Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 14563. [0] [1] [2] [3] [4] ... [145]

Sequence sxgqtfmeezvbp

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, more...

integer, non-monotonic, +-, A008836

a(n)=λ(n)
λ(n)=Liouville's function
n≥1
2 operations
Prime
a(n)=(-1)^Ω(n)
Ω(n)=max distinct factors of n
n≥1
5 operations
Prime
a(n)=μ(or(6, Ω(n)))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence sgowcwxdfg2qm

-1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, more...

integer, non-monotonic, +-

a(n)=-λ(n)
λ(n)=Liouville's function
n≥1
3 operations
Prime
a(n)=xor(-2, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=μ(2+λ(n))
λ(n)=Liouville's function
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence xlcdsypjieqjb

-9, -11, -11, -9, -11, -9, -11, -11, -9, -9, -11, -11, -11, -9, -9, -9, -11, -11, -11, -11, -9, -9, -11, -9, -9, -9, -11, -11, -11, -11, -11, -11, -9, -9, -9, -9, -11, -9, -9, -9, -11, -11, -11, -11, -11, -9, -11, -11, -9, -11, more...

integer, non-monotonic, -

a(n)=λ(n)-10
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence fbp1plg3oylyk

-8, -10, -10, -8, -10, -8, -10, -10, -8, -8, -10, -10, -10, -8, -8, -8, -10, -10, -10, -10, -8, -8, -10, -8, -8, -8, -10, -10, -10, -10, -10, -10, -8, -8, -8, -8, -10, -8, -8, -8, -10, -10, -10, -10, -10, -8, -10, -10, -8, -10, more...

integer, non-monotonic, -

a(n)=λ(n)-9
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence ch2ihuvxbgmom

-7, -9, -9, -7, -9, -7, -9, -9, -7, -7, -9, -9, -9, -7, -7, -7, -9, -9, -9, -9, -7, -7, -9, -7, -7, -7, -9, -9, -9, -9, -9, -9, -7, -7, -7, -7, -9, -7, -7, -7, -9, -9, -9, -9, -9, -7, -9, -9, -7, -9, more...

integer, non-monotonic, -

a(n)=λ(n)-8
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence ghyxpgxjipqac

-6, -8, -8, -6, -8, -6, -8, -8, -6, -6, -8, -8, -8, -6, -6, -6, -8, -8, -8, -8, -6, -6, -8, -6, -6, -6, -8, -8, -8, -8, -8, -8, -6, -6, -6, -6, -8, -6, -6, -6, -8, -8, -8, -8, -8, -6, -8, -8, -6, -8, more...

integer, non-monotonic, -

a(n)=λ(n)-7
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence fv3ab1xpponvl

-5, -7, -7, -5, -7, -5, -7, -7, -5, -5, -7, -7, -7, -5, -5, -5, -7, -7, -7, -7, -5, -5, -7, -5, -5, -5, -7, -7, -7, -7, -7, -7, -5, -5, -5, -5, -7, -5, -5, -5, -7, -7, -7, -7, -7, -5, -7, -7, -5, -7, more...

integer, non-monotonic, -

a(n)=λ(n)-6
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence dp24x3nscqhbe

-4, -6, -6, -4, -6, -4, -6, -6, -4, -4, -6, -6, -6, -4, -4, -4, -6, -6, -6, -6, -4, -4, -6, -4, -4, -4, -6, -6, -6, -6, -6, -6, -4, -4, -4, -4, -6, -4, -4, -4, -6, -6, -6, -6, -6, -4, -6, -6, -4, -6, more...

integer, non-monotonic, -

a(n)=λ(n)-5
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence x4alqidlzcjil

-3, -5, -5, -3, -5, -3, -5, -5, -3, -3, -5, -5, -5, -3, -3, -3, -5, -5, -5, -5, -3, -3, -5, -3, -3, -3, -5, -5, -5, -5, -5, -5, -3, -3, -3, -3, -5, -3, -3, -3, -5, -5, -5, -5, -5, -3, -5, -5, -3, -5, more...

integer, non-monotonic, -

a(n)=λ(n)-4
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence psri2xk5ahpal

-2, -4, -4, -2, -4, -2, -4, -4, -2, -2, -4, -4, -4, -2, -2, -2, -4, -4, -4, -4, -2, -2, -4, -2, -2, -2, -4, -4, -4, -4, -4, -4, -2, -2, -2, -2, -4, -2, -2, -2, -4, -4, -4, -4, -4, -2, -4, -4, -2, -4, more...

integer, non-monotonic, -

a(n)=λ(n)-3
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence coiclvt0b05zc

-1, -3, -3, -1, -3, -1, -3, -3, -1, -1, -3, -3, -3, -1, -1, -1, -3, -3, -3, -3, -1, -1, -3, -1, -1, -1, -3, -3, -3, -3, -3, -3, -1, -1, -1, -1, -3, -1, -1, -1, -3, -3, -3, -3, -3, -1, -3, -3, -1, -3, more...

integer, non-monotonic, -

a(n)=λ(n)-2
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence yz3ulgo15odm

-1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, more...

integer, non-monotonic, +-

a(n)=λ(2+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime
a(n)=-λ(σ(Ω(n)))
Ω(n)=max distinct factors of n
σ(n)=divisor sum of n
λ(n)=Liouville's function
n≥2
5 operations
Prime

Sequence zktghx3wbo3xg

-1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(7+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence w4ed0s2dcwf1

