Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 142660. [0] [1] [2] [3] [4] ... [1426]

Sequence k0beacn12pjwc

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime
a(n)=Ω(floor(2^τ(n)))
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=τ(n*p(n))/2
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence vdw5rsi1esttn

-1, -2, -2, -3, -2, -4, -2, -4, -3, -4, -2, -6, -2, -4, -4, -5, -2, -6, -2, -6, -4, -4, -2, -8, -3, -4, -4, -6, -2, -8, -2, -6, -4, -4, -4, -9, -2, -4, -4, -8, -2, -8, -2, -6, -6, -4, -2, -10, -3, -6, more...

integer, non-monotonic, -

a(n)=-τ(n)
τ(n)=number of divisors of n
n≥1
3 operations
Prime
a(n)=log(1/exp(τ(n)))
τ(n)=number of divisors of n
n≥1
6 operations
Prime

Sequence eb0ua01eyxgnk

-9, -8, -8, -7, -8, -6, -8, -6, -7, -6, -8, -4, -8, -6, -6, -5, -8, -4, -8, -4, -6, -6, -8, -2, -7, -6, -6, -4, -8, -2, -8, -4, -6, -6, -6, -1, -8, -6, -6, -2, -8, -2, -8, -4, -4, -6, -8, 0, -7, -4, more...

integer, non-monotonic, -

a(n)=τ(n)-10
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence nwrtzeveohdnd

-8, -7, -7, -6, -7, -5, -7, -5, -6, -5, -7, -3, -7, -5, -5, -4, -7, -3, -7, -3, -5, -5, -7, -1, -6, -5, -5, -3, -7, -1, -7, -3, -5, -5, -5, 0, -7, -5, -5, -1, -7, -1, -7, -3, -3, -5, -7, 1, -6, -3, more...

integer, non-monotonic, +-

a(n)=τ(n)-9
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence yqwfnn1dws5nf

-7, -6, -6, -5, -6, -4, -6, -4, -5, -4, -6, -2, -6, -4, -4, -3, -6, -2, -6, -2, -4, -4, -6, 0, -5, -4, -4, -2, -6, 0, -6, -2, -4, -4, -4, 1, -6, -4, -4, 0, -6, 0, -6, -2, -2, -4, -6, 2, -5, -2, more...

integer, non-monotonic, +-

a(n)=τ(n)-8
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence zt2cfcyvusin

-6, -5, -5, -4, -5, -3, -5, -3, -4, -3, -5, -1, -5, -3, -3, -2, -5, -1, -5, -1, -3, -3, -5, 1, -4, -3, -3, -1, -5, 1, -5, -1, -3, -3, -3, 2, -5, -3, -3, 1, -5, 1, -5, -1, -1, -3, -5, 3, -4, -1, more...

integer, non-monotonic, +-

a(n)=τ(n)-7
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence umhvaauyq0zne

-5, -4, -4, -3, -4, -2, -4, -2, -3, -2, -4, 0, -4, -2, -2, -1, -4, 0, -4, 0, -2, -2, -4, 2, -3, -2, -2, 0, -4, 2, -4, 0, -2, -2, -2, 3, -4, -2, -2, 2, -4, 2, -4, 0, 0, -2, -4, 4, -3, 0, more...

integer, non-monotonic, +-

a(n)=τ(n)-6
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence mmoy5rkmyjx1c

-4, -3, -3, -2, -3, -1, -3, -1, -2, -1, -3, 1, -3, -1, -1, 0, -3, 1, -3, 1, -1, -1, -3, 3, -2, -1, -1, 1, -3, 3, -3, 1, -1, -1, -1, 4, -3, -1, -1, 3, -3, 3, -3, 1, 1, -1, -3, 5, -2, 1, more...

integer, non-monotonic, +-

a(n)=τ(n)-5
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence juzdfwxvalfie

-3, -2, -2, -1, -2, 0, -2, 0, -1, 0, -2, 2, -2, 0, 0, 1, -2, 2, -2, 2, 0, 0, -2, 4, -1, 0, 0, 2, -2, 4, -2, 2, 0, 0, 0, 5, -2, 0, 0, 4, -2, 4, -2, 2, 2, 0, -2, 6, -1, 2, more...

integer, non-monotonic, +-

a(n)=τ(n)-4
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 2g34zcjces5go

-2, -1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 3, -1, 1, 1, 2, -1, 3, -1, 3, 1, 1, -1, 5, 0, 1, 1, 3, -1, 5, -1, 3, 1, 1, 1, 6, -1, 1, 1, 5, -1, 5, -1, 3, 3, 1, -1, 7, 0, 3, more...

integer, non-monotonic, +-

a(n)=τ(n)-3
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 3fazxy2dbof4m

-1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 3, 0, 4, 0, 4, 2, 2, 0, 6, 1, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 7, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 1, 4, more...

integer, non-monotonic, +-

a(n)=τ(n)-2
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence cbwkqsw3jpudd

