Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 23947. [0] [1] [2] [3] [4] ... [239]

Sequence jf1vodtk3fpuj

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, more...

integer, non-monotonic, +-, A008683

a(n)=μ(n)
μ(n)=Möbius function
n≥1
2 operations
Prime

Sequence tweyw4wkgff2f

-1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=-μ(n)
μ(n)=Möbius function
n≥1
3 operations
Prime
a(n)=log(1/exp(μ(n)))
μ(n)=Möbius function
n≥1
6 operations
Prime

Sequence 4lvgxc2dixzhk

-9, -11, -11, -10, -11, -9, -11, -10, -10, -9, -11, -10, -11, -9, -9, -10, -11, -10, -11, -10, -9, -9, -11, -10, -10, -9, -10, -10, -11, -11, -11, -10, -9, -9, -9, -10, -11, -9, -9, -10, -11, -11, -11, -10, -10, -9, -11, -10, -10, -10, more...

integer, non-monotonic, -

a(n)=μ(n)-10
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence mopa0kdmp1wyo

-8, -10, -10, -9, -10, -8, -10, -9, -9, -8, -10, -9, -10, -8, -8, -9, -10, -9, -10, -9, -8, -8, -10, -9, -9, -8, -9, -9, -10, -10, -10, -9, -8, -8, -8, -9, -10, -8, -8, -9, -10, -10, -10, -9, -9, -8, -10, -9, -9, -9, more...

integer, non-monotonic, -

a(n)=μ(n)-9
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence ot1cm3qtg2ek

-7, -9, -9, -8, -9, -7, -9, -8, -8, -7, -9, -8, -9, -7, -7, -8, -9, -8, -9, -8, -7, -7, -9, -8, -8, -7, -8, -8, -9, -9, -9, -8, -7, -7, -7, -8, -9, -7, -7, -8, -9, -9, -9, -8, -8, -7, -9, -8, -8, -8, more...

integer, non-monotonic, -

a(n)=μ(n)-8
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence deq2aja2ctohi

-6, -8, -8, -7, -8, -6, -8, -7, -7, -6, -8, -7, -8, -6, -6, -7, -8, -7, -8, -7, -6, -6, -8, -7, -7, -6, -7, -7, -8, -8, -8, -7, -6, -6, -6, -7, -8, -6, -6, -7, -8, -8, -8, -7, -7, -6, -8, -7, -7, -7, more...

integer, non-monotonic, -

a(n)=μ(n)-7
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence bkaevuuf3ecsl

-5, -7, -7, -6, -7, -5, -7, -6, -6, -5, -7, -6, -7, -5, -5, -6, -7, -6, -7, -6, -5, -5, -7, -6, -6, -5, -6, -6, -7, -7, -7, -6, -5, -5, -5, -6, -7, -5, -5, -6, -7, -7, -7, -6, -6, -5, -7, -6, -6, -6, more...

integer, non-monotonic, -

a(n)=μ(n)-6
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence dqg1sydqu0okm

-4, -6, -6, -5, -6, -4, -6, -5, -5, -4, -6, -5, -6, -4, -4, -5, -6, -5, -6, -5, -4, -4, -6, -5, -5, -4, -5, -5, -6, -6, -6, -5, -4, -4, -4, -5, -6, -4, -4, -5, -6, -6, -6, -5, -5, -4, -6, -5, -5, -5, more...

integer, non-monotonic, -

a(n)=μ(n)-5
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence injuushakhfyb

-3, -5, -5, -4, -5, -3, -5, -4, -4, -3, -5, -4, -5, -3, -3, -4, -5, -4, -5, -4, -3, -3, -5, -4, -4, -3, -4, -4, -5, -5, -5, -4, -3, -3, -3, -4, -5, -3, -3, -4, -5, -5, -5, -4, -4, -3, -5, -4, -4, -4, more...

integer, non-monotonic, -

a(n)=μ(n)-4
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 2gqxm2uojlmdf

-2, -4, -4, -3, -4, -2, -4, -3, -3, -2, -4, -3, -4, -2, -2, -3, -4, -3, -4, -3, -2, -2, -4, -3, -3, -2, -3, -3, -4, -4, -4, -3, -2, -2, -2, -3, -4, -2, -2, -3, -4, -4, -4, -3, -3, -2, -4, -3, -3, -3, more...

integer, non-monotonic, -

a(n)=μ(n)-3
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence ytuyjcncjhmgg