-1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, more...

integer, non-monotonic, +-

a(n)=λ(5+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence hpkmzhucw2zzd

-1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, more...

integer, non-monotonic, +-

a(n)=λ(3+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence 0bi3ndsgznyme

-1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(8+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence zxzbdprasukhk

0, -2, -2, 0, -2, 0, -2, -2, 0, 0, -2, -2, -2, 0, 0, 0, -2, -2, -2, -2, 0, 0, -2, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, -2, -2, -2, 0, -2, -2, 0, -2, more...

integer, non-monotonic, -

a(n)=λ(n)-1
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=xor(1, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=and(-2, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
5 operations
Prime

Sequence 3z04qsb3kvauk

0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 2, 2, 0, 2, 2, 0, 2, more...

integer, non-monotonic, +

a(n)=1-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=and(2, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=floor(acot(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=abs(xor(1, λ(n)))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=sqrt(and(4, λ(n)))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
5 operations
Prime

Sequence e3awrlno4n22g

0.1, -0.1, -0.1, 0.1, -0.1, 0.1, -0.1, -0.1, 0.1, 0.1, -0.1, -0.1, -0.1, 0.1, 0.1, 0.1, -0.1, -0.1, -0.1, -0.1, 0.1, 0.1, -0.1, 0.1, 0.1, more...

decimal, non-monotonic, +-

a(n)=λ(n)/10
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence l5ywh0v0johkf

0.1111111111111111, -0.1111111111111111, -0.1111111111111111, 0.1111111111111111, -0.1111111111111111, 0.1111111111111111, -0.1111111111111111, -0.1111111111111111, 0.1111111111111111, 0.1111111111111111, -0.1111111111111111, -0.1111111111111111, -0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, -0.1111111111111111, -0.1111111111111111, -0.1111111111111111, -0.1111111111111111, 0.1111111111111111, 0.1111111111111111, -0.1111111111111111, 0.1111111111111111, 0.1111111111111111, more...

decimal, non-monotonic, +-

a(n)=λ(n)/9
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence vn4tg5tycn5y

0.125, -0.125, -0.125, 0.125, -0.125, 0.125, -0.125, -0.125, 0.125, 0.125, -0.125, -0.125, -0.125, 0.125, 0.125, 0.125, -0.125, -0.125, -0.125, -0.125, 0.125, 0.125, -0.125, 0.125, 0.125, more...

decimal, non-monotonic, +-

a(n)=λ(n)/8
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence fbynh3zqij3al

0.14285714285714285, -0.14285714285714285, -0.14285714285714285, 0.14285714285714285, -0.14285714285714285, 0.14285714285714285, -0.14285714285714285, -0.14285714285714285, 0.14285714285714285, 0.14285714285714285, -0.14285714285714285, -0.14285714285714285, -0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 0.14285714285714285, -0.14285714285714285, -0.14285714285714285, -0.14285714285714285, -0.14285714285714285, 0.14285714285714285, 0.14285714285714285, -0.14285714285714285, 0.14285714285714285, 0.14285714285714285, more...

decimal, non-monotonic, +-

a(n)=λ(n)/7
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence ei0e45nerced

0.16666666666666666, -0.16666666666666666, -0.16666666666666666, 0.16666666666666666, -0.16666666666666666, 0.16666666666666666, -0.16666666666666666, -0.16666666666666666, 0.16666666666666666, 0.16666666666666666, -0.16666666666666666, -0.16666666666666666, -0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, -0.16666666666666666, -0.16666666666666666, -0.16666666666666666, -0.16666666666666666, 0.16666666666666666, 0.16666666666666666, -0.16666666666666666, 0.16666666666666666, 0.16666666666666666, more...

decimal, non-monotonic, +-

a(n)=λ(n)/6
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence qu0njauojqcaj

0.2, -0.2, -0.2, 0.2, -0.2, 0.2, -0.2, -0.2, 0.2, 0.2, -0.2, -0.2, -0.2, 0.2, 0.2, 0.2, -0.2, -0.2, -0.2, -0.2, 0.2, 0.2, -0.2, 0.2, 0.2, more...

decimal, non-monotonic, +-

a(n)=λ(n)/5
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence 5mzah05keiq3p

0.25, -0.25, -0.25, 0.25, -0.25, 0.25, -0.25, -0.25, 0.25, 0.25, -0.25, -0.25, -0.25, 0.25, 0.25, 0.25, -0.25, -0.25, -0.25, -0.25, 0.25, 0.25, -0.25, 0.25, 0.25, more...

decimal, non-monotonic, +-

a(n)=λ(n)/4
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence acdpoeifoevgg

0.3333333333333333, -0.3333333333333333, -0.3333333333333333, 0.3333333333333333, -0.3333333333333333, 0.3333333333333333, -0.3333333333333333, -0.3333333333333333, 0.3333333333333333, 0.3333333333333333, -0.3333333333333333, -0.3333333333333333, -0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, -0.3333333333333333, -0.3333333333333333, -0.3333333333333333, -0.3333333333333333, 0.3333333333333333, 0.3333333333333333, -0.3333333333333333, 0.3333333333333333, 0.3333333333333333, more...

decimal, non-monotonic, +-

a(n)=λ(n)/3
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence zx11c0pn4p0vd

0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, 0.5, 0.5, -0.5, -0.5, -0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, more...

