Sequence Database

A database with 1956199 machine generated integer and decimal sequences.

Found 6 transform matches of a total 495 applied transforms.

Sequence dn45tihxwldcj

0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, more...

integer, strictly-monotonic, +

a(n)=comp[φ(query[n])]
query(n)=nth term of your query
ϕ(n)=number of relative primes (Euler's totient)
comp(a)=complement function of a (in range)
n≥0
4 operations
Prime
a(n)=comp[σ(4+a(n-1))]
a(0)=1
σ(n)=divisor sum of n
comp(a)=complement function of a (in range)
n≥0
5 operations
Prime

Sequence pwy1jsxr42dgf

1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 480, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 924, 968, 1013, 1058, 1105, 1152, 1201, 1250, more...

integer, strictly-monotonic, +

a(n)=floor(sqrt(query[n]))
query(n)=nth term of your query
n≥0
4 operations
Power
a(n)=round(1/(2/n²))
n≥1
7 operations
Power

Sequence ahvr5hesbgdhl

1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, more...

integer, strictly-monotonic, +

a(n)=floor(sqrt(query[n]))
query(n)=nth term of your query
n≥0
4 operations
Power
a(n)=∑[or(1, n)]
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥0
4 operations
Bitwise
a(n)=or(1, n)+a(n-1)
a(0)=1
or(a,b)=bitwise or
n≥0
5 operations
Recursive
a(n)=ceil(n/(2/n))
n≥1
6 operations
Arithmetic
a(n)=∑[xor(n, n-a(n-1))]
a(0)=1
xor(a,b)=bitwise exclusive or
∑(a)=partial sums of a
n≥0
6 operations
Recursive
a(n)=∑[n+C(a(n-2), a(n-1))]
a(0)=1
a(1)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence 3zfyitgdjhsgg

1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, more...

integer, strictly-monotonic, +, A080827

a(n)=round(sqrt(query[n]))
query(n)=nth term of your query
n≥0
4 operations
Power
a(n)=or(1, n+a(n-1))
a(0)=1
or(a,b)=bitwise or
n≥0
5 operations
Recursive
a(n)=∑[n+C(a(n-2), a(n-1))]
a(0)=1
a(1)=2
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric
a(n)=n+n%2+a(n-1)
a(0)=1
n≥0
7 operations
Recursive
a(n)=floor(1+n/(2/n))
n≥1
8 operations
Arithmetic

Sequence jzwogetgshbcg

0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590, 336610, 371091, 408156, 447931, 490545, 536130, 584821, 636756, 692076, 750925, more...

integer, strictly-monotonic, +, A002817

a(n)=query[n]-a(n-1)
a(0)=0
query(n)=nth term of your query
n≥0
4 operations
Recursive
a(n)=C(1+∑[n], 2)
∑(a)=partial sums of a
C(n,k)=binomial coefficient
n≥0
6 operations
Combinatoric

Sequence a4fzh01tfi20j

1, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926, 969, 1014, 1059, 1106, 1153, 1202, 1251, more...

integer, strictly-monotonic, +

a(n)=ceil(sqrt(query[n]))
query(n)=nth term of your query
n≥0
4 operations
Power
a(n)=n+a(n-1)%2+a(n-1)
a(0)=1
n≥0
7 operations
Recursive