, 11, 5, 5, 5, 8, 5, 5, 5, 7, 5, 5, 5, 6, 6, 5, 5, 9, 6, 6, more...

integer, non-monotonic, +

a(n)=4+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence aiaauph0m04wl

5, 5, 5, 10, 5, 5, 5, 15, 10, 5, 5, 10, 5, 5, 5, 25, 5, 10, 5, 10, 5, 5, 5, 15, 10, 5, 15, 10, 5, 5, 5, 35, 5, 5, 5, 20, 5, 5, 5, 15, 5, 5, 5, 10, 10, 5, 5, 25, 10, 10, more...

integer, non-monotonic, +

a(n)=5*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 41feabebuilmh

6, 6, 6, 3, 6, 6, 6, 2, 3, 6, 6, 3, 6, 6, 6, 1.2, 6, 3, 6, 3, 6, 6, 6, 2, 3, more...

decimal, non-monotonic, +

a(n)=6/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence keabctgwmcck

6, 6, 6, 5, 6, 6, 6, 4, 5, 6, 6, 5, 6, 6, 6, 2, 6, 5, 6, 5, 6, 6, 6, 4, 5, 6, 4, 5, 6, 6, 6, 0, 6, 6, 6, 3, 6, 6, 6, 4, 6, 6, 6, 5, 5, 6, 6, 2, 5, 5, more...

integer, non-monotonic, +

a(n)=7-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=xor(7, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
xor(a,b)=bitwise exclusive or
n≥0
4 operations
Prime

Sequence 53udipxsa3qfk

6, 6, 6, 7, 6, 6, 6, 8, 7, 6, 6, 7, 6, 6, 6, 10, 6, 7, 6, 7, 6, 6, 6, 8, 7, 6, 8, 7, 6, 6, 6, 12, 6, 6, 6, 9, 6, 6, 6, 8, 6, 6, 6, 7, 7, 6, 6, 10, 7, 7, more...

integer, non-monotonic, +

a(n)=5+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence xpxg0ejh21wph

6, 6, 6, 12, 6, 6, 6, 18, 12, 6, 6, 12, 6, 6, 6, 30, 6, 12, 6, 12, 6, 6, 6, 18, 12, 6, 18, 12, 6, 6, 6, 42, 6, 6, 6, 24, 6, 6, 6, 18, 6, 6, 6, 12, 12, 6, 6, 30, 12, 12, more...

integer, non-monotonic, +

a(n)=6*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 0o4fqv5tztxfl

7, 7, 7, 3.5, 7, 7, 7, 2.3333333333333335, 3.5, 7, 7, 3.5, 7, 7, 7, 1.4, 7, 3.5, 7, 3.5, 7, 7, 7, 2.3333333333333335, 3.5, more...

decimal, non-monotonic, +

a(n)=7/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence kqap4rtxs4hu

7, 7, 7, 6, 7, 7, 7, 5, 6, 7, 7, 6, 7, 7, 7, 3, 7, 6, 7, 6, 7, 7, 7, 5, 6, 7, 5, 6, 7, 7, 7, 1, 7, 7, 7, 4, 7, 7, 7, 5, 7, 7, 7, 6, 6, 7, 7, 3, 6, 6, more...

integer, non-monotonic, +

a(n)=8-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=and(7, -agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
5 operations
Prime

Sequence qojf5t4f5ygrc

7, 7, 7, 8, 7, 7, 7, 9, 8, 7, 7, 8, 7, 7, 7, 11, 7, 8, 7, 8, 7, 7, 7, 9, 8, 7, 9, 8, 7, 7, 7, 13, 7, 7, 7, 10, 7, 7, 7, 9, 7, 7, 7, 8, 8, 7, 7, 11, 8, 8, more...

