Sequence Database

A database with 2076264 machine generated integer and decimal sequences.

Displaying result 0-99 of total 122155. [0] [1] [2] [3] [4] ... [1221]

Sequence brsi1x4psomni

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=number of prime divisors of n
n≥1
2 operations
Prime
a(n)=floor(log(π^Ω(n)))
π Pi=3.1415... (Pi)
Ω(n)=number of prime divisors of n
n≥1
6 operations
Prime
a(n)=floor(log2(P(Ω(n²))))
Ω(n)=number of prime divisors of n
P(n)=partition numbers
n≥1
6 operations
Prime
a(n)=and(7, Ω(-(1-n)))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥2
7 operations
Prime
a(n)=Ω(n*p(n))-1
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence 0bratltk3sv0l

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-monotonic, -

a(n)=-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
3 operations
Prime
a(n)=log(1/exp(Ω(n)))
Ω(n)=number of prime divisors of n
n≥1
6 operations
Prime
a(n)=1-Ω(n*p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence pcqptbg2jhszo

-10, -9, -9, -8, -9, -8, -9, -7, -8, -8, -9, -7, -9, -8, -8, -6, -9, -7, -9, -7, -8, -8, -9, -6, -8, -8, -7, -7, -9, -7, -9, -5, -8, -8, -8, -6, -9, -8, -8, -6, -9, -7, -9, -7, -7, -8, -9, -5, -8, -7, more...

integer, non-monotonic, -

a(n)=Ω(n)-10
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence p5hqaw2ido5be

-9, -8, -8, -7, -8, -7, -8, -6, -7, -7, -8, -6, -8, -7, -7, -5, -8, -6, -8, -6, -7, -7, -8, -5, -7, -7, -6, -6, -8, -6, -8, -4, -7, -7, -7, -5, -8, -7, -7, -5, -8, -6, -8, -6, -6, -7, -8, -4, -7, -6, more...

integer, non-monotonic, -

a(n)=Ω(n)-9
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence gm40cwxlqddqn

-8, -7, -7, -6, -7, -6, -7, -5, -6, -6, -7, -5, -7, -6, -6, -4, -7, -5, -7, -5, -6, -6, -7, -4, -6, -6, -5, -5, -7, -5, -7, -3, -6, -6, -6, -4, -7, -6, -6, -4, -7, -5, -7, -5, -5, -6, -7, -3, -6, -5, more...

integer, non-monotonic, -

a(n)=Ω(n)-8
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=xor(-8, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=or(-8, Ω(n))
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
n≥1
5 operations
Prime

Sequence myapzb0oso1xj

-7, -6, -6, -5, -6, -5, -6, -4, -5, -5, -6, -4, -6, -5, -5, -3, -6, -4, -6, -4, -5, -5, -6, -3, -5, -5, -4, -4, -6, -4, -6, -2, -5, -5, -5, -3, -6, -5, -5, -3, -6, -4, -6, -4, -4, -5, -6, -2, -5, -4, more...

integer, non-monotonic, -

a(n)=Ω(n)-7
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence wsvuaqixzckfh

-6, -5, -5, -4, -5, -4, -5, -3, -4, -4, -5, -3, -5, -4, -4, -2, -5, -3, -5, -3, -4, -4, -5, -2, -4, -4, -3, -3, -5, -3, -5, -1, -4, -4, -4, -2, -5, -4, -4, -2, -5, -3, -5, -3, -3, -4, -5, -1, -4, -3, more...

integer, non-monotonic, -

a(n)=Ω(n)-6
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence hwrlyxzb3pb2n

-5, -4, -4, -3, -4, -3, -4, -2, -3, -3, -4, -2, -4, -3, -3, -1, -4, -2, -4, -2, -3, -3, -4, -1, -3, -3, -2, -2, -4, -2, -4, 0, -3, -3, -3, -1, -4, -3, -3, -1, -4, -2, -4, -2, -2, -3, -4, 0, -3, -2, more...

integer, non-monotonic, -

a(n)=Ω(n)-5
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence fqwfjxkkyxedf

