Sequence Database

A database with 497817 machine generated integer and decimal sequences.

Displaying the first 100 results.

Sequence buqmnzuccjoq

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, constant, periodic, monotonic, 0, A000004

a(n)=a(n-1)
a(0)=0
n≥0
1 operation
Recursive
r
a(n)=τ(a(n-1))
a(0)=0
τ(n)=number of divisors of n
n≥0
2 operations
PrimeRecursive

Sequence 12b2eijt5ce1

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, more...

integer, constant, periodic, monotonic, +, A007395

a(n)=2
n≥0
1 operation
Constant
2
a(n)=a(n-1)
a(0)=2
n≥0
1 operation
Recursive
r
a(n)=τ(a(n-1))
a(0)=2
τ(n)=number of divisors of n
n≥0
2 operations
PrimeRecursive

Sequence okvxpoucbqnai

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-constant, non-monotonic, +, A000005

a(n)=τ(n)
τ(n)=number of divisors of n
n≥1
2 operations
Prime

Sequence xs5ftugsnt13o

-1, -2, -2, -3, -2, -4, -2, -4, -3, -4, -2, -6, -2, -4, -4, -5, -2, -6, -2, -6, -4, -4, -2, -8, -3, -4, -4, -6, -2, -8, -2, -6, -4, -4, -4, -9, -2, -4, -4, -8, -2, -8, -2, -6, -6, -4, -2, -10, -3, -6, more...

integer, non-constant, non-monotonic, -

a(n)=-τ(n)
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτ~

Sequence da2x1aan3aikl

0, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.6094379124, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(τ(n))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime
nτΛ

Sequence nd5ihn2nu41fd

0, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.3862943611, 0.6931471806, 1.3862943611, 1.0986122887, 1.3862943611, 0.6931471806, 1.7917594692, 0.6931471806, 1.3862943611, 1.3862943611, 1.6094379124, 0.6931471806, 1.7917594692, 0.6931471806, 1.7917594692, 1.3862943611, 1.3862943611, 0.6931471806, 2.0794415417, 1.0986122887, 1.3862943611, 1.3862943611, 1.7917594692, 0.6931471806, 2.0794415417, 0.6931471806, 1.7917594692, 1.3862943611, 1.3862943611, 1.3862943611, 2.1972245773, 0.6931471806, 1.3862943611, 1.3862943611, 2.0794415417, 0.6931471806, 2.0794415417, 0.6931471806, 1.7917594692, 1.7917594692, 1.3862943611, 0.6931471806, 2.302585093, 1.0986122887, 1.7917594692, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτl

Sequence e2qbkst0bnmrh

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, non-monotonic, +0, A063524

a(n)=floor(sin(π/n))
Pi (3.141...)
n≥1
5 operations
N
πn/Sf
a(n)=a(n-1)*a(n-2)
a(0)=0
a(1)=1
n≥0
3 operations
Recursive
rs*
a(n)=τ(a(n-1))*a(n-2)
a(0)=0
a(1)=1
τ(n)=number of divisors of n
n≥0
4 operations
PrimeRecursive
rτs*

Sequence fb1agpv3bbaum

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, more...

integer, non-constant, non-monotonic, +0, A058061

a(n)=Ω(τ(n))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nτΩ

Sequence pc0bxdqamjwyb

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, more...

integer, non-constant, non-monotonic, +0, A036430

a(n)=τ(Ω(n))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nΩτ

Sequence tmnk5sdb5wxbm

0.5403023059, -0.4161468365, -0.4161468365, -0.9899924966, -0.4161468365, -0.6536436209, -0.4161468365, -0.6536436209, -0.9899924966, -0.6536436209, -0.4161468365, 0.9601702867, -0.4161468365, -0.6536436209, -0.6536436209, 0.2836621855, -0.4161468365, 0.9601702867, -0.4161468365, 0.9601702867, -0.6536436209, -0.6536436209, -0.4161468365, -0.1455000338, -0.9899924966, -0.6536436209, -0.6536436209, 0.9601702867, -0.4161468365, -0.1455000338, -0.4161468365, 0.9601702867, -0.6536436209, -0.6536436209, -0.6536436209, -0.9111302619, -0.4161468365, -0.6536436209, -0.6536436209, -0.1455000338, -0.4161468365, -0.1455000338, -0.4161468365, 0.9601702867, 0.9601702867, -0.6536436209, -0.4161468365, -0.8390715291, -0.9899924966, 0.9601702867, more...

decimal, non-constant, non-monotonic, +-

a(n)=cos(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτO

Sequence zpgb4d3xyvlkb

0.8414709848, 0.9092974268, 0.9092974268, 0.1411200081, 0.9092974268, -0.7568024953, 0.9092974268, -0.7568024953, 0.1411200081, -0.7568024953, 0.9092974268, -0.2794154982, 0.9092974268, -0.7568024953, -0.7568024953, -0.9589242747, 0.9092974268, -0.2794154982, 0.9092974268, -0.2794154982, -0.7568024953, -0.7568024953, 0.9092974268, 0.9893582466, 0.1411200081, -0.7568024953, -0.7568024953, -0.2794154982, 0.9092974268, 0.9893582466, 0.9092974268, -0.2794154982, -0.7568024953, -0.7568024953, -0.7568024953, 0.4121184852, 0.9092974268, -0.7568024953, -0.7568024953, 0.9893582466, 0.9092974268, 0.9893582466, 0.9092974268, -0.2794154982, -0.2794154982, -0.7568024953, 0.9092974268, -0.5440211109, 0.1411200081, -0.2794154982, more...

decimal, non-constant, non-monotonic, +-

a(n)=sin(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτS

Sequence qh5d0mo2ex3xp

1, -1, -1, -1, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, -1, -1, 1, -1, 1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 1, 1, 0, -1, 1, -1, 1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(τ(n))
τ(n)=number of divisors of n
μ(n)=Möbius function
n≥1
3 operations
Prime
nτμ

Sequence 3onif5sxnnxan

1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, more...

integer, non-constant, non-monotonic, +-, A064179

a(n)=λ(τ(n))
τ(n)=number of divisors of n
λ(n)=Liouville's function
n≥1
3 operations
Prime
nτλ
a(n)=λ(τ(n+abs(a(n-1))))
a(0)=1
τ(n)=number of divisors of n
λ(n)=Liouville's function
n≥0
6 operations
PrimeRecursive
nr|+τλ