integer, non-monotonic, +

a(n)=6+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence edpqzapy0la4e

7, 7, 7, 14, 7, 7, 7, 21, 14, 7, 7, 14, 7, 7, 7, 35, 7, 14, 7, 14, 7, 7, 7, 21, 14, 7, 21, 14, 7, 7, 7, 49, 7, 7, 7, 28, 7, 7, 7, 21, 7, 7, 7, 14, 14, 7, 7, 35, 14, 14, more...

integer, non-monotonic, +

a(n)=7*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 2p3dp1gami5cp

8, 8, 8, 4, 8, 8, 8, 2.6666666666666665, 4, 8, 8, 4, 8, 8, 8, 1.6, 8, 4, 8, 4, 8, 8, 8, 2.6666666666666665, 4, more...

decimal, non-monotonic, +

a(n)=8/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence i2f0eso4rqm2i

8, 8, 8, 7, 8, 8, 8, 6, 7, 8, 8, 7, 8, 8, 8, 4, 8, 7, 8, 7, 8, 8, 8, 6, 7, 8, 6, 7, 8, 8, 8, 2, 8, 8, 8, 5, 8, 8, 8, 6, 8, 8, 8, 7, 7, 8, 8, 4, 7, 7, more...

integer, non-monotonic, +

a(n)=9-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3zxju0zvqdvhi

8, 8, 8, 9, 8, 8, 8, 10, 9, 8, 8, 9, 8, 8, 8, 12, 8, 9, 8, 9, 8, 8, 8, 10, 9, 8, 10, 9, 8, 8, 8, 14, 8, 8, 8, 11, 8, 8, 8, 10, 8, 8, 8, 9, 9, 8, 8, 12, 9, 9, more...

integer, non-monotonic, +

a(n)=7+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence aiq01w0juuyof

8, 8, 8, 16, 8, 8, 8, 24, 16, 8, 8, 16, 8, 8, 8, 40, 8, 16, 8, 16, 8, 8, 8, 24, 16, 8, 24, 16, 8, 8, 8, 56, 8, 8, 8, 32, 8, 8, 8, 24, 8, 8, 8, 16, 16, 8, 8, 40, 16, 16, more...

integer, non-monotonic, +

a(n)=8*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 2yvcanm0bjsdn

9, 9, 9, 4.5, 9, 9, 9, 3, 4.5, 9, 9, 4.5, 9, 9, 9, 1.8, 9, 4.5, 9, 4.5, 9, 9, 9, 3, 4.5, more...

decimal, non-monotonic, +

a(n)=9/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ih4se2bmqn5cc

9, 9, 9, 8, 9, 9, 9, 7, 8, 9, 9, 8, 9, 9, 9, 5, 9, 8, 9, 8, 9, 9, 9, 7, 8, 9, 7, 8, 9, 9, 9, 3, 9, 9, 9, 6, 9, 9, 9, 7, 9, 9, 9, 8, 8, 9, 9, 5, 8, 8, more...

integer, non-monotonic, +

a(n)=10-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence ekbbd5yrok5ue

9, 9, 9, 10, 9, 9, 9, 11, 10, 9, 9, 10, 9, 9, 9, 13, 9, 10, 9, 10, 9, 9, 9, 11, 10, 9, 11, 10, 9, 9, 9, 15, 9, 9, 9, 12, 9, 9, 9, 11, 9, 9, 9, 10, 10, 9, 9, 13, 10, 10, more...

integer, non-monotonic, +

a(n)=8+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=xor(8, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
xor(a,b)=bitwise exclusive or
n≥0
4 operations
Prime
a(n)=or(8, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
or(a,b)=bitwise or
n≥0
4 operations
Prime

Sequence jpgmicuab34uf

9, 9, 9, 18, 9, 9, 9, 27, 18, 9, 9, 18, 9, 9, 9, 45, 9, 18, 9, 18, 9, 9, 9, 27, 18, 9, 27, 18, 9, 9, 9, 63, 9, 9, 9, 36, 9, 9, 9, 27, 9, 9, 9, 18, 18, 9, 9, 45, 18, 18, more...