-4, -3, -3, -2, -3, -2, -3, -1, -2, -2, -3, -1, -3, -2, -2, 0, -3, -1, -3, -1, -2, -2, -3, 0, -2, -2, -1, -1, -3, -1, -3, 1, -2, -2, -2, 0, -3, -2, -2, 0, -3, -1, -3, -1, -1, -2, -3, 1, -2, -1, more...

integer, non-monotonic, +-

a(n)=Ω(n)-4
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence hjs2iwhfygy2d

-3, -2, -2, -1, -2, -1, -2, 0, -1, -1, -2, 0, -2, -1, -1, 1, -2, 0, -2, 0, -1, -1, -2, 1, -1, -1, 0, 0, -2, 0, -2, 2, -1, -1, -1, 1, -2, -1, -1, 1, -2, 0, -2, 0, 0, -1, -2, 2, -1, 0, more...

integer, non-monotonic, +-

a(n)=Ω(n)-3
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence xxq5ae2fklczk

-2, -1, -1, 0, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 2, -1, 1, -1, 1, 0, 0, -1, 2, 0, 0, 1, 1, -1, 1, -1, 3, 0, 0, 0, 2, -1, 0, 0, 2, -1, 1, -1, 1, 1, 0, -1, 3, 0, 1, more...

integer, non-monotonic, +-

a(n)=Ω(n)-2
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence okti132jckbpf

-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 2, 2, 0, 2, 0, 4, 1, 1, 1, 3, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 4, 1, 2, more...

integer, non-monotonic, +-

a(n)=Ω(n)-1
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=Ω(n*p(n))-2
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence e1un04hyf3h2

0, 0.1, 0.1, 0.2, 0.1, 0.2, 0.1, 0.3, 0.2, 0.2, 0.1, 0.3, 0.1, 0.2, 0.2, 0.4, 0.1, 0.3, 0.1, 0.3, 0.2, 0.2, 0.1, 0.4, 0.2, more...

decimal, non-monotonic, +

a(n)=Ω(n)/10
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence wyleycoxkvsoe

0, 0.1111111111111111, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.3333333333333333, 0.2222222222222222, 0.2222222222222222, 0.1111111111111111, 0.3333333333333333, 0.1111111111111111, 0.2222222222222222, 0.2222222222222222, 0.4444444444444444, 0.1111111111111111, 0.3333333333333333, 0.1111111111111111, 0.3333333333333333, 0.2222222222222222, 0.2222222222222222, 0.1111111111111111, 0.4444444444444444, 0.2222222222222222, more...

decimal, non-monotonic, +

a(n)=Ω(n)/9
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence gwbbsie33v4wh

0, 0.125, 0.125, 0.25, 0.125, 0.25, 0.125, 0.375, 0.25, 0.25, 0.125, 0.375, 0.125, 0.25, 0.25, 0.5, 0.125, 0.375, 0.125, 0.375, 0.25, 0.25, 0.125, 0.5, 0.25, more...

decimal, non-monotonic, +

a(n)=Ω(n)/8
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence dpqma235ss5ym

0, 0.14285714285714285, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.2857142857142857, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.14285714285714285, 0.2857142857142857, 0.2857142857142857, 0.5714285714285714, 0.14285714285714285, 0.42857142857142855, 0.14285714285714285, 0.42857142857142855, 0.2857142857142857, 0.2857142857142857, 0.14285714285714285, 0.5714285714285714, 0.2857142857142857, more...

decimal, non-monotonic, +

a(n)=Ω(n)/7
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence 4ozta45cwymfn

0, 0.16666666666666666, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.5, 0.3333333333333333, 0.3333333333333333, 0.16666666666666666, 0.5, 0.16666666666666666, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.16666666666666666, 0.5, 0.16666666666666666, 0.5, 0.3333333333333333, 0.3333333333333333, 0.16666666666666666, 0.6666666666666666, 0.3333333333333333, more...

decimal, non-monotonic, +

a(n)=Ω(n)/6
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence oohwb2pgxma4i

0, 0.2, 0.2, 0.4, 0.2, 0.4, 0.2, 0.6, 0.4, 0.4, 0.2, 0.6, 0.2, 0.4, 0.4, 0.8, 0.2, 0.6, 0.2, 0.6, 0.4, 0.4, 0.2, 0.8, 0.4, more...