-1, -3, -3, -2, -3, -1, -3, -2, -2, -1, -3, -2, -3, -1, -1, -2, -3, -2, -3, -2, -1, -1, -3, -2, -2, -1, -2, -2, -3, -3, -3, -2, -1, -1, -1, -2, -3, -1, -1, -2, -3, -3, -3, -2, -2, -1, -3, -2, -2, -2, more...

integer, non-monotonic, -

a(n)=μ(n)-2
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence c4akboym5s0pg

-1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, more...

integer, non-monotonic, +-

a(n)=μ(2+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence yd0kthfynznf

-1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, more...

integer, non-monotonic, +-

a(n)=μ(3+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence zncv550kv43hf

-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, more...

integer, non-monotonic, +-

a(n)=μ(7+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence qrkhp2xewghvh

-1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, more...

integer, non-monotonic, +-, A099991

a(n)=μ(2*n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence hbcftqhqnim4n

-1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, more...

integer, non-monotonic, +-

a(n)=μ(5+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence pdf3v0sinhwkk

-1, 1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 0, 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=μ(3*n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 0twrok1uekh2m

-1, 1, 1, 0, 0, -1, 1, 0, 0, 0, 1, 0, 1, -1, 0, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 0, 1, 0, -1, -1, 0, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=μ(5*n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence ldxbci04j53t

-1, 1, 1, 0, 1, -1, 0, 0, 0, -1, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, 0, 0, 1, -1, -1, 0, 1, 0, 1, 0, 0, -1, 1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=μ(7*n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 21yvmkctprqqe

0, -2, -2, -1, -2, 0, -2, -1, -1, 0, -2, -1, -2, 0, 0, -1, -2, -1, -2, -1, 0, 0, -2, -1, -1, 0, -1, -1, -2, -2, -2, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, -2, -1, -1, 0, -2, -1, -1, -1, more...

integer, non-monotonic, -

a(n)=μ(n)-1
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 33nswhkrvnblg

0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, more...

integer, non-monotonic, +-

a(n)=μ(4+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence wsy1ma51eojyg

0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, more...

integer, non-monotonic, +-

a(n)=μ(8+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence ofgn20c30hqyc

0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, more...

integer, non-monotonic, +-

a(n)=μ(9+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence puvlukxvril4d

0, 2, 2, 1, 2, 0, 2, 1, 1, 0, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 0, 0, 2, 1, 1, 0, 1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 2, 2, 1, 1, 0, 2, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=1-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=floor(acot(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=abs(xor(1, μ(n)))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=floor(exp(-μ(n)))
μ(n)=Möbius function
n≥1
5 operations
Prime
a(n)=Ω((2-μ(n))!)
μ(n)=Möbius function
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime

Sequence eczsfko0dpdh

0.1, -0.1, -0.1, 0, -0.1, 0.1, -0.1, 0, 0, 0.1, -0.1, 0, -0.1, 0.1, 0.1, 0, -0.1, 0, -0.1, 0, 0.1, 0.1, -0.1, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/10
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence ye0aybjuzw0ld

0.1111111111111111, -0.1111111111111111, -0.1111111111111111, 0, -0.1111111111111111, 0.1111111111111111, -0.1111111111111111, 0, 0, 0.1111111111111111, -0.1111111111111111, 0, -0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0, -0.1111111111111111, 0, -0.1111111111111111, 0, 0.1111111111111111, 0.1111111111111111, -0.1111111111111111, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/9
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 53xbxqyfnwifg

0.125, -0.125, -0.125, 0, -0.125, 0.125, -0.125, 0, 0, 0.125, -0.125, 0, -0.125, 0.125, 0.125, 0, -0.125, 0, -0.125, 0, 0.125, 0.125, -0.125, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/8
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence sxuyjyj2idyyj

0.14285714285714285, -0.14285714285714285, -0.14285714285714285, 0, -0.14285714285714285, 0.14285714285714285, -0.14285714285714285, 0, 0, 0.14285714285714285, -0.14285714285714285, 0, -0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0, -0.14285714285714285, 0, -0.14285714285714285, 0, 0.14285714285714285, 0.14285714285714285, -0.14285714285714285, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/7
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence cuqnbqghsvmkl

0.16666666666666666, -0.16666666666666666, -0.16666666666666666, 0, -0.16666666666666666, 0.16666666666666666, -0.16666666666666666, 0, 0, 0.16666666666666666, -0.16666666666666666, 0, -0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0, -0.16666666666666666, 0, -0.16666666666666666, 0, 0.16666666666666666, 0.16666666666666666, -0.16666666666666666, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/6
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence rz3mgcwgmtlyg