integer, non-monotonic, +

a(n)=9*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3vjgpctr2d

10, 10, 10, 5, 10, 10, 10, 3.3333333333333335, 5, 10, 10, 5, 10, 10, 10, 2, 10, 5, 10, 5, 10, 10, 10, 3.3333333333333335, 5, more...

decimal, non-monotonic, +

a(n)=10/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3ti5dhex2nmhm

10, 10, 10, 11, 10, 10, 10, 12, 11, 10, 10, 11, 10, 10, 10, 14, 10, 11, 10, 11, 10, 10, 10, 12, 11, 10, 12, 11, 10, 10, 10, 16, 10, 10, 10, 13, 10, 10, 10, 12, 10, 10, 10, 11, 11, 10, 10, 14, 11, 11, more...

integer, non-monotonic, +

a(n)=9+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 13n3nqb3hm2ef

10, 10, 10, 20, 10, 10, 10, 30, 20, 10, 10, 20, 10, 10, 10, 50, 10, 20, 10, 20, 10, 10, 10, 30, 20, 10, 30, 20, 10, 10, 10, 70, 10, 10, 10, 40, 10, 10, 10, 30, 10, 10, 10, 20, 20, 10, 10, 50, 20, 20, more...

integer, non-monotonic, +

a(n)=10*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence vfx2venq2n3rn

11, 11, 11, 12, 11, 11, 11, 13, 12, 11, 11, 12, 11, 11, 11, 15, 11, 12, 11, 12, 11, 11, 11, 13, 12, 11, 13, 12, 11, 11, 11, 17, 11, 11, 11, 14, 11, 11, 11, 13, 11, 11, 11, 12, 12, 11, 11, 15, 12, 12, more...

integer, non-monotonic, +

a(n)=10+agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence bhb3cmz5pwpsn

-1, 0, 1, 1, 3, 4, 5, 4, 6, 8, 9, 9, 11, 12, 13, 10, 15, 15, 17, 17, 19, 20, 21, 20, 22, 24, 23, 25, 27, 28, 29, 24, 31, 32, 33, 31, 35, 36, 37, 36, 39, 40, 41, 41, 42, 44, 45, 42, 46, 47, more...

integer, non-monotonic, +-

a(n)=n-agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence iqtbq5g4qjvhd

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, more...

integer, non-monotonic, +

a(n)=and(4, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
4 operations
Prime

Sequence yhahnuewaq4jb

0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, more...

integer, non-monotonic, +

a(n)=and(2, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
4 operations
Prime

Sequence gmssut2zkdlid

0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, more...

integer, non-monotonic, +

a(n)=and(6, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
4 operations
Prime
a(n)=2*floor(agc(n)/2)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
7 operations
Prime

Sequence 1luiz5wldw3tk

0, 0, 0, 3, 0, 0, 0, 2, 3, 0, 0, 3, 0, 0, 0, 4, 0, 3, 0, 3, 0, 0, 0, 2, 3, 0, 2, 3, 0, 0, 0, 6, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 3, 3, 0, 0, 4, 3, 3, more...

integer, non-monotonic, +

a(n)=xor(1, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
xor(a,b)=bitwise exclusive or
n≥0
4 operations
Prime

Sequence tclknwkfeotpn

0, 1, 2, 1.5, 4, 5, 6, 2.3333333333333335, 4, 9, 10, 5.5, 12, 13, 14, 3, 16, 8.5, 18, 9.5, 20, 21, 22, 7.666666666666667, 12, more...

decimal, non-monotonic, +

a(n)=n/agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence uo5lxafeczhgc

0, 1, 2, 6, 4, 5, 6, 21, 16, 9, 10, 22, 12, 13, 14, 75, 16, 34, 18, 38, 20, 21, 22, 69, 48, 25, 78, 54, 28, 29, 30, 217, 32, 33, 34, 140, 36, 37, 38, 117, 40, 41, 42, 86, 88, 45, 46, 235, 96, 98, more...