decimal, non-monotonic, +

a(n)=Ω(n)/5
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence sgtx4mdqegumg

0, 0.25, 0.25, 0.5, 0.25, 0.5, 0.25, 0.75, 0.5, 0.5, 0.25, 0.75, 0.25, 0.5, 0.5, 1, 0.25, 0.75, 0.25, 0.75, 0.5, 0.5, 0.25, 1, 0.5, more...

decimal, non-monotonic, +

a(n)=Ω(n)/4
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence kpxukpuqn3mrm

0, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 1, 0.6666666666666666, 0.6666666666666666, 0.3333333333333333, 1, 0.3333333333333333, 0.6666666666666666, 0.6666666666666666, 1.3333333333333333, 0.3333333333333333, 1, 0.3333333333333333, 1, 0.6666666666666666, 0.6666666666666666, 0.3333333333333333, 1.3333333333333333, 0.6666666666666666, more...

decimal, non-monotonic, +

a(n)=Ω(n)/3
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence dwgwzw2bugbyj

0, 0.5, 0.5, 1, 0.5, 1, 0.5, 1.5, 1, 1, 0.5, 1.5, 0.5, 1, 1, 2, 0.5, 1.5, 0.5, 1.5, 1, 1, 0.5, 2, 1, more...

decimal, non-monotonic, +

a(n)=Ω(n)/2
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence vngy4bujazhkc

0, 3, 3, 6, 3, 6, 3, 9, 6, 6, 3, 9, 3, 6, 6, 12, 3, 9, 3, 9, 6, 6, 3, 12, 6, 6, 9, 9, 3, 9, 3, 15, 6, 6, 6, 12, 3, 6, 6, 12, 3, 9, 3, 9, 9, 6, 3, 15, 6, 9, more...

integer, non-monotonic, +

a(n)=3*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=τ(p(n)²)*Ω(n)
p(n)=nth prime
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=τ(gpf(n)²)*Ω(n)
gpf(n)=greatest prime factor of n
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence qkqkxlpcikyim

0, 4, 4, 8, 4, 8, 4, 12, 8, 8, 4, 12, 4, 8, 8, 16, 4, 12, 4, 12, 8, 8, 4, 16, 8, 8, 12, 12, 4, 12, 4, 20, 8, 8, 8, 16, 4, 8, 8, 16, 4, 12, 4, 12, 12, 8, 4, 20, 8, 12, more...

integer, non-monotonic, +

a(n)=4*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=log(exp(Ω(n²))²)
Ω(n)=number of prime divisors of n
n≥1
6 operations
Prime

Sequence odnixcvkwpcoj

0, 5, 5, 10, 5, 10, 5, 15, 10, 10, 5, 15, 5, 10, 10, 20, 5, 15, 5, 15, 10, 10, 5, 20, 10, 10, 15, 15, 5, 15, 5, 25, 10, 10, 10, 20, 5, 10, 10, 20, 5, 15, 5, 15, 15, 10, 5, 25, 10, 15, more...

integer, non-monotonic, +

a(n)=5*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence bayltpsct3yse

0, 6, 6, 12, 6, 12, 6, 18, 12, 12, 6, 18, 6, 12, 12, 24, 6, 18, 6, 18, 12, 12, 6, 24, 12, 12, 18, 18, 6, 18, 6, 30, 12, 12, 12, 24, 6, 12, 12, 24, 6, 18, 6, 18, 18, 12, 6, 30, 12, 18, more...

integer, non-monotonic, +

a(n)=6*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence m1drxlbr22blm

0, 7, 7, 14, 7, 14, 7, 21, 14, 14, 7, 21, 7, 14, 14, 28, 7, 21, 7, 21, 14, 14, 7, 28, 14, 14, 21, 21, 7, 21, 7, 35, 14, 14, 14, 28, 7, 14, 14, 28, 7, 21, 7, 21, 21, 14, 7, 35, 14, 21, more...

integer, non-monotonic, +

a(n)=7*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=lcm(Ω(n), 7)
Ω(n)=number of prime divisors of n
lcm(a,b)=least common multiple
n≥1
4 operations
Prime