0, -1, -1, -2, -1, -3, -1, -3, -2, -3, -1, -5, -1, -3, -3, -4, -1, -5, -1, -5, -3, -3, -1, -7, -2, -3, -3, -5, -1, -7, -1, -5, -3, -3, -3, -8, -1, -3, -3, -7, -1, -7, -1, -5, -5, -3, -1, -9, -2, -5, more...

integer, non-monotonic, -

a(n)=1-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence fqi4gakavapke

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, more...

integer, non-monotonic, +

a(n)=τ(n)-1
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=floor(log(floor(exp(τ(n)))))
τ(n)=number of divisors of n
n≥1
6 operations
Prime
a(n)=Ω(φ(2^τ(n)))
τ(n)=number of divisors of n
ϕ(n)=number of relative primes (Euler's totient)
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime

Sequence eb2od54xfw00b

0.1, 0.2, 0.2, 0.3, 0.2, 0.4, 0.2, 0.4, 0.3, 0.4, 0.2, 0.6, 0.2, 0.4, 0.4, 0.5, 0.2, 0.6, 0.2, 0.6, 0.4, 0.4, 0.2, 0.8, 0.3, more...

decimal, non-monotonic, +

a(n)=τ(n)/10
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence hhvhxdsj35oj

0.1111111111111111, 0.2222222222222222, 0.2222222222222222, 0.3333333333333333, 0.2222222222222222, 0.4444444444444444, 0.2222222222222222, 0.4444444444444444, 0.3333333333333333, 0.4444444444444444, 0.2222222222222222, 0.6666666666666666, 0.2222222222222222, 0.4444444444444444, 0.4444444444444444, 0.5555555555555556, 0.2222222222222222, 0.6666666666666666, 0.2222222222222222, 0.6666666666666666, 0.4444444444444444, 0.4444444444444444, 0.2222222222222222, 0.8888888888888888, 0.3333333333333333, more...

decimal, non-monotonic, +

a(n)=τ(n)/9
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence bqegmj31jwktd

0.125, 0.25, 0.25, 0.375, 0.25, 0.5, 0.25, 0.5, 0.375, 0.5, 0.25, 0.75, 0.25, 0.5, 0.5, 0.625, 0.25, 0.75, 0.25, 0.75, 0.5, 0.5, 0.25, 1, 0.375, more...

decimal, non-monotonic, +

a(n)=τ(n)/8
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence qr5dqqyuaymte

0.14285714285714285, 0.2857142857142857, 0.2857142857142857, 0.42857142857142855, 0.2857142857142857, 0.5714285714285714, 0.2857142857142857, 0.5714285714285714, 0.42857142857142855, 0.5714285714285714, 0.2857142857142857, 0.8571428571428571, 0.2857142857142857, 0.5714285714285714, 0.5714285714285714, 0.7142857142857143, 0.2857142857142857, 0.8571428571428571, 0.2857142857142857, 0.8571428571428571, 0.5714285714285714, 0.5714285714285714, 0.2857142857142857, 1.1428571428571428, 0.42857142857142855, more...

decimal, non-monotonic, +

a(n)=τ(n)/7
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence ga0nygkfxsqy

0.16666666666666666, 0.3333333333333333, 0.3333333333333333, 0.5, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.6666666666666666, 0.5, 0.6666666666666666, 0.3333333333333333, 1, 0.3333333333333333, 0.6666666666666666, 0.6666666666666666, 0.8333333333333334, 0.3333333333333333, 1, 0.3333333333333333, 1, 0.6666666666666666, 0.6666666666666666, 0.3333333333333333, 1.3333333333333333, 0.5, more...

decimal, non-monotonic, +

a(n)=τ(n)/6
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence j1wg3t2aqt04d

0.2, 0.4, 0.4, 0.6, 0.4, 0.8, 0.4, 0.8, 0.6, 0.8, 0.4, 1.2, 0.4, 0.8, 0.8, 1, 0.4, 1.2, 0.4, 1.2, 0.8, 0.8, 0.4, 1.6, 0.6, more...

decimal, non-monotonic, +

a(n)=τ(n)/5
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence kpwfhxlhirfzl

0.25, 0.5, 0.5, 0.75, 0.5, 1, 0.5, 1, 0.75, 1, 0.5, 1.5, 0.5, 1, 1, 1.25, 0.5, 1.5, 0.5, 1.5, 1, 1, 0.5, 2, 0.75, more...

decimal, non-monotonic, +

a(n)=τ(n)/4
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence qyxb3idzthxun

0.3333333333333333, 0.6666666666666666, 0.6666666666666666, 1, 0.6666666666666666, 1.3333333333333333, 0.6666666666666666, 1.3333333333333333, 1, 1.3333333333333333, 0.6666666666666666, 2, 0.6666666666666666, 1.3333333333333333, 1.3333333333333333, 1.6666666666666667, 0.6666666666666666, 2, 0.6666666666666666, 2, 1.3333333333333333, 1.3333333333333333, 0.6666666666666666, 2.6666666666666665, 1, more...

decimal, non-monotonic, +

a(n)=τ(n)/3
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence neaf2naum5wrg