0.2, -0.2, -0.2, 0, -0.2, 0.2, -0.2, 0, 0, 0.2, -0.2, 0, -0.2, 0.2, 0.2, 0, -0.2, 0, -0.2, 0, 0.2, 0.2, -0.2, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/5
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence bbawsddwjp0l

0.25, -0.25, -0.25, 0, -0.25, 0.25, -0.25, 0, 0, 0.25, -0.25, 0, -0.25, 0.25, 0.25, 0, -0.25, 0, -0.25, 0, 0.25, 0.25, -0.25, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/4
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 2uewspvyzowyk

0.3333333333333333, -0.3333333333333333, -0.3333333333333333, 0, -0.3333333333333333, 0.3333333333333333, -0.3333333333333333, 0, 0, 0.3333333333333333, -0.3333333333333333, 0, -0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0, -0.3333333333333333, 0, -0.3333333333333333, 0, 0.3333333333333333, 0.3333333333333333, -0.3333333333333333, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/3
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence gce2nbkamag1p

0.5, -0.5, -0.5, 0, -0.5, 0.5, -0.5, 0, 0, 0.5, -0.5, 0, -0.5, 0.5, 0.5, 0, -0.5, 0, -0.5, 0, 0.5, 0.5, -0.5, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/2
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence x4u33a1rjsbrg

1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, more...

integer, non-monotonic, +-

a(n)=μ(10+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence zt3ugsqptjcrn

1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, more...

integer, non-monotonic, +-

a(n)=μ(6+n)
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence 2dp2qdrtom4cg

1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=μ(10*n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence uusblamrzvl2i

1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=μ(6*n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence fpui23kzopk3h

1, 3, 3, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 1, 2, 3, 2, 3, 2, 1, 1, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 1, 1, 1, 2, 3, 1, 1, 2, 3, 3, 3, 2, 2, 1, 3, 2, 2, 2, more...

integer, non-monotonic, +, A228483

a(n)=2-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=ceil(acot(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=agc(8+μ(n))
μ(n)=Möbius function
agc(n)=number of factorizations into prime powers (abelian group count)
n≥1
5 operations
Prime
a(n)=gpf((μ(n)-2)²)
μ(n)=Möbius function
gpf(n)=greatest prime factor of n
n≥1
6 operations
Prime

Sequence h1pq0vy1whcom

2, -2, -2, 0, -2, 2, -2, 0, 0, 2, -2, 0, -2, 2, 2, 0, -2, 0, -2, 0, 2, 2, -2, 0, 0, 2, 0, 0, -2, -2, -2, 0, 2, 2, 2, 0, -2, 2, 2, 0, -2, -2, -2, 0, 0, 2, -2, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=2*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=round(tan(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=round(asin(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=log(exp(μ(n))²)
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence de3feklmcojxf

2, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 2, 1, 0, 1, 0, 1, 2, 2, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 1, 0, 2, 2, 1, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, more...

integer, non-monotonic, +, A007423

a(n)=1+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=floor(exp(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=stern(round(exp(μ(n))))
μ(n)=Möbius function
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime
a(n)=Ω((2+μ(n))!)
μ(n)=Möbius function
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime

Sequence qdqjnjipvaf4f

2, 4, 4, 3, 4, 2, 4, 3, 3, 2, 4, 3, 4, 2, 2, 3, 4, 3, 4, 3, 2, 2, 4, 3, 3, 2, 3, 3, 4, 4, 4, 3, 2, 2, 2, 3, 4, 2, 2, 3, 4, 4, 4, 3, 3, 2, 4, 3, 3, 3, more...

integer, non-monotonic, +

a(n)=3-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=abs(xor(3, μ(n)))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime

Sequence agg2c2ukkderi

3, -3, -3, 0, -3, 3, -3, 0, 0, 3, -3, 0, -3, 3, 3, 0, -3, 0, -3, 0, 3, 3, -3, 0, 0, 3, 0, 0, -3, -3, -3, 0, 3, 3, 3, 0, -3, 3, 3, 0, -3, -3, -3, 0, 0, 3, -3, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=3*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence daeal2fquhclf

3, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 3, 3, 2, 1, 2, 1, 2, 3, 3, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 3, 3, 3, 2, 1, 3, 3, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, more...

integer, non-monotonic, +, A080847

a(n)=2+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=abs(or(2, μ(n)))
μ(n)=Möbius function
or(a,b)=bitwise or
n≥1
5 operations
Prime
a(n)=agc(8-μ(n))
μ(n)=Möbius function
agc(n)=number of factorizations into prime powers (abelian group count)
n≥1
5 operations
Prime