Sequence 1wski2pitf25i

0, 8, 8, 16, 8, 16, 8, 24, 16, 16, 8, 24, 8, 16, 16, 32, 8, 24, 8, 24, 16, 16, 8, 32, 16, 16, 24, 24, 8, 24, 8, 40, 16, 16, 16, 32, 8, 16, 16, 32, 8, 24, 8, 24, 24, 16, 8, 40, 16, 24, more...

integer, non-monotonic, +

a(n)=8*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence zus0yhh0zunao

0, 9, 9, 18, 9, 18, 9, 27, 18, 18, 9, 27, 9, 18, 18, 36, 9, 27, 9, 27, 18, 18, 9, 36, 18, 18, 27, 27, 9, 27, 9, 45, 18, 18, 18, 36, 9, 18, 18, 36, 9, 27, 9, 27, 27, 18, 9, 45, 18, 27, more...

integer, non-monotonic, +

a(n)=9*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence ldknihaddklgk

0, 10, 10, 20, 10, 20, 10, 30, 20, 20, 10, 30, 10, 20, 20, 40, 10, 30, 10, 30, 20, 20, 10, 40, 20, 20, 30, 30, 10, 30, 10, 50, 20, 20, 20, 40, 10, 20, 20, 40, 10, 30, 10, 30, 30, 20, 10, 50, 20, 30, more...

integer, non-monotonic, +

a(n)=10*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence engb35imf1nuf

1, 0, 0, -1, 0, -1, 0, -2, -1, -1, 0, -2, 0, -1, -1, -3, 0, -2, 0, -2, -1, -1, 0, -3, -1, -1, -2, -2, 0, -2, 0, -4, -1, -1, -1, -3, 0, -1, -1, -3, 0, -2, 0, -2, -2, -1, 0, -4, -1, -2, more...

integer, non-monotonic, +-

a(n)=1-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=2-Ω(n*p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence oi02ka4lvrjrm

1, 1, 0.5, 1, 0.5, 1, 0.3333333333333333, 0.5, 0.5, 1, 0.3333333333333333, 1, 0.5, 0.5, 0.25, 1, 0.3333333333333333, 1, 0.3333333333333333, 0.5, 0.5, 1, 0.25, 0.5, 0.5, more...

decimal, non-monotonic, +

a(n)=1/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence 4ysslaysyy1ep

1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, more...

integer, non-monotonic, +

a(n)=Ω(2+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime
a(n)=exp(abs(log(Ω(n))))
Ω(n)=number of prime divisors of n
n≥2
5 operations
Prime
a(n)=floor(sqrt(p(Ω(n²))))
Ω(n)=number of prime divisors of n
p(n)=nth prime
n≥2
6 operations
Prime
a(n)=τ(2^(Ω(n)-1))
Ω(n)=number of prime divisors of n
τ(n)=number of divisors of n
n≥2
7 operations
Prime

Sequence sogfvbvbzvjie

1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, more...

integer, non-monotonic, +

a(n)=Ω(3+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence xkzsjx0q3niyf

1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, more...

integer, non-monotonic, +

a(n)=Ω(5+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence hyu12y2iaqbro

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, more...

integer, non-monotonic, +, A073093

a(n)=1+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=τ(2^Ω(n))
Ω(n)=number of prime divisors of n
τ(n)=number of divisors of n
n≥1
5 operations
Prime
a(n)=and(7, Ω(2*n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
6 operations
Prime
a(n)=xor(7, 6-Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
6 operations
Prime
a(n)=log(e*exp(Ω(n)))
e=2.7182... (Euler e)
Ω(n)=number of prime divisors of n
n≥1
6 operations
Prime

Sequence 4acfetdefoacn

1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, more...

integer, non-monotonic, +

a(n)=Ω(7+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence cm5zgg1gdecf

2, 1, 1, 0, 1, 0, 1, -1, 0, 0, 1, -1, 1, 0, 0, -2, 1, -1, 1, -1, 0, 0, 1, -2, 0, 0, -1, -1, 1, -1, 1, -3, 0, 0, 0, -2, 1, 0, 0, -2, 1, -1, 1, -1, -1, 0, 1, -3, 0, -1, more...

integer, non-monotonic, +-

a(n)=2-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=Ω(p(n)²)-Ω(n)
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence fzdl4kv4whl4f