0.5, 1, 1, 1.5, 1, 2, 1, 2, 1.5, 2, 1, 3, 1, 2, 2, 2.5, 1, 3, 1, 3, 2, 2, 1, 4, 1.5, more...

decimal, non-monotonic, +

a(n)=τ(n)/2
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence ga1xnpa0uopmd

1, 0, 0, -1, 0, -2, 0, -2, -1, -2, 0, -4, 0, -2, -2, -3, 0, -4, 0, -4, -2, -2, 0, -6, -1, -2, -2, -4, 0, -6, 0, -4, -2, -2, -2, -7, 0, -2, -2, -6, 0, -6, 0, -4, -4, -2, 0, -8, -1, -4, more...

integer, non-monotonic, +-

a(n)=2-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence jek5xrqbx4img

1, 0.5, 0.5, 0.3333333333333333, 0.5, 0.25, 0.5, 0.25, 0.3333333333333333, 0.25, 0.5, 0.16666666666666666, 0.5, 0.25, 0.25, 0.2, 0.5, 0.16666666666666666, 0.5, 0.16666666666666666, 0.25, 0.25, 0.5, 0.125, 0.3333333333333333, more...

decimal, non-monotonic, +

a(n)=1/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=2/τ(n*p(n))
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence u3jnimclxwrqg

2, 1, 1, 0, 1, -1, 1, -1, 0, -1, 1, -3, 1, -1, -1, -2, 1, -3, 1, -3, -1, -1, 1, -5, 0, -1, -1, -3, 1, -5, 1, -3, -1, -1, -1, -6, 1, -1, -1, -5, 1, -5, 1, -3, -3, -1, 1, -7, 0, -3, more...

integer, non-monotonic, +-

a(n)=3-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence dldg0cic50tnp

2, 1, 1, 0.6666666666666666, 1, 0.5, 1, 0.5, 0.6666666666666666, 0.5, 1, 0.3333333333333333, 1, 0.5, 0.5, 0.4, 1, 0.3333333333333333, 1, 0.3333333333333333, 0.5, 0.5, 1, 0.25, 0.6666666666666666, more...

decimal, non-monotonic, +

a(n)=2/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=Ω(p(n)²)/τ(n)
p(n)=nth prime
Ω(n)=max distinct factors of n
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence akjih5sxjemdh

2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, more...

integer, non-monotonic, +

a(n)=τ(2+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence vlqdvtpy2jzcc

2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, more...

integer, non-monotonic, +

a(n)=τ(3+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence 4erz5zzga1heh

2, 3, 3, 4, 3, 5, 3, 5, 4, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 7, 5, 5, 3, 9, 4, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 10, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 4, 7, more...

integer, non-monotonic, +

a(n)=1+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=Ω(2*2^τ(n))
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence ssmn4zriil3jn

2, 3, 4, 4, 4, 6, 4, 5, 6, 6, 4, 8, 4, 6, 8, 6, 4, 9, 4, 8, 8, 6, 4, 10, 6, 6, 8, 8, 4, 12, 4, 7, 8, 6, 8, 12, 4, 6, 8, 10, 4, 12, 4, 8, 12, 6, 4, 12, 6, 9, more...

integer, non-monotonic, +, A099777

a(n)=τ(2*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=Ω(2^τ(n+n))
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence 4m34ivpmeydae

2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, more...

integer, non-monotonic, +

a(n)=τ(5+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence gzpanipg4ctob

2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, more...

integer, non-monotonic, +

a(n)=τ(7+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence ywl54cit5t3wj

2, 4, 3, 6, 4, 6, 4, 8, 4, 8, 4, 9, 4, 8, 6, 10, 4, 8, 4, 12, 6, 8, 4, 12, 6, 8, 5, 12, 4, 12, 4, 12, 6, 8, 8, 12, 4, 8, 6, 16, 4, 12, 4, 12, 8, 8, 4, 15, 6, 12, more...

integer, non-monotonic, +

a(n)=τ(3*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 1nxv2jykizuve

2, 4, 4, 6, 3, 8, 4, 8, 6, 6, 4, 12, 4, 8, 6, 10, 4, 12, 4, 9, 8, 8, 4, 16, 4, 8, 8, 12, 4, 12, 4, 12, 8, 8, 6, 18, 4, 8, 8, 12, 4, 16, 4, 12, 9, 8, 4, 20, 6, 8, more...

integer, non-monotonic, +

a(n)=τ(5*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence s5rzxdvk4kh2j

2, 4, 4, 6, 4, 8, 3, 8, 6, 8, 4, 12, 4, 6, 8, 10, 4, 12, 4, 12, 6, 8, 4, 16, 6, 8, 8, 9, 4, 16, 4, 12, 8, 8, 6, 18, 4, 8, 8, 16, 4, 12, 4, 12, 12, 8, 4, 20, 4, 12, more...