Sequence cqt14qcubnlqc

3, 5, 5, 4, 5, 3, 5, 4, 4, 3, 5, 4, 5, 3, 3, 4, 5, 4, 5, 4, 3, 3, 5, 4, 4, 3, 4, 4, 5, 5, 5, 4, 3, 3, 3, 4, 5, 3, 3, 4, 5, 5, 5, 4, 4, 3, 5, 4, 4, 4, more...

integer, non-monotonic, +

a(n)=4-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence jjjsdcci4spsn

4, -4, -4, 0, -4, 4, -4, 0, 0, 4, -4, 0, -4, 4, 4, 0, -4, 0, -4, 0, 4, 4, -4, 0, 0, 4, 0, 0, -4, -4, -4, 0, 4, 4, 4, 0, -4, 4, 4, 0, -4, -4, -4, 0, 0, 4, -4, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=4*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence xa3l01stg1ihg

4, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 3, 2, 4, 4, 3, 2, 3, 2, 3, 4, 4, 2, 3, 3, 4, 3, 3, 2, 2, 2, 3, 4, 4, 4, 3, 2, 4, 4, 3, 2, 2, 2, 3, 3, 4, 2, 3, 3, 3, more...

integer, non-monotonic, +, A231821

a(n)=3+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 3hzxg2fm0euhm

4, 6, 6, 5, 6, 4, 6, 5, 5, 4, 6, 5, 6, 4, 4, 5, 6, 5, 6, 5, 4, 4, 6, 5, 5, 4, 5, 5, 6, 6, 6, 5, 4, 4, 4, 5, 6, 4, 4, 5, 6, 6, 6, 5, 5, 4, 6, 5, 5, 5, more...

integer, non-monotonic, +

a(n)=5-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=abs(xor(5, μ(n)))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime

Sequence smxl51xcyfxhm

5, -5, -5, 0, -5, 5, -5, 0, 0, 5, -5, 0, -5, 5, 5, 0, -5, 0, -5, 0, 5, 5, -5, 0, 0, 5, 0, 0, -5, -5, -5, 0, 5, 5, 5, 0, -5, 5, 5, 0, -5, -5, -5, 0, 0, 5, -5, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=5*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence xhciaygmaj1xk

5, 3, 3, 4, 3, 5, 3, 4, 4, 5, 3, 4, 3, 5, 5, 4, 3, 4, 3, 4, 5, 5, 3, 4, 4, 5, 4, 4, 3, 3, 3, 4, 5, 5, 5, 4, 3, 5, 5, 4, 3, 3, 3, 4, 4, 5, 3, 4, 4, 4, more...

integer, non-monotonic, +

a(n)=4+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence uibldpiy3dpcj

5, 7, 7, 6, 7, 5, 7, 6, 6, 5, 7, 6, 7, 5, 5, 6, 7, 6, 7, 6, 5, 5, 7, 6, 6, 5, 6, 6, 7, 7, 7, 6, 5, 5, 5, 6, 7, 5, 5, 6, 7, 7, 7, 6, 6, 5, 7, 6, 6, 6, more...

integer, non-monotonic, +

a(n)=6-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence oqpel0i0eqrbo

6, -6, -6, 0, -6, 6, -6, 0, 0, 6, -6, 0, -6, 6, 6, 0, -6, 0, -6, 0, 6, 6, -6, 0, 0, 6, 0, 0, -6, -6, -6, 0, 6, 6, 6, 0, -6, 6, 6, 0, -6, -6, -6, 0, 0, 6, -6, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=6*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence mgvj2pbxx1hze

6, 4, 4, 5, 4, 6, 4, 5, 5, 6, 4, 5, 4, 6, 6, 5, 4, 5, 4, 5, 6, 6, 4, 5, 5, 6, 5, 5, 4, 4, 4, 5, 6, 6, 6, 5, 4, 6, 6, 5, 4, 4, 4, 5, 5, 6, 4, 5, 5, 5, more...

integer, non-monotonic, +

a(n)=5+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence p3u43fgrp1sek

6, 8, 8, 7, 8, 6, 8, 7, 7, 6, 8, 7, 8, 6, 6, 7, 8, 7, 8, 7, 6, 6, 8, 7, 7, 6, 7, 7, 8, 8, 8, 7, 6, 6, 6, 7, 8, 6, 6, 7, 8, 8, 8, 7, 7, 6, 8, 7, 7, 7, more...

integer, non-monotonic, +

a(n)=7-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=abs(xor(7, μ(n)))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime

Sequence wn2n1miy2afdi

7, -7, -7, 0, -7, 7, -7, 0, 0, 7, -7, 0, -7, 7, 7, 0, -7, 0, -7, 0, 7, 7, -7, 0, 0, 7, 0, 0, -7, -7, -7, 0, 7, 7, 7, 0, -7, 7, 7, 0, -7, -7, -7, 0, 0, 7, -7, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=7*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence iflzgg0vrxwpn

7, 5, 5, 6, 5, 7, 5, 6, 6, 7, 5, 6, 5, 7, 7, 6, 5, 6, 5, 6, 7, 7, 5, 6, 6, 7, 6, 6, 5, 5, 5, 6, 7, 7, 7, 6, 5, 7, 7, 6, 5, 5, 5, 6, 6, 7, 5, 6, 6, 6, more...

integer, non-monotonic, +

a(n)=6+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence q0wioeihygyfb

7, 9, 9, 8, 9, 7, 9, 8, 8, 7, 9, 8, 9, 7, 7, 8, 9, 8, 9, 8, 7, 7, 9, 8, 8, 7, 8, 8, 9, 9, 9, 8, 7, 7, 7, 8, 9, 7, 7, 8, 9, 9, 9, 8, 8, 7, 9, 8, 8, 8, more...

integer, non-monotonic, +

a(n)=8-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence dttvhpw2gkwqf

8, -8, -8, 0, -8, 8, -8, 0, 0, 8, -8, 0, -8, 8, 8, 0, -8, 0, -8, 0, 8, 8, -8, 0, 0, 8, 0, 0, -8, -8, -8, 0, 8, 8, 8, 0, -8, 8, 8, 0, -8, -8, -8, 0, 0, 8, -8, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=8*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 3zv1upcw4hclm

8, 6, 6, 7, 6, 8, 6, 7, 7, 8, 6, 7, 6, 8, 8, 7, 6, 7, 6, 7, 8, 8, 6, 7, 7, 8, 7, 7, 6, 6, 6, 7, 8, 8, 8, 7, 6, 8, 8, 7, 6, 6, 6, 7, 7, 8, 6, 7, 7, 7, more...

integer, non-monotonic, +

a(n)=7+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence d1h44qzmbktgc

8, 10, 10, 9, 10, 8, 10, 9, 9, 8, 10, 9, 10, 8, 8, 9, 10, 9, 10, 9, 8, 8, 10, 9, 9, 8, 9, 9, 10, 10, 10, 9, 8, 8, 8, 9, 10, 8, 8, 9, 10, 10, 10, 9, 9, 8, 10, 9, 9, 9, more...

integer, non-monotonic, +

a(n)=9-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=abs(xor(9, μ(n)))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=composite(5-μ(n))
μ(n)=Möbius function
composite(n)=nth composite number
n≥1
5 operations
Prime

Sequence tfvq04pcaujwc

9, -9, -9, 0, -9, 9, -9, 0, 0, 9, -9, 0, -9, 9, 9, 0, -9, 0, -9, 0, 9, 9, -9, 0, 0, 9, 0, 0, -9, -9, -9, 0, 9, 9, 9, 0, -9, 9, 9, 0, -9, -9, -9, 0, 0, 9, -9, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=9*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence iibhb2zxgtnoc

9, 7, 7, 8, 7, 9, 7, 8, 8, 9, 7, 8, 7, 9, 9, 8, 7, 8, 7, 8, 9, 9, 7, 8, 8, 9, 8, 8, 7, 7, 7, 8, 9, 9, 9, 8, 7, 9, 9, 8, 7, 7, 7, 8, 8, 9, 7, 8, 8, 8, more...

integer, non-monotonic, +

a(n)=8+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence kuis4wskqqdvb

9, 11, 11, 10, 11, 9, 11, 10, 10, 9, 11, 10, 11, 9, 9, 10, 11, 10, 11, 10, 9, 9, 11, 10, 10, 9, 10, 10, 11, 11, 11, 10, 9, 9, 9, 10, 11, 9, 9, 10, 11, 11, 11, 10, 10, 9, 11, 10, 10, 10, more...

integer, non-monotonic, +

a(n)=10-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 4wimrjn33bgjc

10, -10, -10, 0, -10, 10, -10, 0, 0, 10, -10, 0, -10, 10, 10, 0, -10, 0, -10, 0, 10, 10, -10, 0, 0, 10, 0, 0, -10, -10, -10, 0, 10, 10, 10, 0, -10, 10, 10, 0, -10, -10, -10, 0, 0, 10, -10, 0, 0, 0, more...