decimal, non-monotonic, +-

a(n)=λ(n)/2
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence js4kvjzapvafm

1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, more...

integer, non-monotonic, +-

a(n)=λ(10+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence dtlqz4nrmmjaj

1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(6+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence zquol2byahdfi

1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, more...

integer, non-monotonic, +-

a(n)=λ(4+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence ogroyw11ddlo

1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(9+n)
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence a232tfawot1wl

1, 3, 3, 1, 3, 1, 3, 3, 1, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 3, 1, 1, 1, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, more...

integer, non-monotonic, +

a(n)=2-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=and(3, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=ceil(acot(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=stern(9-λ(n))
λ(n)=Liouville's function
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime
a(n)=sqrt(and(9, λ(n)))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
5 operations
Prime

Sequence ey1vwuprqhmpf

2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, more...

integer, non-monotonic, +-

a(n)=2*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=round(tan(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=round(asin(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=log2(root(λ(n), 4))
λ(n)=Liouville's function
root(n,a)=the n-th root of a
n≥1
5 operations
Prime
a(n)=log(exp(λ(n))²)
λ(n)=Liouville's function
n≥1
5 operations
Prime

Sequence 0r2xfscsdtdhb

2, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, more...

integer, non-monotonic, +

a(n)=1+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=floor(exp(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=and(2, -λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=floor(root(λ(n), 2))
λ(n)=Liouville's function
root(n,a)=the n-th root of a
n≥1
5 operations
Prime
a(n)=stern(round(exp(λ(n))))
λ(n)=Liouville's function
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime

Sequence 03hlqxzp0v03d

2, 4, 4, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, more...

integer, non-monotonic, +

a(n)=3-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=abs(xor(3, λ(n)))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=φ(4-λ(n))
λ(n)=Liouville's function
ϕ(n)=number of relative primes (Euler's totient)
n≥1
5 operations
Prime

Sequence ykvid24dxeim

3, -3, -3, 3, -3, 3, -3, -3, 3, 3, -3, -3, -3, 3, 3, 3, -3, -3, -3, -3, 3, 3, -3, 3, 3, 3, -3, -3, -3, -3, -3, -3, 3, 3, 3, 3, -3, 3, 3, 3, -3, -3, -3, -3, -3, 3, -3, -3, 3, -3, more...

integer, non-monotonic, +-

a(n)=3*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=xor(2, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=log2(root(λ(n), 8))
λ(n)=Liouville's function
root(n,a)=the n-th root of a
n≥1
5 operations
Prime

Sequence h2yjyffszcsho

3, 1, 1, 3, 1, 3, 1, 1, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=2+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=ceil(exp(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=and(3, -λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=abs(or(2, λ(n)))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥1
5 operations
Prime
a(n)=stern(9+λ(n))
λ(n)=Liouville's function
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime

Sequence ua0dzidjiazjn

3, 5, 5, 3, 5, 3, 5, 5, 3, 3, 5, 5, 5, 3, 3, 3, 5, 5, 5, 5, 3, 3, 5, 3, 3, 3, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 5, 3, 3, 3, 5, 5, 5, 5, 5, 3, 5, 5, 3, 5, more...

integer, non-monotonic, +

a(n)=4-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=p(2+Ω(n)%2)
Ω(n)=max distinct factors of n
p(n)=nth prime
n≥1
7 operations
Prime

Sequence zco152k3npbz

4, -4, -4, 4, -4, 4, -4, -4, 4, 4, -4, -4, -4, 4, 4, 4, -4, -4, -4, -4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, -4, -4, 4, 4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, -4, 4, -4, -4, 4, -4, more...

integer, non-monotonic, +-

a(n)=4*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence q4gdhx0wainwn

4, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, more...

integer, non-monotonic, +

a(n)=3+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=gcd(Ω(n²), 4)
Ω(n)=max distinct factors of n
gcd(a,b)=greatest common divisor
n≥1
5 operations
Prime
a(n)=φ(4+λ(n))
λ(n)=Liouville's function
ϕ(n)=number of relative primes (Euler's totient)
n≥1
5 operations
Prime
a(n)=τ(or(6, Ω(n)))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥1
5 operations
Prime
a(n)=2*gcd(Ω(n), 2)
Ω(n)=max distinct factors of n
gcd(a,b)=greatest common divisor
n≥1
6 operations
Prime

Sequence xglp5fcgptb0

4, 6, 6, 4, 6, 4, 6, 6, 4, 4, 6, 6, 6, 4, 4, 4, 6, 6, 6, 6, 4, 4, 6, 4, 4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 6, 4, 4, 4, 6, 6, 6, 6, 6, 4, 6, 6, 4, 6, more...

integer, non-monotonic, +

a(n)=5-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=abs(xor(5, λ(n)))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=σ(4-λ(n))
λ(n)=Liouville's function
σ(n)=divisor sum of n
n≥1
5 operations
Prime
a(n)=φ(6-λ(n))
λ(n)=Liouville's function
ϕ(n)=number of relative primes (Euler's totient)
n≥1
5 operations
Prime

Sequence ig5d2e51ly1qk

5, -5, -5, 5, -5, 5, -5, -5, 5, 5, -5, -5, -5, 5, 5, 5, -5, -5, -5, -5, 5, 5, -5, 5, 5, 5, -5, -5, -5, -5, -5, -5, 5, 5, 5, 5, -5, 5, 5, 5, -5, -5, -5, -5, -5, 5, -5, -5, 5, -5, more...