integer, non-monotonic, +

a(n)=τ(7*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence zmp1xwnb5kask

2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12, 4, 8, 8, 10, 4, 12, 4, 12, 8, 8, 4, 16, 6, 8, 8, 12, 4, 16, 4, 12, 8, 8, 8, 18, 4, 8, 8, 16, 4, 16, 4, 12, 12, 8, 4, 20, 6, 12, more...

integer, non-monotonic, +, A062011

a(n)=2*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=log(exp(τ(n))²)
τ(n)=number of divisors of n
n≥1
5 operations
Prime

Sequence e5flcz5lvfaii

3, 1.5, 1.5, 1, 1.5, 0.75, 1.5, 0.75, 1, 0.75, 1.5, 0.5, 1.5, 0.75, 0.75, 0.6, 1.5, 0.5, 1.5, 0.5, 0.75, 0.75, 1.5, 0.375, 1, more...

decimal, non-monotonic, +

a(n)=3/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=τ(p(n)²)/τ(n)
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence pvjo5dad41rlk

3, 2, 2, 1, 2, 0, 2, 0, 1, 0, 2, -2, 2, 0, 0, -1, 2, -2, 2, -2, 0, 0, 2, -4, 1, 0, 0, -2, 2, -4, 2, -2, 0, 0, 0, -5, 2, 0, 0, -4, 2, -4, 2, -2, -2, 0, 2, -6, 1, -2, more...

integer, non-monotonic, +-

a(n)=4-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence qgkz1bgjmpi3d

3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, more...

integer, non-monotonic, +

a(n)=τ(4+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence uzab2qgb3av2i

3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, more...

integer, non-monotonic, +

a(n)=τ(9+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence n5rgdqpugtxs

3, 4, 4, 5, 4, 6, 4, 6, 5, 6, 4, 8, 4, 6, 6, 7, 4, 8, 4, 8, 6, 6, 4, 10, 5, 6, 6, 8, 4, 10, 4, 8, 6, 6, 6, 11, 4, 6, 6, 10, 4, 10, 4, 8, 8, 6, 4, 12, 5, 8, more...

integer, non-monotonic, +

a(n)=2+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence xcxvvr5ikblkj

3, 4, 6, 5, 6, 8, 6, 6, 9, 8, 6, 10, 6, 8, 12, 7, 6, 12, 6, 10, 12, 8, 6, 12, 9, 8, 12, 10, 6, 16, 6, 8, 12, 8, 12, 15, 6, 8, 12, 12, 6, 16, 6, 10, 18, 8, 6, 14, 9, 12, more...

integer, non-monotonic, +

a(n)=τ(4*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence yvsgg11osjksf

3, 6, 4, 9, 6, 8, 6, 12, 5, 12, 6, 12, 6, 12, 8, 15, 6, 10, 6, 18, 8, 12, 6, 16, 9, 12, 6, 18, 6, 16, 6, 18, 8, 12, 12, 15, 6, 12, 8, 24, 6, 16, 6, 18, 10, 12, 6, 20, 9, 18, more...

integer, non-monotonic, +

a(n)=τ(9*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 02vwjgluxclgo

3, 6, 6, 9, 6, 12, 6, 12, 9, 12, 6, 18, 6, 12, 12, 15, 6, 18, 6, 18, 12, 12, 6, 24, 9, 12, 12, 18, 6, 24, 6, 18, 12, 12, 12, 27, 6, 12, 12, 24, 6, 24, 6, 18, 18, 12, 6, 30, 9, 18, more...

integer, non-monotonic, +

a(n)=3*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence aew2p24mnmifp

4, 2, 2, 1.3333333333333333, 2, 1, 2, 1, 1.3333333333333333, 1, 2, 0.6666666666666666, 2, 1, 1, 0.8, 2, 0.6666666666666666, 2, 0.6666666666666666, 1, 1, 2, 0.5, 1.3333333333333333, more...

decimal, non-monotonic, +

a(n)=4/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence hrryzisthe2gh

4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, more...

integer, non-monotonic, +

a(n)=τ(6+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence jx4kypgoxzhae

4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, more...

integer, non-monotonic, +

a(n)=τ(10+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence z5e20zavdbsj

4, 3, 3, 2, 3, 1, 3, 1, 2, 1, 3, -1, 3, 1, 1, 0, 3, -1, 3, -1, 1, 1, 3, -3, 2, 1, 1, -1, 3, -3, 3, -1, 1, 1, 1, -4, 3, 1, 1, -3, 3, -3, 3, -1, -1, 1, 3, -5, 2, -1, more...

integer, non-monotonic, +-

a(n)=5-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence xvdtavaf3mbzp

4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, more...

integer, non-monotonic, +

a(n)=τ(8+n)
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence 32bkfij2nnyg

4, 5, 5, 6, 5, 7, 5, 7, 6, 7, 5, 9, 5, 7, 7, 8, 5, 9, 5, 9, 7, 7, 5, 11, 6, 7, 7, 9, 5, 11, 5, 9, 7, 7, 7, 12, 5, 7, 7, 11, 5, 11, 5, 9, 9, 7, 5, 13, 6, 9, more...