integer, non-monotonic, +-

a(n)=10*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence 1p2heaela4mkm

10, 8, 8, 9, 8, 10, 8, 9, 9, 10, 8, 9, 8, 10, 10, 9, 8, 9, 8, 9, 10, 10, 8, 9, 9, 10, 9, 9, 8, 8, 8, 9, 10, 10, 10, 9, 8, 10, 10, 9, 8, 8, 8, 9, 9, 10, 8, 9, 9, 9, more...

integer, non-monotonic, +

a(n)=9+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=composite(5+μ(n))
μ(n)=Möbius function
composite(n)=nth composite number
n≥1
5 operations
Prime

Sequence oscwxq25an1im

11, 9, 9, 10, 9, 11, 9, 10, 10, 11, 9, 10, 9, 11, 11, 10, 9, 10, 9, 10, 11, 11, 9, 10, 10, 11, 10, 10, 9, 9, 9, 10, 11, 11, 11, 10, 9, 11, 11, 10, 9, 9, 9, 10, 10, 11, 9, 10, 10, 10, more...

integer, non-monotonic, +

a(n)=10+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence wcv0qq4ivo5ih

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, more...

integer, non-monotonic, +, A008966

a(n)=abs(μ(n))
μ(n)=Möbius function
n≥1
3 operations
Prime
a(n)=and(1, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=sqrt(abs(μ(n)))
μ(n)=Möbius function
n≥1
4 operations
Prime
a(n)=stern(abs(μ(n)))
μ(n)=Möbius function
stern(n)=Stern-Brocot sequence
n≥1
4 operations
Prime
a(n)=round(acot(agc(n)))
agc(n)=number of factorizations into prime powers (abelian group count)
n≥0
4 operations
Prime

Sequence 501sljaighizm

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(3, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence yvtagefr0byii

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, -1, -1, 0, 0, -1, -1, -1, -1, more...

integer, non-monotonic, +-

a(n)=μ(or(5, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence 5lkt4vjmj0htg

-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(7, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime
a(n)=λ(or(7, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence 1cnr0dpyfypai

-1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 0, -1, 0, -1, 1, -1, 1, -1, 1, 0, 1, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 0, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(2, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence 5tsglwini5hfm

-1, -1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, 0, 1, 0, -1, 1, 0, 0, 0, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, 1, 1, -1, 0, -1, -1, 0, 0, -1, 1, 0, 0, 1, 0, more...

integer, non-monotonic, +-

a(n)=μ(xor(1, n))
xor(a,b)=bitwise exclusive or
μ(n)=Möbius function
n≥2
4 operations
Prime

Sequence 40gj15o5zzche

0, -3, -4, -4, -6, -5, -8, -8, -9, -9, -12, -12, -14, -13, -14, -16, -18, -18, -20, -20, -20, -21, -24, -24, -25, -25, -27, -28, -30, -31, -32, -32, -32, -33, -34, -36, -38, -37, -38, -40, -42, -43, -44, -44, -45, -45, -48, -48, -49, -50, more...

integer, non-monotonic, -

a(n)=μ(n)-n
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence aixlyio2zt4hb

0, -2, -2, 1, -2, 0, -2, 1, 1, 0, -2, 1, -2, 0, 0, 1, -2, 1, -2, 1, 0, 0, -2, 1, 1, 0, 1, 1, -2, -2, -2, 1, 0, 0, 0, 1, -2, 0, 0, 1, -2, -2, -2, 1, 1, 0, -2, 1, 1, 1, more...

integer, non-monotonic, +-

a(n)=xor(1, μ(n))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence d0vkajk2gfw3

0, -1, 1, -1, 0, -1, 1, -1, 0, -1, 1, 1, 0, -1, 1, 1, 0, 1, 1, -1, 0, 1, 1, -1, 0, -1, -1, -1, 0, -1, -1, -1, 0, -1, 1, 1, 0, -1, 1, 1, 0, 0, 1, -1, 0, 0, 1, -1, 0, -1, more...

integer, non-monotonic, +-

a(n)=μ(or(4, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence 4my055kxqpynf

0, 0, -1, -1, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(9, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence ho0cg4j03bfup

0, 0, 1, -1, 0, -1, 1, 1, 0, 0, 1, -1, 0, -1, 1, 1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 0, 1, -1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(8, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence mnwn334gwekon

0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(2, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=sqrt(and(4, μ(n)))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=stern(and(6, μ(n)))
μ(n)=Möbius function
and(a,b)=bitwise and
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime
a(n)=μ(n)²-μ(n)
μ(n)=Möbius function
n≥1
6 operations
Prime