integer, non-monotonic, +-

a(n)=5*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=xor(4, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence cw4ye2wnnx52m

5, 3, 3, 5, 3, 5, 3, 3, 5, 5, 3, 3, 3, 5, 5, 5, 3, 3, 3, 3, 5, 5, 3, 5, 5, 5, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 3, 5, 5, 5, 3, 3, 3, 3, 3, 5, 3, 3, 5, 3, more...

integer, non-monotonic, +

a(n)=4+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=p(p(gcd(Ω(n), 2)))
Ω(n)=max distinct factors of n
gcd(a,b)=greatest common divisor
p(n)=nth prime
n≥1
6 operations
Prime

Sequence 3nperlw0uucwo

5, 7, 7, 5, 7, 5, 7, 7, 5, 5, 7, 7, 7, 5, 5, 5, 7, 7, 7, 7, 5, 5, 7, 5, 5, 5, 7, 7, 7, 7, 7, 7, 5, 5, 5, 5, 7, 5, 5, 5, 7, 7, 7, 7, 7, 5, 7, 7, 5, 7, more...

integer, non-monotonic, +

a(n)=6-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence lvxsqgd34ecjf

6, -6, -6, 6, -6, 6, -6, -6, 6, 6, -6, -6, -6, 6, 6, 6, -6, -6, -6, -6, 6, 6, -6, 6, 6, 6, -6, -6, -6, -6, -6, -6, 6, 6, 6, 6, -6, 6, 6, 6, -6, -6, -6, -6, -6, 6, -6, -6, 6, -6, more...

integer, non-monotonic, +-

a(n)=6*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence dnamzvtc2z4fd

6, 4, 4, 6, 4, 6, 4, 4, 6, 6, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 4, 6, 6, 6, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 4, 6, 6, 6, 4, 4, 4, 4, 4, 6, 4, 4, 6, 4, more...

integer, non-monotonic, +

a(n)=5+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=σ(4+λ(n))
λ(n)=Liouville's function
σ(n)=divisor sum of n
n≥1
5 operations
Prime
a(n)=φ(6+λ(n))
λ(n)=Liouville's function
ϕ(n)=number of relative primes (Euler's totient)
n≥1
5 operations
Prime

Sequence 4tzxl5qupybsh

6, 8, 8, 6, 8, 6, 8, 8, 6, 6, 8, 8, 8, 6, 6, 6, 8, 8, 8, 8, 6, 6, 8, 6, 6, 6, 8, 8, 8, 8, 8, 8, 6, 6, 6, 6, 8, 6, 6, 6, 8, 8, 8, 8, 8, 6, 8, 8, 6, 8, more...

integer, non-monotonic, +

a(n)=7-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=abs(xor(7, λ(n)))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=σ(6-λ(n))
λ(n)=Liouville's function
σ(n)=divisor sum of n
n≥1
5 operations
Prime

Sequence 1fnj3czl4ew2d

7, -7, -7, 7, -7, 7, -7, -7, 7, 7, -7, -7, -7, 7, 7, 7, -7, -7, -7, -7, 7, 7, -7, 7, 7, 7, -7, -7, -7, -7, -7, -7, 7, 7, 7, 7, -7, 7, 7, 7, -7, -7, -7, -7, -7, 7, -7, -7, 7, -7, more...

integer, non-monotonic, +-

a(n)=7*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=xor(6, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence ud4boouzchlso

7, 5, 5, 7, 5, 7, 5, 5, 7, 7, 5, 5, 5, 7, 7, 7, 5, 5, 5, 5, 7, 7, 5, 7, 7, 7, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 5, 7, 7, 7, 5, 5, 5, 5, 5, 7, 5, 5, 7, 5, more...

integer, non-monotonic, +

a(n)=6+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence 2rwjbrm1yropb

7, 9, 9, 7, 9, 7, 9, 9, 7, 7, 9, 9, 9, 7, 7, 7, 9, 9, 9, 9, 7, 7, 9, 7, 7, 7, 9, 9, 9, 9, 9, 9, 7, 7, 7, 7, 9, 7, 7, 7, 9, 9, 9, 9, 9, 7, 9, 9, 7, 9, more...

integer, non-monotonic, +

a(n)=8-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence hr1ucxyknhymh

8, -8, -8, 8, -8, 8, -8, -8, 8, 8, -8, -8, -8, 8, 8, 8, -8, -8, -8, -8, 8, 8, -8, 8, 8, 8, -8, -8, -8, -8, -8, -8, 8, 8, 8, 8, -8, 8, 8, 8, -8, -8, -8, -8, -8, 8, -8, -8, 8, -8, more...

integer, non-monotonic, +-

a(n)=8*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence vwfa3mn1t0xpc

8, 6, 6, 8, 6, 8, 6, 6, 8, 8, 6, 6, 6, 8, 8, 8, 6, 6, 6, 6, 8, 8, 6, 8, 8, 8, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 6, 8, 8, 8, 6, 6, 6, 6, 6, 8, 6, 6, 8, 6, more...

integer, non-monotonic, +

a(n)=7+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=σ(6+λ(n))
λ(n)=Liouville's function
σ(n)=divisor sum of n
n≥1
5 operations
Prime