Sequence 5fvojtqjmm2dp

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 4, 2, 2, more...

integer, non-constant, non-monotonic, +, A163109

a(n)=ϕ(τ(n))
τ(n)=number of divisors of n
ϕ(n)=Euler's totient function
n≥1
3 operations
Prime
nτϕ

Sequence gosfzvrwl0def

1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 3, 6, 4, 4, 4, 5, 4, 6, 4, 6, 4, 4, 4, 6, 6, 6, 6, 6, 4, 8, 5, 6, 5, 8, 6, 9, 6, 8, 5, 8, 6, 8, 6, 8, 4, 4, 5, 8, 6, more...

integer, non-constant, non-monotonic, +, A062821

a(n)=τ(ϕ(n))
ϕ(n)=Euler's totient function
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nϕτ

Sequence a505cn5ztocyg

1, 1.4142135624, 1.4142135624, 1.7320508076, 1.4142135624, 2, 1.4142135624, 2, 1.7320508076, 2, 1.4142135624, 2.4494897428, 1.4142135624, 2, 2, 2.2360679775, 1.4142135624, 2.4494897428, 1.4142135624, 2.4494897428, 2, 2, 1.4142135624, 2.8284271247, 1.7320508076, 2, 2, 2.4494897428, 1.4142135624, 2.8284271247, 1.4142135624, 2.4494897428, 2, 2, 2, 3, 1.4142135624, 2, 2, 2.8284271247, 1.4142135624, 2.8284271247, 1.4142135624, 2.4494897428, 2.4494897428, 2, 1.4142135624, 3.1622776602, 1.7320508076, 2.4494897428, more...

decimal, non-constant, non-monotonic, +

a(n)=sqrt(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτQ

Sequence 1he1b5cqxwfpi

1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 3, 3, 3, 3, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, more...

integer, non-constant, non-monotonic, +, A010553

a(n)=τ(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nττ

Sequence fzq0rcslabrnh

1, 2, 2, 6, 2, 24, 2, 24, 6, 24, 2, 720, 2, 24, 24, 120, 2, 720, 2, 720, 24, 24, 2, 40320, 6, 24, 24, 720, 2, 40320, 2, 720, 24, 24, 24, 362880, 2, 24, 24, 40320, 2, 40320, 2, 720, 720, 24, 2, 3628800, 6, 720, more...

integer, non-constant, non-monotonic, +, A130674

a(n)=τ(n)!
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτ!

Sequence zfmbima0aiewf

1.5574077247, -2.1850398633, -2.1850398633, -0.1425465431, -2.1850398633, 1.1578212823, -2.1850398633, 1.1578212823, -0.1425465431, 1.1578212823, -2.1850398633, -0.2910061914, -2.1850398633, 1.1578212823, 1.1578212823, -3.3805150062, -2.1850398633, -0.2910061914, -2.1850398633, -0.2910061914, 1.1578212823, 1.1578212823, -2.1850398633, -6.7997114552, -0.1425465431, 1.1578212823, 1.1578212823, -0.2910061914, -2.1850398633, -6.7997114552, -2.1850398633, -0.2910061914, 1.1578212823, 1.1578212823, 1.1578212823, -0.4523156594, -2.1850398633, 1.1578212823, 1.1578212823, -6.7997114552, -2.1850398633, -6.7997114552, -2.1850398633, -0.2910061914, -0.2910061914, 1.1578212823, -2.1850398633, 0.6483608275, -0.1425465431, -0.2910061914, more...

decimal, non-constant, non-monotonic, +-

a(n)=tan(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτW

Sequence 1feqa5on0jh1o

2.7182818285, 7.3890560989, 7.3890560989, 20.0855369232, 7.3890560989, 54.5981500331, 7.3890560989, 54.5981500331, 20.0855369232, 54.5981500331, 7.3890560989, 403.4287934927, 7.3890560989, 54.5981500331, 54.5981500331, 148.4131591026, 7.3890560989, 403.4287934927, 7.3890560989, 403.4287934927, 54.5981500331, 54.5981500331, 7.3890560989, 2980.9579870417, 20.0855369232, 54.5981500331, 54.5981500331, 403.4287934927, 7.3890560989, 2980.9579870417, 7.3890560989, 403.4287934927, 54.5981500331, 54.5981500331, 54.5981500331, 8103.0839275754, 7.3890560989, 54.5981500331, 54.5981500331, 2980.9579870417, 7.3890560989, 2980.9579870417, 7.3890560989, 403.4287934927, 403.4287934927, 54.5981500331, 7.3890560989, 22026.4657948067, 20.0855369232, 403.4287934927, more...

decimal, non-constant, non-monotonic, +

a(n)=exp(τ(n))
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nτe

Sequence yww5kj0bjbyfi

3, 5, 5, 7, 5, 11, 5, 11, 7, 11, 5, 17, 5, 11, 11, 13, 5, 17, 5, 17, 11, 11, 5, 23, 7, 11, 11, 17, 5, 23, 5, 17, 11, 11, 11, 29, 5, 11, 11, 23, 5, 23, 5, 17, 17, 11, 5, 31, 7, 17, more...

integer, non-constant, non-monotonic, +

a(n)=p(τ(n))
τ(n)=number of divisors of n
p(n)=nth prime
n≥1
3 operations
Prime
nτp

Sequence 1fcrhdaizsozj

-9, -8, -8, -7, -8, -6, -8, -6, -7, -6, -8, -4, -8, -6, -6, -5, -8, -4, -8, -4, -6, -6, -8, -2, -7, -6, -6, -4, -8, -2, -8, -4, -6, -6, -6, -1, -8, -6, -6, -2, -8, -2, -8, -4, -4, -6, -8, 0, -7, -4, more...

integer, non-constant, non-monotonic, -0

a(n)=τ(n)-10
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ10-

Sequence ntbbeent133wf

-8, -7, -7, -6, -7, -5, -7, -5, -6, -5, -7, -3, -7, -5, -5, -4, -7, -3, -7, -3, -5, -5, -7, -1, -6, -5, -5, -3, -7, -1, -7, -3, -5, -5, -5, 0, -7, -5, -5, -1, -7, -1, -7, -3, -3, -5, -7, 1, -6, -3, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-9
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ9-