integer, non-monotonic, +

a(n)=3+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence heepb34hzrown

4, 5, 8, 6, 8, 10, 8, 7, 12, 10, 8, 12, 8, 10, 16, 8, 8, 15, 8, 12, 16, 10, 8, 14, 12, 10, 16, 12, 8, 20, 8, 9, 16, 10, 16, 18, 8, 10, 16, 14, 8, 20, 8, 12, 24, 10, 8, 16, 12, 15, more...

integer, non-monotonic, +

a(n)=τ(8*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence i01iqjfrmqhyc

4, 6, 6, 8, 8, 9, 8, 10, 8, 12, 8, 12, 8, 12, 12, 12, 8, 12, 8, 16, 12, 12, 8, 15, 12, 12, 10, 16, 8, 18, 8, 14, 12, 12, 16, 16, 8, 12, 12, 20, 8, 18, 8, 16, 16, 12, 8, 18, 12, 18, more...

integer, non-monotonic, +

a(n)=τ(6*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence db0uoa3k5nz1

4, 6, 8, 8, 6, 12, 8, 10, 12, 9, 8, 16, 8, 12, 12, 12, 8, 18, 8, 12, 16, 12, 8, 20, 8, 12, 16, 16, 8, 18, 8, 14, 16, 12, 12, 24, 8, 12, 16, 15, 8, 24, 8, 16, 18, 12, 8, 24, 12, 12, more...

integer, non-monotonic, +

a(n)=τ(10*n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence l1ctt4dzspdve

4, 8, 8, 12, 8, 16, 8, 16, 12, 16, 8, 24, 8, 16, 16, 20, 8, 24, 8, 24, 16, 16, 8, 32, 12, 16, 16, 24, 8, 32, 8, 24, 16, 16, 16, 36, 8, 16, 16, 32, 8, 32, 8, 24, 24, 16, 8, 40, 12, 24, more...

integer, non-monotonic, +

a(n)=4*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=2*τ(n*p(n))
p(n)=nth prime
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence fsu22mvozyguo

5, 2.5, 2.5, 1.6666666666666667, 2.5, 1.25, 2.5, 1.25, 1.6666666666666667, 1.25, 2.5, 0.8333333333333334, 2.5, 1.25, 1.25, 1, 2.5, 0.8333333333333334, 2.5, 0.8333333333333334, 1.25, 1.25, 2.5, 0.625, 1.6666666666666667, more...

decimal, non-monotonic, +

a(n)=5/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence vquv5teglft4d

5, 4, 4, 3, 4, 2, 4, 2, 3, 2, 4, 0, 4, 2, 2, 1, 4, 0, 4, 0, 2, 2, 4, -2, 3, 2, 2, 0, 4, -2, 4, 0, 2, 2, 2, -3, 4, 2, 2, -2, 4, -2, 4, 0, 0, 2, 4, -4, 3, 0, more...

integer, non-monotonic, +-

a(n)=6-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence zbbrz4pvufq0m

5, 6, 6, 7, 6, 8, 6, 8, 7, 8, 6, 10, 6, 8, 8, 9, 6, 10, 6, 10, 8, 8, 6, 12, 7, 8, 8, 10, 6, 12, 6, 10, 8, 8, 8, 13, 6, 8, 8, 12, 6, 12, 6, 10, 10, 8, 6, 14, 7, 10, more...

integer, non-monotonic, +

a(n)=4+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence luvb0n2n35fyl

5, 10, 10, 15, 10, 20, 10, 20, 15, 20, 10, 30, 10, 20, 20, 25, 10, 30, 10, 30, 20, 20, 10, 40, 15, 20, 20, 30, 10, 40, 10, 30, 20, 20, 20, 45, 10, 20, 20, 40, 10, 40, 10, 30, 30, 20, 10, 50, 15, 30, more...

integer, non-monotonic, +

a(n)=5*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence dj5i3tnd5szeg

6, 3, 3, 2, 3, 1.5, 3, 1.5, 2, 1.5, 3, 1, 3, 1.5, 1.5, 1.2, 3, 1, 3, 1, 1.5, 1.5, 3, 0.75, 2, more...

decimal, non-monotonic, +

a(n)=6/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence yyvs5mbyfv2xn

6, 5, 5, 4, 5, 3, 5, 3, 4, 3, 5, 1, 5, 3, 3, 2, 5, 1, 5, 1, 3, 3, 5, -1, 4, 3, 3, 1, 5, -1, 5, 1, 3, 3, 3, -2, 5, 3, 3, -1, 5, -1, 5, 1, 1, 3, 5, -3, 4, 1, more...

integer, non-monotonic, +-

a(n)=7-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence sv55eiwb3k4ao

6, 7, 7, 8, 7, 9, 7, 9, 8, 9, 7, 11, 7, 9, 9, 10, 7, 11, 7, 11, 9, 9, 7, 13, 8, 9, 9, 11, 7, 13, 7, 11, 9, 9, 9, 14, 7, 9, 9, 13, 7, 13, 7, 11, 11, 9, 7, 15, 8, 11, more...