Sequence am05c3vgpyzyh

0, 3, 4, 4, 6, 5, 8, 8, 9, 9, 12, 12, 14, 13, 14, 16, 18, 18, 20, 20, 20, 21, 24, 24, 25, 25, 27, 28, 30, 31, 32, 32, 32, 33, 34, 36, 38, 37, 38, 40, 42, 43, 44, 44, 45, 45, 48, 48, 49, 50, more...

integer, non-monotonic, +

a(n)=n-μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence khiyxnzm1yi1

0, 4, 4, 0, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(4, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=and(2, μ(n))²
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
5 operations
Prime

Sequence zctonieobw5cp

0, 6, 6, 0, 6, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 6, 6, 0, 0, 0, 6, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(6, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence wxsgevwgvrlzh

0, 8, 8, 0, 8, 0, 8, 0, 0, 0, 8, 0, 8, 0, 0, 0, 8, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 8, 8, 0, 0, 0, 8, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(8, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence i2bsfrxgxmddk

0, 10, 10, 0, 10, 0, 10, 0, 0, 0, 10, 0, 10, 0, 0, 0, 10, 0, 10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 10, 10, 10, 0, 0, 0, 0, 0, 10, 0, 0, 0, 10, 10, 10, 0, 0, 0, 10, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(10, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence ncce3pahe0e0

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, more...

integer, non-monotonic, +-, A055615

a(n)=n*μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence b3z3thjktflvc

1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, more...

integer, non-monotonic, +-

a(n)=or(1, μ(n))
μ(n)=Möbius function
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=λ(9+μ(n))
μ(n)=Möbius function
λ(n)=Liouville's function
n≥1
5 operations
Prime
a(n)=μ(n)^μ(n)
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence mg33tjqu5jgan

1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 0, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(6, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence cepc1r3iid0rd

1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 0, 1, 0, -1, -1, -1, -1, 1, 0, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, more...

integer, non-monotonic, +-

a(n)=μ(or(10, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence zodgj2df0owmi

1, -0.5, -0.3333333333333333, 0, -0.2, 0.16666666666666666, -0.14285714285714285, 0, 0, 0.1, -0.09090909090909091, 0, -0.07692307692307693, 0.07142857142857142, 0.06666666666666667, 0, -0.058823529411764705, 0, -0.05263157894736842, 0, 0.047619047619047616, 0.045454545454545456, -0.043478260869565216, 0, 0, more...

decimal, non-monotonic, +-

a(n)=μ(n)/n
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence ndutrh0t3v15k

1, 1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 0, 0, -1, -1, 0, 0, more...

integer, non-monotonic, +-

a(n)=μ(or(1, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime

Sequence nx444c2w1u1ai

1, 3, 3, 0, 3, 1, 3, 0, 0, 1, 3, 0, 3, 1, 1, 0, 3, 0, 3, 0, 1, 1, 3, 0, 0, 1, 0, 0, 3, 3, 3, 0, 1, 1, 1, 0, 3, 1, 1, 0, 3, 3, 3, 0, 0, 1, 3, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(3, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=sqrt(and(9, μ(n)))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=stern(and(5, μ(n)))
μ(n)=Möbius function
and(a,b)=bitwise and
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime

Sequence maqrwhfczcznh

1, 5, 5, 0, 5, 1, 5, 0, 0, 1, 5, 0, 5, 1, 1, 0, 5, 0, 5, 0, 1, 1, 5, 0, 0, 1, 0, 0, 5, 5, 5, 0, 1, 1, 1, 0, 5, 1, 1, 0, 5, 5, 5, 0, 0, 1, 5, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(5, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence y0bcaz55q5eqn

1, 7, 7, 0, 7, 1, 7, 0, 0, 1, 7, 0, 7, 1, 1, 0, 7, 0, 7, 0, 1, 1, 7, 0, 0, 1, 0, 0, 7, 7, 7, 0, 1, 1, 1, 0, 7, 1, 1, 0, 7, 7, 7, 0, 0, 1, 7, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(7, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence lozgl5q5akjye

1, 9, 9, 0, 9, 1, 9, 0, 0, 1, 9, 0, 9, 1, 1, 0, 9, 0, 9, 0, 1, 1, 9, 0, 0, 1, 0, 0, 9, 9, 9, 0, 1, 1, 1, 0, 9, 1, 1, 0, 9, 9, 9, 0, 0, 1, 9, 0, 0, 0, more...