Sequence zm35joqsuu11e

8, 10, 10, 8, 10, 8, 10, 10, 8, 8, 10, 10, 10, 8, 8, 8, 10, 10, 10, 10, 8, 8, 10, 8, 8, 8, 10, 10, 10, 10, 10, 10, 8, 8, 8, 8, 10, 8, 8, 8, 10, 10, 10, 10, 10, 8, 10, 10, 8, 10, more...

integer, non-monotonic, +

a(n)=9-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=abs(xor(9, λ(n)))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=composite(5-λ(n))
λ(n)=Liouville's function
composite(n)=nth composite number
n≥1
5 operations
Prime

Sequence d1qailf3y0g3m

9, -9, -9, 9, -9, 9, -9, -9, 9, 9, -9, -9, -9, 9, 9, 9, -9, -9, -9, -9, 9, 9, -9, 9, 9, 9, -9, -9, -9, -9, -9, -9, 9, 9, 9, 9, -9, 9, 9, 9, -9, -9, -9, -9, -9, 9, -9, -9, 9, -9, more...

integer, non-monotonic, +-

a(n)=9*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=xor(8, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence souiqkvsset5g

9, 7, 7, 9, 7, 9, 7, 7, 9, 9, 7, 7, 7, 9, 9, 9, 7, 7, 7, 7, 9, 9, 7, 9, 9, 9, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 7, 9, 9, 9, 7, 7, 7, 7, 7, 9, 7, 7, 9, 7, more...

integer, non-monotonic, +

a(n)=8+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence k1n0ztg2jthld

9, 11, 11, 9, 11, 9, 11, 11, 9, 9, 11, 11, 11, 9, 9, 9, 11, 11, 11, 11, 9, 9, 11, 9, 9, 9, 11, 11, 11, 11, 11, 11, 9, 9, 9, 9, 11, 9, 9, 9, 11, 11, 11, 11, 11, 9, 11, 11, 9, 11, more...

integer, non-monotonic, +

a(n)=10-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence yhcqfjq2e2dhg

10, -10, -10, 10, -10, 10, -10, -10, 10, 10, -10, -10, -10, 10, 10, 10, -10, -10, -10, -10, 10, 10, -10, 10, 10, 10, -10, -10, -10, -10, -10, -10, 10, 10, 10, 10, -10, 10, 10, 10, -10, -10, -10, -10, -10, 10, -10, -10, 10, -10, more...

integer, non-monotonic, +-

a(n)=10*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence uel3j00enq4dk

10, 8, 8, 10, 8, 10, 8, 8, 10, 10, 8, 8, 8, 10, 10, 10, 8, 8, 8, 8, 10, 10, 8, 10, 10, 10, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 8, 10, 10, 10, 8, 8, 8, 8, 8, 10, 8, 8, 10, 8, more...

integer, non-monotonic, +

a(n)=9+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=composite(5+λ(n))
λ(n)=Liouville's function
composite(n)=nth composite number
n≥1
5 operations
Prime

Sequence sxlfkkaglma5l

11, 9, 9, 11, 9, 11, 9, 9, 11, 11, 9, 9, 9, 11, 11, 11, 9, 9, 9, 9, 11, 11, 9, 11, 11, 11, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 9, 11, 11, 11, 9, 9, 9, 9, 9, 11, 9, 9, 11, 9, more...

integer, non-monotonic, +

a(n)=10+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence nwvlwvrdv0nfh

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(or(3, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence 4qitp3iqha3zo

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, more...

integer, non-monotonic, +-

a(n)=λ(or(5, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence 5lkt4vjmj0htg

-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=μ(or(7, n))
or(a,b)=bitwise or
μ(n)=Möbius function
n≥0
4 operations
Prime
a(n)=λ(or(7, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence a31k5zpk30gcd

-1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, more...

integer, non-monotonic, +-

a(n)=λ(or(2, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence wu3jxp3rrkd4j

-1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, more...

integer, non-monotonic, +-

a(n)=λ(xor(1, n))
xor(a,b)=bitwise exclusive or
λ(n)=Liouville's function
n≥2
4 operations
Prime

Sequence p4hkeykjbdthg

-1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(or(8, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence uumgxl0psbxsm

0, -3, -4, -3, -6, -5, -8, -9, -8, -9, -12, -13, -14, -13, -14, -15, -18, -19, -20, -21, -20, -21, -24, -23, -24, -25, -28, -29, -30, -31, -32, -33, -32, -33, -34, -35, -38, -37, -38, -39, -42, -43, -44, -45, -46, -45, -48, -49, -48, -51, more...

integer, non-monotonic, -

a(n)=λ(n)-n
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence n54pwuh3vmc3

0, 3, 4, 3, 6, 5, 8, 9, 8, 9, 12, 13, 14, 13, 14, 15, 18, 19, 20, 21, 20, 21, 24, 23, 24, 25, 28, 29, 30, 31, 32, 33, 32, 33, 34, 35, 38, 37, 38, 39, 42, 43, 44, 45, 46, 45, 48, 49, 48, 51, more...

integer, non-monotonic, +

a(n)=n-λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence hppmxluhn10sp

0, 4, 4, 0, 4, 0, 4, 4, 0, 0, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 0, 0, 4, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 4, 4, 4, 4, 4, 0, 4, 4, 0, 4, more...

integer, non-monotonic, +

a(n)=and(4, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=ceil(acos(λ(n)))
λ(n)=Liouville's function
n≥1
4 operations
Prime
a(n)=(1-λ(n))²
λ(n)=Liouville's function
n≥1
5 operations
Prime
a(n)=(2*Ω(n)%2)²
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence ocnafu41wbf5j