integer, non-monotonic, +

a(n)=5+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence ptqkzcpihfhdd

6, 12, 12, 18, 12, 24, 12, 24, 18, 24, 12, 36, 12, 24, 24, 30, 12, 36, 12, 36, 24, 24, 12, 48, 18, 24, 24, 36, 12, 48, 12, 36, 24, 24, 24, 54, 12, 24, 24, 48, 12, 48, 12, 36, 36, 24, 12, 60, 18, 36, more...

integer, non-monotonic, +

a(n)=6*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence axewnmaichbbj

7, 3.5, 3.5, 2.3333333333333335, 3.5, 1.75, 3.5, 1.75, 2.3333333333333335, 1.75, 3.5, 1.1666666666666667, 3.5, 1.75, 1.75, 1.4, 3.5, 1.1666666666666667, 3.5, 1.1666666666666667, 1.75, 1.75, 3.5, 0.875, 2.3333333333333335, more...

decimal, non-monotonic, +

a(n)=7/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence oo4tqixfpo3lh

7, 6, 6, 5, 6, 4, 6, 4, 5, 4, 6, 2, 6, 4, 4, 3, 6, 2, 6, 2, 4, 4, 6, 0, 5, 4, 4, 2, 6, 0, 6, 2, 4, 4, 4, -1, 6, 4, 4, 0, 6, 0, 6, 2, 2, 4, 6, -2, 5, 2, more...

integer, non-monotonic, +-

a(n)=8-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 3zlycagdfo2cp

7, 8, 8, 9, 8, 10, 8, 10, 9, 10, 8, 12, 8, 10, 10, 11, 8, 12, 8, 12, 10, 10, 8, 14, 9, 10, 10, 12, 8, 14, 8, 12, 10, 10, 10, 15, 8, 10, 10, 14, 8, 14, 8, 12, 12, 10, 8, 16, 9, 12, more...

integer, non-monotonic, +

a(n)=6+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence rkphhwlymetkn

7, 14, 14, 21, 14, 28, 14, 28, 21, 28, 14, 42, 14, 28, 28, 35, 14, 42, 14, 42, 28, 28, 14, 56, 21, 28, 28, 42, 14, 56, 14, 42, 28, 28, 28, 63, 14, 28, 28, 56, 14, 56, 14, 42, 42, 28, 14, 70, 21, 42, more...

integer, non-monotonic, +

a(n)=7*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=lcm(τ(n), 7)
τ(n)=number of divisors of n
lcm(a,b)=least common multiple
n≥1
4 operations
Prime

Sequence kngxy2o3xalpf

8, 4, 4, 2.6666666666666665, 4, 2, 4, 2, 2.6666666666666665, 2, 4, 1.3333333333333333, 4, 2, 2, 1.6, 4, 1.3333333333333333, 4, 1.3333333333333333, 2, 2, 4, 1, 2.6666666666666665, more...

decimal, non-monotonic, +

a(n)=8/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence urjxuiczijj0j

8, 7, 7, 6, 7, 5, 7, 5, 6, 5, 7, 3, 7, 5, 5, 4, 7, 3, 7, 3, 5, 5, 7, 1, 6, 5, 5, 3, 7, 1, 7, 3, 5, 5, 5, 0, 7, 5, 5, 1, 7, 1, 7, 3, 3, 5, 7, -1, 6, 3, more...

integer, non-monotonic, +-

a(n)=9-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence ztkgsvqxxrr1c

8, 9, 9, 10, 9, 11, 9, 11, 10, 11, 9, 13, 9, 11, 11, 12, 9, 13, 9, 13, 11, 11, 9, 15, 10, 11, 11, 13, 9, 15, 9, 13, 11, 11, 11, 16, 9, 11, 11, 15, 9, 15, 9, 13, 13, 11, 9, 17, 10, 13, more...

integer, non-monotonic, +

a(n)=7+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 3mvyv5y1lypcn

8, 16, 16, 24, 16, 32, 16, 32, 24, 32, 16, 48, 16, 32, 32, 40, 16, 48, 16, 48, 32, 32, 16, 64, 24, 32, 32, 48, 16, 64, 16, 48, 32, 32, 32, 72, 16, 32, 32, 64, 16, 64, 16, 48, 48, 32, 16, 80, 24, 48, more...

integer, non-monotonic, +

a(n)=8*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence s4vcesawzlsvb

9, 4.5, 4.5, 3, 4.5, 2.25, 4.5, 2.25, 3, 2.25, 4.5, 1.5, 4.5, 2.25, 2.25, 1.8, 4.5, 1.5, 4.5, 1.5, 2.25, 2.25, 4.5, 1.125, 3, more...

decimal, non-monotonic, +

a(n)=9/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 0xx4upf1rdn4b

9, 8, 8, 7, 8, 6, 8, 6, 7, 6, 8, 4, 8, 6, 6, 5, 8, 4, 8, 4, 6, 6, 8, 2, 7, 6, 6, 4, 8, 2, 8, 4, 6, 6, 6, 1, 8, 6, 6, 2, 8, 2, 8, 4, 4, 6, 8, 0, 7, 4, more...