Sequence ry4jwmeafi0jd

-7, -6, -6, -5, -6, -4, -6, -4, -5, -4, -6, -2, -6, -4, -4, -3, -6, -2, -6, -2, -4, -4, -6, 0, -5, -4, -4, -2, -6, 0, -6, -2, -4, -4, -4, 1, -6, -4, -4, 0, -6, 0, -6, -2, -2, -4, -6, 2, -5, -2, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-8
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ8-

Sequence aigj5vdn5zgvb

-6, -5, -5, -4, -5, -3, -5, -3, -4, -3, -5, -1, -5, -3, -3, -2, -5, -1, -5, -1, -3, -3, -5, 1, -4, -3, -3, -1, -5, 1, -5, -1, -3, -3, -3, 2, -5, -3, -3, 1, -5, 1, -5, -1, -1, -3, -5, 3, -4, -1, more...

integer, non-constant, non-monotonic, +-

a(n)=τ(n)-7
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ7-

Sequence lgp331peligqe

-5, -4, -4, -3, -4, -2, -4, -2, -3, -2, -4, 0, -4, -2, -2, -1, -4, 0, -4, 0, -2, -2, -4, 2, -3, -2, -2, 0, -4, 2, -4, 0, -2, -2, -2, 3, -4, -2, -2, 2, -4, 2, -4, 0, 0, -2, -4, 4, -3, 0, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-6
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ6-

Sequence aa35uypmjkgei

-4, -3, -3, -2, -3, -1, -3, -1, -2, -1, -3, 1, -3, -1, -1, 0, -3, 1, -3, 1, -1, -1, -3, 3, -2, -1, -1, 1, -3, 3, -3, 1, -1, -1, -1, 4, -3, -1, -1, 3, -3, 3, -3, 1, 1, -1, -3, 5, -2, 1, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-5
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ5-

Sequence iitpbq0q0bs2b

-3, -5, -5, -7, -5, -11, -5, -11, -7, -11, -5, -17, -5, -11, -11, -13, -5, -17, -5, -17, -11, -11, -5, -23, -7, -11, -11, -17, -5, -23, -5, -17, -11, -11, -11, -29, -5, -11, -11, -23, -5, -23, -5, -17, -17, -11, -5, -31, -7, -17, more...

integer, non-constant, non-monotonic, -

a(n)=-p(τ(n))
τ(n)=number of divisors of n
p(n)=nth prime
n≥1
4 operations
Prime
nτp~

Sequence jxwoojuaxi2rk

-3, -2, -2, -1, -2, 0, -2, 0, -1, 0, -2, 2, -2, 0, 0, 1, -2, 2, -2, 2, 0, 0, -2, 4, -1, 0, 0, 2, -2, 4, -2, 2, 0, 0, 0, 5, -2, 0, 0, 4, -2, 4, -2, 2, 2, 0, -2, 6, -1, 2, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-4
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ4-

Sequence zglpgdjygujc

-2.7182818285, -7.3890560989, -7.3890560989, -20.0855369232, -7.3890560989, -54.5981500331, -7.3890560989, -54.5981500331, -20.0855369232, -54.5981500331, -7.3890560989, -403.4287934927, -7.3890560989, -54.5981500331, -54.5981500331, -148.4131591026, -7.3890560989, -403.4287934927, -7.3890560989, -403.4287934927, -54.5981500331, -54.5981500331, -7.3890560989, -2980.9579870417, -20.0855369232, -54.5981500331, -54.5981500331, -403.4287934927, -7.3890560989, -2980.9579870417, -7.3890560989, -403.4287934927, -54.5981500331, -54.5981500331, -54.5981500331, -8103.0839275754, -7.3890560989, -54.5981500331, -54.5981500331, -2980.9579870417, -7.3890560989, -2980.9579870417, -7.3890560989, -403.4287934927, -403.4287934927, -54.5981500331, -7.3890560989, -22026.4657948067, -20.0855369232, -403.4287934927, more...

decimal, non-constant, non-monotonic, -

a(n)=-exp(τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτe~

Sequence fx1pifk1x4qdm

-2.1415926536, -1.1415926536, -1.1415926536, -0.1415926536, -1.1415926536, 0.8584073464, -1.1415926536, 0.8584073464, -0.1415926536, 0.8584073464, -1.1415926536, 2.8584073464, -1.1415926536, 0.8584073464, 0.8584073464, 1.8584073464, -1.1415926536, 2.8584073464, -1.1415926536, 2.8584073464, 0.8584073464, 0.8584073464, -1.1415926536, 4.8584073464, -0.1415926536, 0.8584073464, 0.8584073464, 2.8584073464, -1.1415926536, 4.8584073464, -1.1415926536, 2.8584073464, 0.8584073464, 0.8584073464, 0.8584073464, 5.8584073464, -1.1415926536, 0.8584073464, 0.8584073464, 4.8584073464, -1.1415926536, 4.8584073464, -1.1415926536, 2.8584073464, 2.8584073464, 0.8584073464, -1.1415926536, 6.8584073464, -0.1415926536, 2.8584073464, more...

decimal, non-constant, non-monotonic, +-

a(n)=τ(n)-π
τ(n)=number of divisors of n
Pi (3.141...)
n≥1
4 operations
Prime
nτπ-

Sequence ugxwjzk0wilql

-2, -1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 3, -1, 1, 1, 2, -1, 3, -1, 3, 1, 1, -1, 5, 0, 1, 1, 3, -1, 5, -1, 3, 1, 1, 1, 6, -1, 1, 1, 5, -1, 5, -1, 3, 3, 1, -1, 7, 0, 3, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-3
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ3-

Sequence ivyvn2uusbrmf

-1.5574077247, 2.1850398633, 2.1850398633, 0.1425465431, 2.1850398633, -1.1578212823, 2.1850398633, -1.1578212823, 0.1425465431, -1.1578212823, 2.1850398633, 0.2910061914, 2.1850398633, -1.1578212823, -1.1578212823, 3.3805150062, 2.1850398633, 0.2910061914, 2.1850398633, 0.2910061914, -1.1578212823, -1.1578212823, 2.1850398633, 6.7997114552, 0.1425465431, -1.1578212823, -1.1578212823, 0.2910061914, 2.1850398633, 6.7997114552, 2.1850398633, 0.2910061914, -1.1578212823, -1.1578212823, -1.1578212823, 0.4523156594, 2.1850398633, -1.1578212823, -1.1578212823, 6.7997114552, 2.1850398633, 6.7997114552, 2.1850398633, 0.2910061914, 0.2910061914, -1.1578212823, 2.1850398633, -0.6483608275, 0.1425465431, 0.2910061914, more...