0, 6, 6, 0, 6, 0, 6, 6, 0, 0, 6, 6, 6, 0, 0, 0, 6, 6, 6, 6, 0, 0, 6, 0, 0, 0, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 6, 0, 0, 0, 6, 6, 6, 6, 6, 0, 6, 6, 0, 6, more...

integer, non-monotonic, +

a(n)=and(6, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=3*(1-λ(n))
λ(n)=Liouville's function
n≥1
6 operations
Prime

Sequence g4trrq5d5kofp

0, 8, 8, 0, 8, 0, 8, 8, 0, 0, 8, 8, 8, 0, 0, 0, 8, 8, 8, 8, 0, 0, 8, 0, 0, 0, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 8, 0, 0, 0, 8, 8, 8, 8, 8, 0, 8, 8, 0, 8, more...

integer, non-monotonic, +

a(n)=and(8, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=2*(1-λ(n))²
λ(n)=Liouville's function
n≥1
7 operations
Prime

Sequence oq2tch2dej2wl

0, 10, 10, 0, 10, 0, 10, 10, 0, 0, 10, 10, 10, 0, 0, 0, 10, 10, 10, 10, 0, 0, 10, 0, 0, 0, 10, 10, 10, 10, 10, 10, 0, 0, 0, 0, 10, 0, 0, 0, 10, 10, 10, 10, 10, 0, 10, 10, 0, 10, more...

integer, non-monotonic, +

a(n)=and(10, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence i3fln1tdv2pgh

1, -2, -3, 4, -5, 6, -7, -8, 9, 10, -11, -12, -13, 14, 15, 16, -17, -18, -19, -20, 21, 22, -23, 24, 25, 26, -27, -28, -29, -30, -31, -32, 33, 34, 35, 36, -37, 38, 39, 40, -41, -42, -43, -44, -45, 46, -47, -48, 49, -50, more...

integer, non-monotonic, +-, A061019

a(n)=n*λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence lslzo0adnmy0g

1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, more...

integer, non-monotonic, +-

a(n)=λ(or(4, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence t3fbdexaofo4o

1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(or(6, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence 2535fdrz3yg3b

1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, more...

integer, non-monotonic, +-

a(n)=λ(or(10, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence xqyn0zncifrng

1, -0.5, -0.3333333333333333, 0.25, -0.2, 0.16666666666666666, -0.14285714285714285, -0.125, 0.1111111111111111, 0.1, -0.09090909090909091, -0.08333333333333333, -0.07692307692307693, 0.07142857142857142, 0.06666666666666667, 0.0625, -0.058823529411764705, -0.05555555555555555, -0.05263157894736842, -0.05, 0.047619047619047616, 0.045454545454545456, -0.043478260869565216, 0.041666666666666664, 0.04, more...

decimal, non-monotonic, +-

a(n)=λ(n)/n
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence xz5dloz3ctp2d

1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(or(1, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence 20dlka4lpftko

1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(or(9, n))
or(a,b)=bitwise or
λ(n)=Liouville's function
n≥0
4 operations
Prime

Sequence ka3oste3cvdck

1, 5, 5, 1, 5, 1, 5, 5, 1, 1, 5, 5, 5, 1, 1, 1, 5, 5, 5, 5, 1, 1, 5, 1, 1, 1, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 5, 1, 1, 1, 5, 5, 5, 5, 5, 1, 5, 5, 1, 5, more...

integer, non-monotonic, +

a(n)=and(5, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=catalan(2-λ(n))
λ(n)=Liouville's function
catalan(n)=the catalan numbers
n≥1
5 operations
Prime
a(n)=P(and(4, λ(n)))
λ(n)=Liouville's function
and(a,b)=bitwise and
P(n)=partition numbers
n≥1
5 operations
Prime
a(n)=3-2*λ(n)
λ(n)=Liouville's function
n≥1
6 operations
Prime

Sequence 2is4tntxam3gn

1, 7, 7, 1, 7, 1, 7, 7, 1, 1, 7, 7, 7, 1, 1, 1, 7, 7, 7, 7, 1, 1, 7, 1, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 7, 1, 1, 1, 7, 7, 7, 7, 7, 1, 7, 7, 1, 7, more...

integer, non-monotonic, +

a(n)=and(7, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=P(and(5, λ(n)))
λ(n)=Liouville's function
and(a,b)=bitwise and
P(n)=partition numbers
n≥1
5 operations
Prime

Sequence zkgpsgi2f0emn

1, 9, 9, 1, 9, 1, 9, 9, 1, 1, 9, 9, 9, 1, 1, 1, 9, 9, 9, 9, 1, 1, 9, 1, 1, 1, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 9, 1, 1, 1, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, more...

integer, non-monotonic, +

a(n)=and(9, λ(n))
λ(n)=Liouville's function
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=(2-λ(n))²
λ(n)=Liouville's function
n≥1
5 operations
Prime
a(n)=C(9, -λ(n))
λ(n)=Liouville's function
C(n,k)=binomial coefficient
n≥1
5 operations
Prime
a(n)=composite(and(5, λ(n)))
λ(n)=Liouville's function
and(a,b)=bitwise and
composite(n)=nth composite number
n≥1
5 operations
Prime