integer, non-monotonic, +

a(n)=and(9, μ(n))
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=and(3, μ(n))²
μ(n)=Möbius function
and(a,b)=bitwise and
n≥1
5 operations
Prime

Sequence tdstxyj41bcwh

2, -4, -4, 3, -4, 2, -4, 3, 3, 2, -4, 3, -4, 2, 2, 3, -4, 3, -4, 3, 2, 2, -4, 3, 3, 2, 3, 3, -4, -4, -4, 3, 2, 2, 2, 3, -4, 2, 2, 3, -4, -4, -4, 3, 3, 2, -4, 3, 3, 3, more...

integer, non-monotonic, +-

a(n)=xor(3, μ(n))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence 3q3pye4m2vugb

2, 1, 2, 4, 4, 7, 6, 8, 9, 11, 10, 12, 12, 15, 16, 16, 16, 18, 18, 20, 22, 23, 22, 24, 25, 27, 27, 28, 28, 29, 30, 32, 34, 35, 36, 36, 36, 39, 40, 40, 40, 41, 42, 44, 45, 47, 46, 48, 49, 50, more...

integer, non-monotonic, +, A076369

a(n)=n+μ(n)
μ(n)=Möbius function
n≥1
4 operations
Prime

Sequence xj54vjruwiyah

3, -3, -3, 2, -3, 3, -3, 2, 2, 3, -3, 2, -3, 3, 3, 2, -3, 2, -3, 2, 3, 3, -3, 2, 2, 3, 2, 2, -3, -3, -3, 2, 3, 3, 3, 2, -3, 3, 3, 2, -3, -3, -3, 2, 2, 3, -3, 2, 2, 2, more...

integer, non-monotonic, +-

a(n)=xor(2, μ(n))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence dw4c3fnawpptm

3, -1, -1, 2, -1, 3, -1, 2, 2, 3, -1, 2, -1, 3, 3, 2, -1, 2, -1, 2, 3, 3, -1, 2, 2, 3, 2, 2, -1, -1, -1, 2, 3, 3, 3, 2, -1, 3, 3, 2, -1, -1, -1, 2, 2, 3, -1, 2, 2, 2, more...

integer, non-monotonic, +-

a(n)=or(2, μ(n))
μ(n)=Möbius function
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=3-(1-μ(n))²
μ(n)=Möbius function
n≥1
7 operations
Prime

Sequence grkatp2rfpenn

3, -1, -1, 3, -1, 3, -1, 3, 3, 3, -1, 3, -1, 3, 3, 3, -1, 3, -1, 3, 3, 3, -1, 3, 3, 3, 3, 3, -1, -1, -1, 3, 3, 3, 3, 3, -1, 3, 3, 3, -1, -1, -1, 3, 3, 3, -1, 3, 3, 3, more...

integer, non-monotonic, +-

a(n)=or(3, μ(n))
μ(n)=Möbius function
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence k3ihrs0rekz3i

4, -6, -6, 5, -6, 4, -6, 5, 5, 4, -6, 5, -6, 4, 4, 5, -6, 5, -6, 5, 4, 4, -6, 5, 5, 4, 5, 5, -6, -6, -6, 5, 4, 4, 4, 5, -6, 4, 4, 5, -6, -6, -6, 5, 5, 4, -6, 5, 5, 5, more...

integer, non-monotonic, +-

a(n)=xor(5, μ(n))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence qt5e24l5dzazn

5, -5, -5, 4, -5, 5, -5, 4, 4, 5, -5, 4, -5, 5, 5, 4, -5, 4, -5, 4, 5, 5, -5, 4, 4, 5, 4, 4, -5, -5, -5, 4, 5, 5, 5, 4, -5, 5, 5, 4, -5, -5, -5, 4, 4, 5, -5, 4, 4, 4, more...

integer, non-monotonic, +-

a(n)=xor(4, μ(n))
μ(n)=Möbius function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence wod0z4ngirbso

5, -1, -1, 4, -1, 5, -1, 4, 4, 5, -1, 4, -1, 5, 5, 4, -1, 4, -1, 4, 5, 5, -1, 4, 4, 5, 4, 4, -1, -1, -1, 4, 5, 5, 5, 4, -1, 5, 5, 4, -1, -1, -1, 4, 4, 5, -1, 4, 4, 4, more...

integer, non-monotonic, +-

a(n)=or(4, μ(n))
μ(n)=Möbius function
or(a,b)=bitwise or
n≥1
4 operations
Prime

[0] [1] [2] [3] [4] ... [239]