integer, non-monotonic, +

a(n)=10-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence ghza3frqsvvjm

9, 10, 10, 11, 10, 12, 10, 12, 11, 12, 10, 14, 10, 12, 12, 13, 10, 14, 10, 14, 12, 12, 10, 16, 11, 12, 12, 14, 10, 16, 10, 14, 12, 12, 12, 17, 10, 12, 12, 16, 10, 16, 10, 14, 14, 12, 10, 18, 11, 14, more...

integer, non-monotonic, +

a(n)=8+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence zya1gikm44nij

9, 18, 18, 27, 18, 36, 18, 36, 27, 36, 18, 54, 18, 36, 36, 45, 18, 54, 18, 54, 36, 36, 18, 72, 27, 36, 36, 54, 18, 72, 18, 54, 36, 36, 36, 81, 18, 36, 36, 72, 18, 72, 18, 54, 54, 36, 18, 90, 27, 54, more...

integer, non-monotonic, +

a(n)=9*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence g2fgf5sddvpoj

10, 5, 5, 3.3333333333333335, 5, 2.5, 5, 2.5, 3.3333333333333335, 2.5, 5, 1.6666666666666667, 5, 2.5, 2.5, 2, 5, 1.6666666666666667, 5, 1.6666666666666667, 2.5, 2.5, 5, 1.25, 3.3333333333333335, more...

decimal, non-monotonic, +

a(n)=10/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 2sya2afku4bsd

10, 11, 11, 12, 11, 13, 11, 13, 12, 13, 11, 15, 11, 13, 13, 14, 11, 15, 11, 15, 13, 13, 11, 17, 12, 13, 13, 15, 11, 17, 11, 15, 13, 13, 13, 18, 11, 13, 13, 17, 11, 17, 11, 15, 15, 13, 11, 19, 12, 15, more...

integer, non-monotonic, +

a(n)=9+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 0unbibcgw4que

10, 20, 20, 30, 20, 40, 20, 40, 30, 40, 20, 60, 20, 40, 40, 50, 20, 60, 20, 60, 40, 40, 20, 80, 30, 40, 40, 60, 20, 80, 20, 60, 40, 40, 40, 90, 20, 40, 40, 80, 20, 80, 20, 60, 60, 40, 20, 100, 30, 60, more...

integer, non-monotonic, +

a(n)=10*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence rnqccz4o3jvtb

11, 12, 12, 13, 12, 14, 12, 14, 13, 14, 12, 16, 12, 14, 14, 15, 12, 16, 12, 16, 14, 14, 12, 18, 13, 14, 14, 16, 12, 18, 12, 16, 14, 14, 14, 19, 12, 14, 14, 18, 12, 18, 12, 16, 16, 14, 12, 20, 13, 16, more...

integer, non-monotonic, +

a(n)=10+τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence e3t522gdaze1k

0, 0, -1, -1, -3, -2, -5, -4, -6, -6, -9, -6, -11, -10, -11, -11, -15, -12, -17, -14, -17, -18, -21, -16, -22, -22, -23, -22, -27, -22, -29, -26, -29, -30, -31, -27, -35, -34, -35, -32, -39, -34, -41, -38, -39, -42, -45, -38, -46, -44, more...

integer, non-monotonic, -

a(n)=τ(n)-n
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence r3hudduauotsp

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 8, 0, 0, more...

integer, non-monotonic, +

a(n)=and(8, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence h4a1lfwtgo1np

0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 4, 4, 0, 4, 0, 4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 0, 0, 4, 4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 4, more...

integer, non-monotonic, +

a(n)=and(4, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence bkaxq355i0hzn

0, 0, 1, 1, 3, 2, 5, 4, 6, 6, 9, 6, 11, 10, 11, 11, 15, 12, 17, 14, 17, 18, 21, 16, 22, 22, 23, 22, 27, 22, 29, 26, 29, 30, 31, 27, 35, 34, 35, 32, 39, 34, 41, 38, 39, 42, 45, 38, 46, 44, more...

integer, non-monotonic, +, A049820

a(n)=n-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence tyvwabkdciugg

0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, more...

integer, non-monotonic, +

a(n)=and(2, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence h0ubsaukpwuhi

0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 8, 2, 0, 0, 2, 2, 8, 2, 2, 0, 0, 0, 8, 2, 0, 0, 8, 2, 8, 2, 2, 2, 0, 2, 10, 2, 2, more...

integer, non-monotonic, +

a(n)=and(10, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence qgbggqlcfzlhl

0, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 0, 2, 4, 4, 6, 2, 0, 2, 6, 4, 4, 4, 0, 2, 4, 4, 0, 2, 0, 2, 6, 6, 4, 2, 2, 2, 6, more...

integer, non-monotonic, +

a(n)=and(6, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence lvt2dy2otjfop