Sequence qnjqn2rrnd5ao

2, -4, -4, 2, -4, 2, -4, -4, 2, 2, -4, -4, -4, 2, 2, 2, -4, -4, -4, -4, 2, 2, -4, 2, 2, 2, -4, -4, -4, -4, -4, -4, 2, 2, 2, 2, -4, 2, 2, 2, -4, -4, -4, -4, -4, 2, -4, -4, 2, -4, more...

integer, non-monotonic, +-

a(n)=xor(3, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=3*λ(n)-1
λ(n)=Liouville's function
n≥1
6 operations
Prime

Sequence r4o3ihoz0aqwn

2, 1, 2, 5, 4, 7, 6, 7, 10, 11, 10, 11, 12, 15, 16, 17, 16, 17, 18, 19, 22, 23, 22, 25, 26, 27, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 36, 39, 40, 41, 40, 41, 42, 43, 44, 47, 46, 47, 50, 49, more...

integer, non-monotonic, +

a(n)=n+λ(n)
λ(n)=Liouville's function
n≥1
4 operations
Prime

Sequence hsiw4krvip5uf

3, -1, -1, 3, -1, 3, -1, -1, 3, 3, -1, -1, -1, 3, 3, 3, -1, -1, -1, -1, 3, 3, -1, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, 3, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, more...

integer, non-monotonic, +-

a(n)=or(2, λ(n))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=1+2*λ(n)
λ(n)=Liouville's function
n≥1
6 operations
Prime

Sequence udkzkscfrjt2d

4, -6, -6, 4, -6, 4, -6, -6, 4, 4, -6, -6, -6, 4, 4, 4, -6, -6, -6, -6, 4, 4, -6, 4, 4, 4, -6, -6, -6, -6, -6, -6, 4, 4, 4, 4, -6, 4, 4, 4, -6, -6, -6, -6, -6, 4, -6, -6, 4, -6, more...

integer, non-monotonic, +-

a(n)=xor(5, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence bs4jz2xzoc25c

5, -1, -1, 5, -1, 5, -1, -1, 5, 5, -1, -1, -1, 5, 5, 5, -1, -1, -1, -1, 5, 5, -1, 5, 5, 5, -1, -1, -1, -1, -1, -1, 5, 5, 5, 5, -1, 5, 5, 5, -1, -1, -1, -1, -1, 5, -1, -1, 5, -1, more...

integer, non-monotonic, +-

a(n)=or(4, λ(n))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=2+3*λ(n)
λ(n)=Liouville's function
n≥1
6 operations
Prime

Sequence qf35f3rv5ewym

6, -8, -8, 6, -8, 6, -8, -8, 6, 6, -8, -8, -8, 6, 6, 6, -8, -8, -8, -8, 6, 6, -8, 6, 6, 6, -8, -8, -8, -8, -8, -8, 6, 6, 6, 6, -8, 6, 6, 6, -8, -8, -8, -8, -8, 6, -8, -8, 6, -8, more...

integer, non-monotonic, +-

a(n)=xor(7, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence wjrscsv1horfh

7, -1, -1, 7, -1, 7, -1, -1, 7, 7, -1, -1, -1, 7, 7, 7, -1, -1, -1, -1, 7, 7, -1, 7, 7, 7, -1, -1, -1, -1, -1, -1, 7, 7, 7, 7, -1, 7, 7, 7, -1, -1, -1, -1, -1, 7, -1, -1, 7, -1, more...

integer, non-monotonic, +-

a(n)=or(6, λ(n))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=(2+λ(n))²-2
λ(n)=Liouville's function
n≥1
7 operations
Prime

Sequence 2izrrut1imznk

8, -10, -10, 8, -10, 8, -10, -10, 8, 8, -10, -10, -10, 8, 8, 8, -10, -10, -10, -10, 8, 8, -10, 8, 8, 8, -10, -10, -10, -10, -10, -10, 8, 8, 8, 8, -10, 8, 8, 8, -10, -10, -10, -10, -10, 8, -10, -10, 8, -10, more...

integer, non-monotonic, +-

a(n)=xor(9, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence hki5xbqbnv0he

9, -1, -1, 9, -1, 9, -1, -1, 9, 9, -1, -1, -1, 9, 9, 9, -1, -1, -1, -1, 9, 9, -1, 9, 9, 9, -1, -1, -1, -1, -1, -1, 9, 9, 9, 9, -1, 9, 9, 9, -1, -1, -1, -1, -1, 9, -1, -1, 9, -1, more...

integer, non-monotonic, +-

a(n)=or(8, λ(n))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence fzmxjwvnpakbc

11, -11, -11, 11, -11, 11, -11, -11, 11, 11, -11, -11, -11, 11, 11, 11, -11, -11, -11, -11, 11, 11, -11, 11, 11, 11, -11, -11, -11, -11, -11, -11, 11, 11, 11, 11, -11, 11, 11, 11, -11, -11, -11, -11, -11, 11, -11, -11, 11, -11, more...

integer, non-monotonic, +-

a(n)=xor(10, λ(n))
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence tio2glrxat41k

11, -1, -1, 11, -1, 11, -1, -1, 11, 11, -1, -1, -1, 11, 11, 11, -1, -1, -1, -1, 11, 11, -1, 11, 11, 11, -1, -1, -1, -1, -1, -1, 11, 11, 11, 11, -1, 11, 11, 11, -1, -1, -1, -1, -1, 11, -1, -1, 11, -1, more...

integer, non-monotonic, +-

a(n)=or(10, λ(n))
λ(n)=Liouville's function
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence j5d5yp1t1kr4k