decimal, non-constant, non-monotonic, +-

a(n)=tan(-τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ~W

Sequence fzarprdttzfpo

-1, -2, -2, -6, -2, -24, -2, -24, -6, -24, -2, -720, -2, -24, -24, -120, -2, -720, -2, -720, -24, -24, -2, -40320, -6, -24, -24, -720, -2, -40320, -2, -720, -24, -24, -24, -362880, -2, -24, -24, -40320, -2, -40320, -2, -720, -720, -24, -2, -3628800, -6, -720, more...

integer, non-constant, non-monotonic, -

a(n)=-τ(n)!
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ!~

Sequence 1c1w3ilzw33nk

-1, -2, -2, -2, -2, -3, -2, -3, -2, -3, -2, -4, -2, -3, -3, -2, -2, -4, -2, -4, -3, -3, -2, -4, -2, -3, -3, -4, -2, -4, -2, -4, -3, -3, -3, -3, -2, -3, -3, -4, -2, -4, -2, -4, -4, -3, -2, -4, -2, -4, more...

integer, non-constant, non-monotonic, -

a(n)=-τ(τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nττ~

Sequence dqrkqthxekqzm

-1, -1.4142135624, -1.4142135624, -1.7320508076, -1.4142135624, -2, -1.4142135624, -2, -1.7320508076, -2, -1.4142135624, -2.4494897428, -1.4142135624, -2, -2, -2.2360679775, -1.4142135624, -2.4494897428, -1.4142135624, -2.4494897428, -2, -2, -1.4142135624, -2.8284271247, -1.7320508076, -2, -2, -2.4494897428, -1.4142135624, -2.8284271247, -1.4142135624, -2.4494897428, -2, -2, -2, -3, -1.4142135624, -2, -2, -2.8284271247, -1.4142135624, -2.8284271247, -1.4142135624, -2.4494897428, -2.4494897428, -2, -1.4142135624, -3.1622776602, -1.7320508076, -2.4494897428, more...

decimal, non-constant, non-monotonic, -

a(n)=-sqrt(τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτQ~

Sequence vivrpjhqvsiwd

-1, -1, -2, -2, -3, -2, -4, -3, -4, -3, -4, -3, -6, -4, -4, -4, -5, -4, -6, -4, -6, -4, -4, -4, -6, -6, -6, -6, -6, -4, -8, -5, -6, -5, -8, -6, -9, -6, -8, -5, -8, -6, -8, -6, -8, -4, -4, -5, -8, -6, more...

integer, non-constant, non-monotonic, -

a(n)=-τ(ϕ(n))
ϕ(n)=Euler's totient function
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nϕτ~

Sequence y2npetz5reokp

-1, -1, -1, -2, -1, -2, -1, -2, -2, -2, -1, -2, -1, -2, -2, -4, -1, -2, -1, -2, -2, -2, -1, -4, -2, -2, -2, -2, -1, -4, -1, -2, -2, -2, -2, -6, -1, -2, -2, -4, -1, -4, -1, -2, -2, -2, -1, -4, -2, -2, more...

integer, non-constant, non-monotonic, -

a(n)=-ϕ(τ(n))
τ(n)=number of divisors of n
ϕ(n)=Euler's totient function
n≥1
4 operations
Prime
nτϕ~

Sequence mym0frvnx04rc

-1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 3, 0, 4, 0, 4, 2, 2, 0, 6, 1, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 7, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 1, 4, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-2
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ2-

Sequence nbhgkjjbu2i3b

-1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, more...

integer, non-constant, non-monotonic, +-

a(n)=-λ(τ(n))
τ(n)=number of divisors of n
λ(n)=Liouville's function
n≥1
4 operations
Prime
nτλ~

Sequence m4u1kdhos0zhn

-1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, 0, 1, 1, -1, 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, -1, -1, 0, 1, -1, 1, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=-μ(τ(n))
τ(n)=number of divisors of n
μ(n)=Möbius function
n≥1
4 operations
Prime
nτμ~

Sequence vjqfczzrjjj1c

-0.9899924966, 0.2836621855, 0.2836621855, 0.7539022543, 0.2836621855, 0.004425698, 0.2836621855, 0.004425698, 0.7539022543, 0.004425698, 0.2836621855, -0.2751633381, 0.2836621855, 0.004425698, 0.004425698, 0.9074467815, 0.2836621855, -0.2751633381, 0.2836621855, -0.2751633381, 0.004425698, 0.004425698, 0.2836621855, -0.5328330203, 0.7539022543, 0.004425698, 0.004425698, -0.2751633381, 0.2836621855, -0.5328330203, 0.2836621855, -0.2751633381, 0.004425698, 0.004425698, 0.004425698, -0.7480575297, 0.2836621855, 0.004425698, 0.004425698, -0.5328330203, 0.2836621855, -0.5328330203, 0.2836621855, -0.2751633381, -0.2751633381, 0.004425698, 0.2836621855, 0.9147423578, 0.7539022543, -0.2751633381, more...

decimal, non-constant, non-monotonic, +-

a(n)=cos(p(τ(n)))
τ(n)=number of divisors of n
p(n)=nth prime
n≥1
4 operations
Prime
nτpO

Sequence ukyxfawagclqo

-0.9117339148, 0.4483562418, 0.4483562418, 0.3285947554, 0.4483562418, -0.3706617334, 0.4483562418, -0.3706617334, 0.3285947554, -0.3706617334, 0.4483562418, 0.2627415567, 0.4483562418, -0.3706617334, -0.3706617334, -0.7260031145, 0.4483562418, 0.2627415567, 0.4483562418, 0.2627415567, -0.3706617334, -0.3706617334, 0.4483562418, -0.9157436949, 0.3285947554, -0.3706617334, -0.3706617334, 0.2627415567, 0.4483562418, -0.9157436949, 0.4483562418, 0.2627415567, -0.3706617334, -0.3706617334, -0.3706617334, -0.6086217021, 0.4483562418, -0.3706617334, -0.3706617334, -0.9157436949, 0.4483562418, -0.9157436949, 0.4483562418, 0.2627415567, 0.2627415567, -0.3706617334, 0.4483562418, -0.725042318, 0.3285947554, 0.2627415567, more...