2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, more...

integer, non-monotonic, +

a(n)=Ω(4+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence maukaacqftm4f

2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, more...

integer, non-monotonic, +

a(n)=Ω(10+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence ykoqxrwwbp44

2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(6+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence ktv3pcjr5a5g

2, 2, 1, 2, 1, 2, 0.6666666666666666, 1, 1, 2, 0.6666666666666666, 2, 1, 1, 0.5, 2, 0.6666666666666666, 2, 0.6666666666666666, 1, 1, 2, 0.5, 1, 1, more...

decimal, non-monotonic, +

a(n)=2/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime
a(n)=Ω(p(n)²)/Ω(n)
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime
a(n)=Ω(gpf(n)²)/Ω(n)
gpf(n)=greatest prime factor of n
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime

Sequence k15vlh1n4qhpl

2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(9+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence takohz040sjxk

2, 3, 3, 4, 3, 4, 3, 5, 4, 4, 3, 5, 3, 4, 4, 6, 3, 5, 3, 5, 4, 4, 3, 6, 4, 4, 5, 5, 3, 5, 3, 7, 4, 4, 4, 6, 3, 4, 4, 6, 3, 5, 3, 5, 5, 4, 3, 7, 4, 5, more...

integer, non-monotonic, +, A305716

a(n)=2+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=xor(7, 5-Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
6 operations
Prime
a(n)=and(7, Ω(4*n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
6 operations
Prime
a(n)=1+Ω(n*p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=τ(2^(1+Ω(n)))
Ω(n)=number of prime divisors of n
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence 32ymzufgfk2lk

3, 2, 2, 1, 2, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, -1, 2, 0, 2, 0, 1, 1, 2, -1, 1, 1, 0, 0, 2, 0, 2, -2, 1, 1, 1, -1, 2, 1, 1, -1, 2, 0, 2, 0, 0, 1, 2, -2, 1, 0, more...

integer, non-monotonic, +-

a(n)=3-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=τ(p(n)²)-Ω(n)
p(n)=nth prime
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence shwhsgx4hzdnc

3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(8+n)
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence yefqq433z2yyp

3, 3, 1.5, 3, 1.5, 3, 1, 1.5, 1.5, 3, 1, 3, 1.5, 1.5, 0.75, 3, 1, 3, 1, 1.5, 1.5, 3, 0.75, 1.5, 1.5, more...

decimal, non-monotonic, +

a(n)=3/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime
a(n)=τ(p(n)²)/Ω(n)
p(n)=nth prime
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime
a(n)=τ(gpf(n)²)/Ω(n)
gpf(n)=greatest prime factor of n
τ(n)=number of divisors of n
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime

Sequence am1xdkqbcwarc

3, 4, 4, 5, 4, 5, 4, 6, 5, 5, 4, 6, 4, 5, 5, 7, 4, 6, 4, 6, 5, 5, 4, 7, 5, 5, 6, 6, 4, 6, 4, 8, 5, 5, 5, 7, 4, 5, 5, 7, 4, 6, 4, 6, 6, 5, 4, 8, 5, 6, more...

integer, non-monotonic, +

a(n)=3+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=2+Ω(n*p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=τ(2^(2+Ω(n)))
Ω(n)=number of prime divisors of n
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence 1xbbsgrgb2bc

4, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 2, 2, 0, 3, 1, 3, 1, 2, 2, 3, 0, 2, 2, 1, 1, 3, 1, 3, -1, 2, 2, 2, 0, 3, 2, 2, 0, 3, 1, 3, 1, 1, 2, 3, -1, 2, 1, more...

integer, non-monotonic, +-

a(n)=4-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence crerpuouz5eie

4, 4, 2, 4, 2, 4, 1.3333333333333333, 2, 2, 4, 1.3333333333333333, 4, 2, 2, 1, 4, 1.3333333333333333, 4, 1.3333333333333333, 2, 2, 4, 1, 2, 2, more...

decimal, non-monotonic, +

a(n)=4/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence xexy421skfbjn

4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 5, 6, 6, 8, 5, 7, 5, 7, 6, 6, 5, 8, 6, 6, 7, 7, 5, 7, 5, 9, 6, 6, 6, 8, 5, 6, 6, 8, 5, 7, 5, 7, 7, 6, 5, 9, 6, 7, more...