integer, non-monotonic, +

a(n)=n*agc(n)
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence zdcijooi05ayn

1, 0, -1, -1, -3, -4, -5, -4, -6, -8, -9, -9, -11, -12, -13, -10, -15, -15, -17, -17, -19, -20, -21, -20, -22, -24, -23, -25, -27, -28, -29, -24, -31, -32, -33, -31, -35, -36, -37, -36, -39, -40, -41, -41, -42, -44, -45, -42, -46, -47, more...

integer, non-monotonic, +-

a(n)=agc(n)-n
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence a3oihzfldlxtp

1, 0.5, 0.6666666666666666, 0.25, 0.2, 0.16666666666666666, 0.42857142857142855, 0.25, 0.1111111111111111, 0.1, 0.18181818181818182, 0.08333333333333333, 0.07692307692307693, 0.07142857142857142, 0.3333333333333333, 0.0625, 0.11764705882352941, 0.05555555555555555, 0.10526315789473684, 0.05, 0.047619047619047616, 0.045454545454545456, 0.13043478260869565, 0.08333333333333333, 0.04, more...

decimal, non-monotonic, +

a(n)=agc(n)/n
agc(n)=number of factorizations into prime powers (abelian group count)
n≥1
4 operations
Prime

Sequence iad2uesekv0al

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, more...

integer, non-monotonic, +

a(n)=and(1, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
4 operations
Prime
a(n)=agc(n)%2
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime
a(n)=sqrt(and(9, agc(n)))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
5 operations
Prime
a(n)=stern(and(9, agc(n)))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Prime

Sequence dafe4gfpbouoj

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 5, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 5, 0, 0, more...

integer, non-monotonic, +

a(n)=and(5, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
4 operations
Prime

Sequence wpev3ezcijk1l

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=and(3, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
and(a,b)=bitwise and
n≥0
4 operations
Prime
a(n)=agc(n)%4
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence uiy1weoz10w2c

1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 2, 1, 1, 5, 1, 1, 1, 2, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(xor(4, n))
xor(a,b)=bitwise exclusive or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence stmfxsyojwmhm

1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 5, 2, 1, 1, 5, 1, 3, more...

integer, non-monotonic, +

a(n)=agc(or(4, n))
or(a,b)=bitwise or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence t2twssmd2bgtc

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, more...

integer, non-monotonic, +

a(n)=or(1, agc(n))
agc(n)=number of factorizations into prime powers (abelian group count)
or(a,b)=bitwise or
n≥0
4 operations
Prime
a(n)=stern(p(σ(agc(n))))
agc(n)=number of factorizations into prime powers (abelian group count)
σ(n)=divisor sum of n
p(n)=nth prime
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Prime

Sequence jd5btbgedfpcp

1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=agc(xor(1, n))
xor(a,b)=bitwise exclusive or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence lfoigtjyj5m2g

1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 7, 7, 1, 1, 4, 4, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 2, 2, more...

integer, non-monotonic, +

a(n)=agc(or(1, n))
or(a,b)=bitwise or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence c51a12jq015zm

1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 7, 7, 1, 1, 2, 2, 1, 1, 7, 7, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, more...

integer, non-monotonic, +

a(n)=agc(or(9, n))
or(a,b)=bitwise or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 3jjqc2na10moh

1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 1, 4, 1, 1, 2, 5, 1, 1, 1, 2, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=agc(xor(5, n))
xor(a,b)=bitwise exclusive or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence s0bq1e3vkk52

1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 1, 1, 5, 5, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 7, 7, 1, 1, 7, 7, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 1, 1, 5, 5, 3, 3, more...

integer, non-monotonic, +

a(n)=agc(or(5, n))
or(a,b)=bitwise or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence jwzbgq5tteqhp

1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 3, 2, 2, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 2, more...

integer, non-monotonic, +

a(n)=agc(xor(2, n))
xor(a,b)=bitwise exclusive or
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

[0] [1] [2] [3] [4] ... [445]