decimal, non-constant, non-monotonic, +-

a(n)=cos(exp(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτeO

Sequence k4kqzemehunxe

-0.8414709848, -0.9092974268, -0.9092974268, -0.1411200081, -0.9092974268, 0.7568024953, -0.9092974268, 0.7568024953, -0.1411200081, 0.7568024953, -0.9092974268, 0.2794154982, -0.9092974268, 0.7568024953, 0.7568024953, 0.9589242747, -0.9092974268, 0.2794154982, -0.9092974268, 0.2794154982, 0.7568024953, 0.7568024953, -0.9092974268, -0.9893582466, -0.1411200081, 0.7568024953, 0.7568024953, 0.2794154982, -0.9092974268, -0.9893582466, -0.9092974268, 0.2794154982, 0.7568024953, 0.7568024953, 0.7568024953, -0.4121184852, -0.9092974268, 0.7568024953, 0.7568024953, -0.9893582466, -0.9092974268, -0.9893582466, -0.9092974268, 0.2794154982, 0.2794154982, 0.7568024953, -0.9092974268, 0.5440211109, -0.1411200081, 0.2794154982, more...

decimal, non-constant, non-monotonic, +-

a(n)=sin(-τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ~S

Sequence 1k23f5zacftal

-0.5403023059, 0.4161468365, 0.4161468365, 0.9899924966, 0.4161468365, 0.6536436209, 0.4161468365, 0.6536436209, 0.9899924966, 0.6536436209, 0.4161468365, -0.9601702867, 0.4161468365, 0.6536436209, 0.6536436209, -0.2836621855, 0.4161468365, -0.9601702867, 0.4161468365, -0.9601702867, 0.6536436209, 0.6536436209, 0.4161468365, 0.1455000338, 0.9899924966, 0.6536436209, 0.6536436209, -0.9601702867, 0.4161468365, 0.1455000338, 0.4161468365, -0.9601702867, 0.6536436209, 0.6536436209, 0.6536436209, 0.9111302619, 0.4161468365, 0.6536436209, 0.6536436209, 0.1455000338, 0.4161468365, 0.1455000338, 0.4161468365, -0.9601702867, -0.9601702867, 0.6536436209, 0.4161468365, 0.8390715291, 0.9899924966, -0.9601702867, more...

decimal, non-constant, non-monotonic, +-

a(n)=-cos(τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτO~

Sequence 5y5glsv4hk5up

-0.4505495341, 1.9936266556, 1.9936266556, 2.8742729253, 1.9936266556, 2.5057022416, 1.9936266556, 2.5057022416, 2.8742729253, 2.5057022416, 1.9936266556, 3.67230163, 1.9936266556, 2.5057022416, 2.5057022416, 0.9472292859, 1.9936266556, 3.67230163, 1.9936266556, 3.67230163, 2.5057022416, 2.5057022416, 1.9936266556, -0.4387286244, 2.8742729253, 2.5057022416, 2.5057022416, 3.67230163, 1.9936266556, -0.4387286244, 1.9936266556, 3.67230163, 2.5057022416, 2.5057022416, 2.5057022416, 1.3037006966, 1.9936266556, 2.5057022416, 2.5057022416, -0.4387286244, 1.9936266556, -0.4387286244, 1.9936266556, 3.67230163, 3.67230163, 2.5057022416, 1.9936266556, 0.9498815456, 2.8742729253, 3.67230163, more...

decimal, non-constant, non-monotonic, +-

a(n)=tan(exp(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτeW

Sequence 55h2b2xbam5ak

-0.3665129206, -0.3665129206, 0.0940478276, -0.3665129206, 0.32663426, -0.3665129206, 0.32663426, 0.0940478276, 0.32663426, -0.3665129206, 0.5831980808, -0.3665129206, 0.32663426, 0.32663426, 0.4758849953, -0.3665129206, 0.5831980808, -0.3665129206, 0.5831980808, 0.32663426, 0.32663426, -0.3665129206, 0.7320993681, 0.0940478276, 0.32663426, 0.32663426, 0.5831980808, -0.3665129206, 0.7320993681, -0.3665129206, 0.5831980808, 0.32663426, 0.32663426, 0.32663426, 0.7871950082, -0.3665129206, 0.32663426, 0.32663426, 0.7320993681, -0.3665129206, 0.7320993681, -0.3665129206, 0.5831980808, 0.5831980808, 0.32663426, -0.3665129206, 0.8340324452, 0.0940478276, 0.5831980808, 0.32663426, more...

decimal, non-constant, non-monotonic, +-

a(n)=ln(ln(τ(n)))
τ(n)=number of divisors of n
n≥2
4 operations
Prime
nτll

Sequence ljg3pcg1a2nqb

-0.1425465431, -3.3805150062, -3.3805150062, 0.8714479827, -3.3805150062, -225.9508464542, -3.3805150062, -225.9508464542, 0.8714479827, -225.9508464542, -3.3805150062, 3.4939156455, -3.3805150062, -225.9508464542, -225.9508464542, 0.4630211329, -3.3805150062, 3.4939156455, -3.3805150062, 3.4939156455, -225.9508464542, -225.9508464542, -3.3805150062, 1.5881530834, 0.8714479827, -225.9508464542, -225.9508464542, 3.4939156455, -3.3805150062, 1.5881530834, -3.3805150062, 3.4939156455, -225.9508464542, -225.9508464542, -225.9508464542, 0.8871428438, -3.3805150062, -225.9508464542, -225.9508464542, 1.5881530834, -3.3805150062, 1.5881530834, -3.3805150062, 3.4939156455, 3.4939156455, -225.9508464542, -3.3805150062, -0.441695568, 0.8714479827, 3.4939156455, more...

decimal, non-constant, non-monotonic, +-

a(n)=tan(p(τ(n)))
τ(n)=number of divisors of n
p(n)=nth prime
n≥1
4 operations
Prime
nτpW

Sequence 0133odah2lalg

0, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, -3.1415926536, more...

decimal, non-constant, monotonic, -0

a(n)=sin(a(n-1))-π
a(0)=0
Pi (3.141...)
n≥0
4 operations
Recursive
rSπ-
a(n)=τ(sin(a(n-1)))-π
a(0)=0
τ(n)=number of divisors of n
Pi (3.141...)
n≥0
5 operations
PrimeRecursive
rSτπ-