-2, 0, 2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 2, 0, 0, -2, 0, 0, 0, 2, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 2, -2, 0, 2, -2, 2, more...

integer, non-monotonic, +-

a(n)=Δ[λ(n)]
λ(n)=Liouville's function
Δ(a)=differences of a
n≥1
3 operations
Prime
a(n)=Δ[xor(1, λ(n))]
λ(n)=Liouville's function
xor(a,b)=bitwise exclusive or
Δ(a)=differences of a
n≥1
5 operations
Prime
a(n)=Δ[or(1, λ(n))]
λ(n)=Liouville's function
or(a,b)=bitwise or
Δ(a)=differences of a
n≥1
5 operations
Prime
a(n)=Δ[floor(exp(λ(n)))]
λ(n)=Liouville's function
Δ(a)=differences of a
n≥1
5 operations
Prime

Sequence 3pposxw14z0fn

1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, more...

integer, non-monotonic, +-

a(n)=∏[λ(n)]
λ(n)=Liouville's function
∏(a)=partial products of a
n≥1
3 operations
Prime
a(n)=∏[or(1, λ(n))]
λ(n)=Liouville's function
or(a,b)=bitwise or
∏(a)=partial products of a
n≥1
5 operations
Prime

Sequence pr5uzsulz3znn

1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, more...

integer, non-monotonic, +-

a(n)=λ(∑[n])
∑(a)=partial sums of a
λ(n)=Liouville's function
n≥1
3 operations
Prime

Sequence kpequwcwbcxhd

1, 0, -1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -4, -5, -6, -5, -6, more...

integer, non-monotonic, +-

a(n)=∑[λ(n)]
λ(n)=Liouville's function
∑(a)=partial sums of a
n≥1
3 operations
Prime
a(n)=∑[or(1, λ(n))]
λ(n)=Liouville's function
or(a,b)=bitwise or
∑(a)=partial sums of a
n≥1
5 operations
Prime
a(n)=log(∏[exp(λ(n))])
λ(n)=Liouville's function
∏(a)=partial products of a
n≥1
5 operations
Prime

Sequence yv51iwiwi5nde

-2.141592653589793, -4.141592653589793, -4.141592653589793, -2.141592653589793, -4.141592653589793, -2.141592653589793, -4.141592653589793, -4.141592653589793, -2.141592653589793, -2.141592653589793, -4.141592653589793, -4.141592653589793, -4.141592653589793, -2.141592653589793, -2.141592653589793, -2.141592653589793, -4.141592653589793, -4.141592653589793, -4.141592653589793, -4.141592653589793, -2.141592653589793, -2.141592653589793, -4.141592653589793, -2.141592653589793, -2.141592653589793, more...

decimal, non-monotonic, -

a(n)=λ(n)-π
λ(n)=Liouville's function
π=3.1415... (Pi)
n≥1
4 operations
Prime

Sequence xh3afhlwkfvzh

-1.718281828459045, -3.718281828459045, -3.718281828459045, -1.718281828459045, -3.718281828459045, -1.718281828459045, -3.718281828459045, -3.718281828459045, -1.718281828459045, -1.718281828459045, -3.718281828459045, -3.718281828459045, -3.718281828459045, -1.718281828459045, -1.718281828459045, -1.718281828459045, -3.718281828459045, -3.718281828459045, -3.718281828459045, -3.718281828459045, -1.718281828459045, -1.718281828459045, -3.718281828459045, -1.718281828459045, -1.718281828459045, more...

decimal, non-monotonic, -

a(n)=λ(n)-e
λ(n)=Liouville's function
e=2.7182... (Euler e)
n≥1
4 operations
Prime

Sequence lsmqh2rgpg3ef

-0.6180339887498949, -2.618033988749895, -2.618033988749895, -0.6180339887498949, -2.618033988749895, -0.6180339887498949, -2.618033988749895, -2.618033988749895, -0.6180339887498949, -0.6180339887498949, -2.618033988749895, -2.618033988749895, -2.618033988749895, -0.6180339887498949, -0.6180339887498949, -0.6180339887498949, -2.618033988749895, -2.618033988749895, -2.618033988749895, -2.618033988749895, -0.6180339887498949, -0.6180339887498949, -2.618033988749895, -0.6180339887498949, -0.6180339887498949, more...

decimal, non-monotonic, -

a(n)=λ(n)-ϕ
λ(n)=Liouville's function
ϕ=1.618... (Golden Ratio)
n≥1
4 operations
Prime

Sequence 35hxuyd5jv3mg

-0.42278433509846713, 1.5772156649015328, 1.5772156649015328, -0.42278433509846713, 1.5772156649015328, -0.42278433509846713, 1.5772156649015328, 1.5772156649015328, -0.42278433509846713, -0.42278433509846713, 1.5772156649015328, 1.5772156649015328, 1.5772156649015328, -0.42278433509846713, -0.42278433509846713, -0.42278433509846713, 1.5772156649015328, 1.5772156649015328, 1.5772156649015328, 1.5772156649015328, -0.42278433509846713, -0.42278433509846713, 1.5772156649015328, -0.42278433509846713, -0.42278433509846713, more...

decimal, non-monotonic, +-

a(n)=γ-λ(n)
γ=0.5772... (Euler Gamma)
λ(n)=Liouville's function
n≥1
4 operations
Prime

[0] [1] [2] [3] [4] ... [145]