integer, non-monotonic, +

a(n)=4+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence r3d0k4dbvgejn

5, 4, 4, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 3, 3, 1, 4, 2, 4, 2, 3, 3, 4, 1, 3, 3, 2, 2, 4, 2, 4, 0, 3, 3, 3, 1, 4, 3, 3, 1, 4, 2, 4, 2, 2, 3, 4, 0, 3, 2, more...

integer, non-monotonic, +

a(n)=5-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence l535wnuhfqj1h

5, 5, 2.5, 5, 2.5, 5, 1.6666666666666667, 2.5, 2.5, 5, 1.6666666666666667, 5, 2.5, 2.5, 1.25, 5, 1.6666666666666667, 5, 1.6666666666666667, 2.5, 2.5, 5, 1.25, 2.5, 2.5, more...

decimal, non-monotonic, +

a(n)=5/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence dhaivwazdxbmp

5, 6, 6, 7, 6, 7, 6, 8, 7, 7, 6, 8, 6, 7, 7, 9, 6, 8, 6, 8, 7, 7, 6, 9, 7, 7, 8, 8, 6, 8, 6, 10, 7, 7, 7, 9, 6, 7, 7, 9, 6, 8, 6, 8, 8, 7, 6, 10, 7, 8, more...

integer, non-monotonic, +

a(n)=5+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence 1griizp2fbe2e

6, 5, 5, 4, 5, 4, 5, 3, 4, 4, 5, 3, 5, 4, 4, 2, 5, 3, 5, 3, 4, 4, 5, 2, 4, 4, 3, 3, 5, 3, 5, 1, 4, 4, 4, 2, 5, 4, 4, 2, 5, 3, 5, 3, 3, 4, 5, 1, 4, 3, more...

integer, non-monotonic, +

a(n)=6-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence evj5odey3gafm

6, 6, 3, 6, 3, 6, 2, 3, 3, 6, 2, 6, 3, 3, 1.5, 6, 2, 6, 2, 3, 3, 6, 1.5, 3, 3, more...

decimal, non-monotonic, +

a(n)=6/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence ptnpepwqyyhdf

6, 7, 7, 8, 7, 8, 7, 9, 8, 8, 7, 9, 7, 8, 8, 10, 7, 9, 7, 9, 8, 8, 7, 10, 8, 8, 9, 9, 7, 9, 7, 11, 8, 8, 8, 10, 7, 8, 8, 10, 7, 9, 7, 9, 9, 8, 7, 11, 8, 9, more...

integer, non-monotonic, +

a(n)=6+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence c1vmnnwdjijkd

7, 6, 6, 5, 6, 5, 6, 4, 5, 5, 6, 4, 6, 5, 5, 3, 6, 4, 6, 4, 5, 5, 6, 3, 5, 5, 4, 4, 6, 4, 6, 2, 5, 5, 5, 3, 6, 5, 5, 3, 6, 4, 6, 4, 4, 5, 6, 2, 5, 4, more...

integer, non-monotonic, +

a(n)=7-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=xor(7, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence 4ocpazwhk3fbp

7, 7, 3.5, 7, 3.5, 7, 2.3333333333333335, 3.5, 3.5, 7, 2.3333333333333335, 7, 3.5, 3.5, 1.75, 7, 2.3333333333333335, 7, 2.3333333333333335, 3.5, 3.5, 7, 1.75, 3.5, 3.5, more...

decimal, non-monotonic, +

a(n)=7/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence btmqxw5pirxjf

7, 8, 8, 9, 8, 9, 8, 10, 9, 9, 8, 10, 8, 9, 9, 11, 8, 10, 8, 10, 9, 9, 8, 11, 9, 9, 10, 10, 8, 10, 8, 12, 9, 9, 9, 11, 8, 9, 9, 11, 8, 10, 8, 10, 10, 9, 8, 12, 9, 10, more...