Sequence 1xzdccrfrxqzm

0, -1, -3, -5, -8, -10, -14, -16, -20, -23, -27, -29, -35, -37, -41, -45, -50, -52, -58, -60, -66, -70, -74, -76, -84, -87, -91, -95, -101, -103, -111, -113, -119, -123, -127, -131, -140, -142, -146, -150, -158, -160, -168, -170, -176, -182, -186, -188, -198, -201, more...

integer, non-constant, strictly-monotonic, -0

a(n)=a(n-1)-τ(n)
a(0)=0
τ(n)=number of divisors of n
n≥0
4 operations
PrimeRecursive
rnτ-

Sequence di2ldswnuu3wc

0, -1, -1, -2, -1, -3, -1, -3, -2, -3, -1, -5, -1, -3, -3, -4, -1, -5, -1, -5, -3, -3, -1, -7, -2, -3, -3, -5, -1, -7, -1, -5, -3, -3, -3, -8, -1, -3, -3, -7, -1, -7, -1, -5, -5, -3, -1, -9, -2, -5, more...

integer, non-constant, non-monotonic, -0

a(n)=1-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
1nτ-

Sequence p25ckaa1lwmul

0, -1, -1, -2, -1, -2, -1, -2, -2, -2, -1, -2, -1, -2, -2, -3, -1, -2, -1, -2, -2, -2, -1, -3, -2, -2, -2, -2, -1, -2, -1, -2, -2, -2, -2, -3, -1, -2, -2, -3, -1, -2, -1, -2, -2, -2, -1, -2, -2, -2, more...

integer, non-constant, non-monotonic, -0

a(n)=-τ(Ω(n))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nΩτ~

Sequence ufvzs2rvu2dcn

0, -1, -1, -1, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -2, -1, -1, -2, -1, -2, -2, -2, -1, -3, -1, -2, -2, -2, -1, -3, -1, -2, -2, -2, -2, -2, -1, -2, -2, -3, -1, -3, -1, -2, -2, -2, -1, -2, -1, -2, more...

integer, non-constant, non-monotonic, -0

a(n)=-Ω(τ(n))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nτΩ~

Sequence hgksxfgdmnfre

0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, 0, -1, 0, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(cos(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτOf

Sequence qdamekzw4hhgp

0, -0.6931471806, -0.6931471806, -1.0986122887, -0.6931471806, -1.3862943611, -0.6931471806, -1.3862943611, -1.0986122887, -1.3862943611, -0.6931471806, -1.7917594692, -0.6931471806, -1.3862943611, -1.3862943611, -1.6094379124, -0.6931471806, -1.7917594692, -0.6931471806, -1.7917594692, -1.3862943611, -1.3862943611, -0.6931471806, -2.0794415417, -1.0986122887, -1.3862943611, -1.3862943611, -1.7917594692, -0.6931471806, -2.0794415417, -0.6931471806, -1.7917594692, -1.3862943611, -1.3862943611, -1.3862943611, -2.1972245773, -0.6931471806, -1.3862943611, -1.3862943611, -2.0794415417, -0.6931471806, -2.0794415417, -0.6931471806, -1.7917594692, -1.7917594692, -1.3862943611, -0.6931471806, -2.302585093, -1.0986122887, -1.7917594692, more...

decimal, non-constant, non-monotonic, -0

a(n)=-ln(τ(n))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτl~

Sequence emcdbnrhbvs0b

0, -0.6931471806, -0.6931471806, -1.0986122887, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, -1.0986122887, -0.6931471806, -0.6931471806, 0, -0.6931471806, -0.6931471806, -0.6931471806, -1.6094379124, -0.6931471806, 0, -0.6931471806, 0, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, -1.0986122887, -0.6931471806, -0.6931471806, 0, -0.6931471806, -0.6931471806, -0.6931471806, 0, -0.6931471806, -0.6931471806, -0.6931471806, -1.0986122887, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, 0, 0, -0.6931471806, -0.6931471806, 0, -1.0986122887, 0, more...

decimal, non-constant, non-monotonic, -0

a(n)=-Λ(τ(n))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛ~

Sequence vt3f30yu5nqll

0, 0, -1, -1, -3, -2, -5, -4, -6, -6, -9, -6, -11, -10, -11, -11, -15, -12, -17, -14, -17, -18, -21, -16, -22, -22, -23, -22, -27, -22, -29, -26, -29, -30, -31, -27, -35, -34, -35, -32, -39, -34, -41, -38, -39, -42, -45, -38, -46, -44, more...

integer, non-constant, non-monotonic, -0

a(n)=τ(n)-n
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτn-

Sequence hzg5xjqzavu1e

0, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, -1, 0, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=floor(sin(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτSf

Sequence 5ur4ag2kmkefm

0, 0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΩΛ

Sequence qvufwbyowbeqf

0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nτΩl

Sequence prhaibd5kipil

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(ϕ(τ(n)))
τ(n)=number of divisors of n
ϕ(n)=Euler's totient function
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτϕΛ

Sequence o4p0cpwsm0xlk

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(τ(Ω(n)))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩτΛ

Sequence fjzgs0c42stte

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.3862943611, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.3862943611, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.7917594692, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0, 1.3862943611, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.3862943611, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(ϕ(τ(n)))
τ(n)=number of divisors of n
ϕ(n)=Euler's totient function
n≥1
4 operations
Prime
nτϕl

Sequence x3r1iqnyl1bpj

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛf

Sequence j5u0towdkytej

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlf

Sequence ohz4b3omzj2vh

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(ϕ(τ(n)))
τ(n)=number of divisors of n
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nτϕΩ

Sequence voev0bwgdwqpf

0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(τ(Ω(n)))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥2
4 operations
Prime
nΩτl

Sequence kdgo5st3fjgvl

0, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.6094379124, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0, 0, 0, 0, 0.6931471806, 0.6931471806, 1.6094379124, 0, 1.6094379124, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 1.6094379124, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.6094379124, 0.6931471806, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(τ(ϕ(n)))
ϕ(n)=Euler's totient function
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nϕτΛ

Sequence sa4ebqyhc5nbd

0, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.3862943611, 1.0986122887, 1.3862943611, 1.0986122887, 1.3862943611, 1.0986122887, 1.7917594692, 1.3862943611, 1.3862943611, 1.3862943611, 1.6094379124, 1.3862943611, 1.7917594692, 1.3862943611, 1.7917594692, 1.3862943611, 1.3862943611, 1.3862943611, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.7917594692, 1.3862943611, 2.0794415417, 1.6094379124, 1.7917594692, 1.6094379124, 2.0794415417, 1.7917594692, 2.1972245773, 1.7917594692, 2.0794415417, 1.6094379124, 2.0794415417, 1.7917594692, 2.0794415417, 1.7917594692, 2.0794415417, 1.3862943611, 1.3862943611, 1.6094379124, 2.0794415417, 1.7917594692, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(τ(ϕ(n)))
ϕ(n)=Euler's totient function
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nϕτl