0, 3, 3, 2, 3, 5, 3, 5, 2, 5, 3, 7, 3, 5, 5, 4, 3, 7, 3, 7, 5, 5, 3, 9, 2, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 8, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 2, 7, more...

integer, non-monotonic, +

a(n)=xor(1, τ(n))
τ(n)=number of divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence ekfqeo4cedr3i

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, more...

integer, non-monotonic, +, A065803

a(n)=and(1, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=Δ[floor(sqrt(n))]
Δ(a)=differences of a
n≥0
4 operations
Power
a(n)=τ(n)%2
τ(n)=number of divisors of n
n≥1
4 operations
Prime
a(n)=stern(Δ[floor(sqrt(n))])
Δ(a)=differences of a
stern(n)=Stern-Brocot sequence
n≥0
5 operations
Recursive
a(n)=char[∑[comp[φ(n)]]]
ϕ(n)=number of relative primes (Euler's totient)
comp(a)=complement function of a (in range)
∑(a)=partial sums of a
char(a)=characteristic function of a (in range)
n≥1
5 operations
Prime

Sequence 5ewqxulhdpuig

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 8, 1, 0, more...

integer, non-monotonic, +

a(n)=and(9, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence drvftg1vzzdwk

1, 0, 0, 1, 0, 4, 0, 4, 1, 4, 0, 4, 0, 4, 4, 5, 0, 4, 0, 4, 4, 4, 0, 0, 1, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 1, 0, 4, 4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 1, 4, more...

integer, non-monotonic, +

a(n)=and(5, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence hgq0ef3gue11l

1, 1, 0.6666666666666666, 0.75, 0.4, 0.6666666666666666, 0.2857142857142857, 0.5, 0.3333333333333333, 0.4, 0.18181818181818182, 0.5, 0.15384615384615385, 0.2857142857142857, 0.26666666666666666, 0.3125, 0.11764705882352941, 0.3333333333333333, 0.10526315789473684, 0.3, 0.19047619047619047, 0.18181818181818182, 0.08695652173913043, 0.3333333333333333, 0.12, more...

decimal, non-monotonic, +

a(n)=τ(n)/n
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence enggvou0hbjlh

1, 1, 1.5, 1.3333333333333333, 2.5, 1.5, 3.5, 2, 3, 2.5, 5.5, 2, 6.5, 3.5, 3.75, 3.2, 8.5, 3, 9.5, 3.3333333333333335, 5.25, 5.5, 11.5, 3, 8.333333333333334, more...

decimal, non-monotonic, +

a(n)=n/τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 3dfztkro0bvhj

1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 6, 6, 2, 2, 3, 3, more...

integer, non-monotonic, +

a(n)=τ(or(1, n))
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence qt25zymoouwp

1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 2, 2, 0, 0, 1, 2, 2, 2, 2, 0, 0, 2, 0, 3, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 2, 2, 0, 2, 2, 3, 2, more...

integer, non-monotonic, +

a(n)=and(3, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=τ(n)%4
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence qc1b3u04c3lce

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 0, 3, 4, 4, 6, 2, 0, 2, 6, 4, 4, 4, 1, 2, 4, 4, 0, 2, 0, 2, 6, 6, 4, 2, 2, 3, 6, more...

integer, non-monotonic, +

a(n)=and(7, τ(n))
τ(n)=number of divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=τ(n)%8
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence 0io2wxxohrnyj

1, 3, 3, 3, 3, 5, 3, 5, 3, 5, 3, 7, 3, 5, 5, 5, 3, 7, 3, 7, 5, 5, 3, 9, 3, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 9, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 3, 7, more...

integer, non-monotonic, +

a(n)=or(1, τ(n))
τ(n)=number of divisors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence xpargxygiqe5l

1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, more...

integer, non-monotonic, +, A038040

a(n)=n*τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime

Sequence byivxpn2ab1fe

2, 1, 1, 0, 1, 7, 1, 7, 0, 7, 1, 5, 1, 7, 7, 6, 1, 5, 1, 5, 7, 7, 1, 11, 0, 7, 7, 5, 1, 11, 1, 5, 7, 7, 7, 10, 1, 7, 7, 11, 1, 11, 1, 5, 5, 7, 1, 9, 0, 5, more...

integer, non-monotonic, +

a(n)=xor(3, τ(n))
τ(n)=number of divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence txcvfz4bs4rjc

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, more...

integer, non-monotonic, +

a(n)=τ(or(3, n))
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥0
4 operations
Prime

Sequence idgaglahp54rj

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 6, 6, 2, 2, 6, 6, 2, 2, 2, 2, more...

integer, non-monotonic, +

a(n)=τ(or(5, n))
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥0
4 operations
Prime
a(n)=Ω(or(5, n)²)
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
5 operations
Prime

Sequence zr3x5zzqdavzm

2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, more...

integer, non-monotonic, +

a(n)=τ(or(7, n))
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥0
4 operations
Prime
a(n)=Ω(or(7, n)²)
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
5 operations
Prime

[0] [1] [2] [3] [4] ... [1426]