Sequence 3mrutkxmdzhxf

0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 3, 2, 3, 2, 2, 1, 3, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(τ(ϕ(n)))
ϕ(n)=Euler's totient function
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕτΩ

Sequence 5xgijurrfl1vh

0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 3, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 1, 8, 1, 2, more...

integer, non-constant, non-monotonic, +0, A054008

a(n)=n%τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nnτ%

Sequence 2zummjwq1a1eg

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=τ(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nϕΩτ

Sequence ilb15r5z5tzek

0, 0, 1, 1, 3, 2, 5, 4, 6, 6, 9, 6, 11, 10, 11, 11, 15, 12, 17, 14, 17, 18, 21, 16, 22, 22, 23, 22, 27, 22, 29, 26, 29, 30, 31, 27, 35, 34, 35, 32, 39, 34, 41, 38, 39, 42, 45, 38, 46, 44, more...

integer, non-constant, non-monotonic, +0, A049820

a(n)=n-τ(n)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nnτ-

Sequence pf2pvrjiovxoo

0, 0, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, more...

integer, non-constant, non-monotonic, +0

a(n)=τ(n)%n
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτn%

Sequence 3lxhzcbb10fhh

0, 0.3465735903, 0.3465735903, 0.5493061443, 0.3465735903, 0.6931471806, 0.3465735903, 0.6931471806, 0.5493061443, 0.6931471806, 0.3465735903, 0.8958797346, 0.3465735903, 0.6931471806, 0.6931471806, 0.8047189562, 0.3465735903, 0.8958797346, 0.3465735903, 0.8958797346, 0.6931471806, 0.6931471806, 0.3465735903, 1.0397207708, 0.5493061443, 0.6931471806, 0.6931471806, 0.8958797346, 0.3465735903, 1.0397207708, 0.3465735903, 0.8958797346, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.3465735903, 0.6931471806, 0.6931471806, 1.0397207708, 0.3465735903, 1.0397207708, 0.3465735903, 0.8958797346, 0.8958797346, 0.6931471806, 0.3465735903, 1.1512925465, 0.5493061443, 0.8958797346, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(sqrt(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτQl

Sequence r554bmj3b5ltc

0, 0.6389612763, 0.6389612763, 0.8905770417, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0.8905770417, 0.6389612763, 0.6389612763, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0.9992535068, 0.6389612763, 0, 0.6389612763, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0.8905770417, 0.6389612763, 0.6389612763, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0.8905770417, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0, 0, 0.6389612763, 0.6389612763, 0, 0.8905770417, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛS

Sequence bw0zpqyhj5p

0, 0.6389612763, 0.6389612763, 0.8905770417, 0.6389612763, 0.9830277404, 0.6389612763, 0.9830277404, 0.8905770417, 0.9830277404, 0.6389612763, 0.9756868105, 0.6389612763, 0.9830277404, 0.9830277404, 0.9992535068, 0.6389612763, 0.9756868105, 0.6389612763, 0.9756868105, 0.9830277404, 0.9830277404, 0.6389612763, 0.8734050818, 0.8905770417, 0.9830277404, 0.9830277404, 0.9756868105, 0.6389612763, 0.8734050818, 0.6389612763, 0.9756868105, 0.9830277404, 0.9830277404, 0.9830277404, 0.8101266272, 0.6389612763, 0.9830277404, 0.9830277404, 0.8734050818, 0.6389612763, 0.8734050818, 0.6389612763, 0.9756868105, 0.9756868105, 0.9830277404, 0.6389612763, 0.743980337, 0.8905770417, 0.9756868105, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlS

Sequence acqc4qbxeu02j

0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 0.6931471806, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(τ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nττΛ

Sequence tyvhgxyuyjhto

0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 1.3862943611, 0.6931471806, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 1.3862943611, 0.6931471806, 1.3862943611, 1.0986122887, 1.0986122887, 0.6931471806, 1.3862943611, 0.6931471806, 1.0986122887, 1.0986122887, 1.3862943611, 0.6931471806, 1.3862943611, 0.6931471806, 1.3862943611, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 0.6931471806, 1.0986122887, 1.0986122887, 1.3862943611, 0.6931471806, 1.3862943611, 0.6931471806, 1.3862943611, 1.3862943611, 1.0986122887, 0.6931471806, 1.3862943611, 0.6931471806, 1.3862943611, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(τ(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nττl

Sequence pawhfx3d2ne2d

0, 0.6931471806, 0.6931471806, 1.7917594692, 0.6931471806, 3.1780538303, 0.6931471806, 3.1780538303, 1.7917594692, 3.1780538303, 0.6931471806, 6.579251212, 0.6931471806, 3.1780538303, 3.1780538303, 4.7874917428, 0.6931471806, 6.579251212, 0.6931471806, 6.579251212, 3.1780538303, 3.1780538303, 0.6931471806, 10.6046029027, 1.7917594692, 3.1780538303, 3.1780538303, 6.579251212, 0.6931471806, 10.6046029027, 0.6931471806, 6.579251212, 3.1780538303, 3.1780538303, 3.1780538303, 12.8018274801, 0.6931471806, 3.1780538303, 3.1780538303, 10.6046029027, 0.6931471806, 10.6046029027, 0.6931471806, 6.579251212, 6.579251212, 3.1780538303, 0.6931471806, 15.1044125731, 1.7917594692, 6.579251212, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(τ(n)!)
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτ!l

Sequence smiwkjweduupk

0, 0.8306408779, 0.8306408779, 1.9580333261, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 1.9580333261, 0.8306408779, 0.8306408779, 0, 0.8306408779, 0.8306408779, 0.8306408779, -25.8659734032, 0.8306408779, 0, 0.8306408779, 0, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 1.9580333261, 0.8306408779, 0.8306408779, 0, 0.8306408779, 0.8306408779, 0.8306408779, 0, 0.8306408779, 0.8306408779, 0.8306408779, 1.9580333261, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 0, 0, 0.8306408779, 0.8306408779, 0, 1.9580333261, 0, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛW

Sequence 2udhmtqzwmdsm

0, 0.8306408779, 0.8306408779, 1.9580333261, 0.8306408779, 5.3583557768, 0.8306408779, 5.3583557768, 1.9580333261, 5.3583557768, 0.8306408779, -4.451746403, 0.8306408779, 5.3583557768, 5.3583557768, -25.8659734032, 0.8306408779, -4.451746403, 0.8306408779, -4.451746403, 5.3583557768, 5.3583557768, 0.8306408779, -1.7934601498, 1.9580333261, 5.3583557768, 5.3583557768, -4.451746403, 0.8306408779, -1.7934601498, 0.8306408779, -4.451746403, 5.3583557768, 5.3583557768, 5.3583557768, -1.3818674774, 0.8306408779, 5.3583557768, 5.3583557768, -1.7934601498, 0.8306408779, -1.7934601498, 0.8306408779, -4.451746403, -4.451746403, 5.3583557768, 0.8306408779, -1.1134071468, 1.9580333261, -4.451746403, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlW

Sequence 511rkzrtcuy1o

0, 0.8325546112, 0.8325546112, 1.048147074, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 1.048147074, 0.8325546112, 0.8325546112, 0, 0.8325546112, 0.8325546112, 0.8325546112, 1.2686362412, 0.8325546112, 0, 0.8325546112, 0, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 1.048147074, 0.8325546112, 0.8325546112, 0, 0.8325546112, 0.8325546112, 0.8325546112, 0, 0.8325546112, 0.8325546112, 0.8325546112, 1.048147074, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 0, 0, 0.8325546112, 0.8325546112, 0, 1.048147074, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛQ

Sequence ny0zyxazx2yyg

0, 0.8325546112, 0.8325546112, 1.048147074, 0.8325546112, 1.1774100225, 0.8325546112, 1.1774100225, 1.048147074, 1.1774100225, 0.8325546112, 1.338566199, 0.8325546112, 1.1774100225, 1.1774100225, 1.2686362412, 0.8325546112, 1.338566199, 0.8325546112, 1.338566199, 1.1774100225, 1.1774100225, 0.8325546112, 1.4420268866, 1.048147074, 1.1774100225, 1.1774100225, 1.338566199, 0.8325546112, 1.4420268866, 0.8325546112, 1.338566199, 1.1774100225, 1.1774100225, 1.1774100225, 1.4823038074, 0.8325546112, 1.1774100225, 1.1774100225, 1.4420268866, 0.8325546112, 1.4420268866, 0.8325546112, 1.338566199, 1.338566199, 1.1774100225, 0.8325546112, 1.5174271294, 1.048147074, 1.338566199, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlQ

Sequence zycn0pz0w3ned

0, 0.8414709848, 0.8414709848, 0.8414709848, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.8414709848, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.1411200081, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.1411200081, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.1411200081, 0.8414709848, 0.1411200081, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nτΩS

Sequence q1gjdad2gdipp

0, 0.8414709848, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.1411200081, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.1411200081, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.1411200081, 0.8414709848, 0.9092974268, 0.9092974268, 0.1411200081, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(τ(Ω(n)))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nΩτS

Sequence uebk5ywcenhqb

0, 1, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(a(n-2)^a(n-1))
a(0)=0
a(1)=1
n≥0
4 operations
Recursive
sr^S
a(n)=sin(τ(a(n-2)^a(n-1)))
a(0)=0
a(1)=1
τ(n)=number of divisors of n
n≥0
5 operations
PrimeRecursive
sr^τS

Sequence 1vj0z55x20oye

0, 1, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, more...

decimal, non-constant, non-monotonic, +0

a(n)=tan(a(n-2)^a(n-1))
a(0)=0
a(1)=1
n≥0
4 operations
Recursive
sr^W
a(n)=tan(τ(a(n-2)^a(n-1)))
a(0)=0
a(1)=1
τ(n)=number of divisors of n
n≥0
5 operations
PrimeRecursive
sr^τW

Sequence b4w3uebiqy32c

0, 1, 1, 0, -1, 1, 2, 1, -1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, 1, 1, 0, -1, more...

integer, non-constant, periodic, non-monotonic, +-0, A076452

a(n)=abs(a(n-1))-a(n-2)
a(0)=0
a(1)=1
n≥0
4 operations
Recursive
r|s-
a(n)=τ(abs(a(n-1)))-a(n-2)
a(0)=0
a(1)=1
τ(n)=number of divisors of n
n≥0
5 operations
PrimeRecursive
r|τs-

Sequence xpmvb5bmgtjop

0, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
μ(n)=Möbius function
n≥1
4 operations
Prime
nτΩμ

Sequence techrnlaf20sb

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=round(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛR

Sequence cvzapj52gyxpg

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(τ(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nττΩ

Sequence pe4cbpaekjyxo

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=round(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlR

Sequence pyrgcfc5u1l1l

0, 1, 1, 1, 1, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.7320508076, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.7320508076, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.7320508076, 1, 1.7320508076, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nτΩQ

Sequence 3g52mrmhdwbwe

0, 1, 1, 1, 2, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 2, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=τ(round(Λ(n)))
Λ(n)=Von Mangoldt's function
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nΛRτ

Sequence 5oqgo0ofsnwpc

0, 1, 1, 1, 2, 0, 4, -2, 6, -3, 7, -5, 11, -9, 13, -9, 14, -12, 18, -16, 22, -18, 22, -20, 28, -25, 29, -25, 31, -29, 37, -35, 41, -37, 41, -37, 46, -44, 48, -44, 52, -50, 58, -56, 62, -56, 60, -58, 68, -65, more...

integer, non-constant, non-monotonic, +-0

a(n)=τ(n)-a(n-1)
a(0)=0
τ(n)=number of divisors of n
n≥0
4 operations
PrimeRecursive
nτr-

Sequence akxszd0ovg2eg

0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, more...

integer, non-constant, monotonic, +0

a(n)=τ(round(ln(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nlRτ

Sequence grpvese4hyfc

0, 1, 1, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.7320508076, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.7320508076, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.7320508076, 1, 1.4142135624, 1.4142135624, 1.7320508076, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(τ(Ω(n)))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nΩτQ

Sequence rrum5nmzslbgi

0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=ceil(Λ(τ(n)))
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΛT

Sequence sihiweq2tz4tc

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=ceil(ln(τ(n)))
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nτlT