integer, non-monotonic, +

a(n)=7+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence 3vs4rm2pyap2l

8, 7, 7, 6, 7, 6, 7, 5, 6, 6, 7, 5, 7, 6, 6, 4, 7, 5, 7, 5, 6, 6, 7, 4, 6, 6, 5, 5, 7, 5, 7, 3, 6, 6, 6, 4, 7, 6, 6, 4, 7, 5, 7, 5, 5, 6, 7, 3, 6, 5, more...

integer, non-monotonic, +

a(n)=8-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence 5feu1fovo2nhg

8, 8, 4, 8, 4, 8, 2.6666666666666665, 4, 4, 8, 2.6666666666666665, 8, 4, 4, 2, 8, 2.6666666666666665, 8, 2.6666666666666665, 4, 4, 8, 2, 4, 4, more...

decimal, non-monotonic, +

a(n)=8/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence 1vmcrjjqdeieh

8, 9, 9, 10, 9, 10, 9, 11, 10, 10, 9, 11, 9, 10, 10, 12, 9, 11, 9, 11, 10, 10, 9, 12, 10, 10, 11, 11, 9, 11, 9, 13, 10, 10, 10, 12, 9, 10, 10, 12, 9, 11, 9, 11, 11, 10, 9, 13, 10, 11, more...

integer, non-monotonic, +

a(n)=8+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=xor(8, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=or(8, Ω(n))
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence yv23yqafnuoqg

9, 8, 8, 7, 8, 7, 8, 6, 7, 7, 8, 6, 8, 7, 7, 5, 8, 6, 8, 6, 7, 7, 8, 5, 7, 7, 6, 6, 8, 6, 8, 4, 7, 7, 7, 5, 8, 7, 7, 5, 8, 6, 8, 6, 6, 7, 8, 4, 7, 6, more...

integer, non-monotonic, +

a(n)=9-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence wxttt0nvl3e3e

9, 9, 4.5, 9, 4.5, 9, 3, 4.5, 4.5, 9, 3, 9, 4.5, 4.5, 2.25, 9, 3, 9, 3, 4.5, 4.5, 9, 2.25, 4.5, 4.5, more...

decimal, non-monotonic, +

a(n)=9/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence 5bpcafh13pspi

9, 10, 10, 11, 10, 11, 10, 12, 11, 11, 10, 12, 10, 11, 11, 13, 10, 12, 10, 12, 11, 11, 10, 13, 11, 11, 12, 12, 10, 12, 10, 14, 11, 11, 11, 13, 10, 11, 11, 13, 10, 12, 10, 12, 12, 11, 10, 14, 11, 12, more...

integer, non-monotonic, +

a(n)=9+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence h3w3qlwqiprg

10, 9, 9, 8, 9, 8, 9, 7, 8, 8, 9, 7, 9, 8, 8, 6, 9, 7, 9, 7, 8, 8, 9, 6, 8, 8, 7, 7, 9, 7, 9, 5, 8, 8, 8, 6, 9, 8, 8, 6, 9, 7, 9, 7, 7, 8, 9, 5, 8, 7, more...

integer, non-monotonic, +

a(n)=10-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence wkvjffqde5mch

10, 10, 5, 10, 5, 10, 3.3333333333333335, 5, 5, 10, 3.3333333333333335, 10, 5, 5, 2.5, 10, 3.3333333333333335, 10, 3.3333333333333335, 5, 5, 10, 2.5, 5, 5, more...

decimal, non-monotonic, +

a(n)=10/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence ztmnabx5v5yzf

10, 11, 11, 12, 11, 12, 11, 13, 12, 12, 11, 13, 11, 12, 12, 14, 11, 13, 11, 13, 12, 12, 11, 14, 12, 12, 13, 13, 11, 13, 11, 15, 12, 12, 12, 14, 11, 12, 12, 14, 11, 13, 11, 13, 13, 12, 11, 15, 12, 13, more...

integer, non-monotonic, +

a(n)=10+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence 2zap2xrzxskl

-1, -1, -2, -2, -4, -4, -6, -5, -7, -8, -10, -9, -12, -12, -13, -12, -16, -15, -18, -17, -19, -20, -22, -20, -23, -24, -24, -25, -28, -27, -30, -27, -31, -32, -33, -32, -36, -36, -37, -36, -40, -39, -42, -41, -42, -44, -46, -43, -47, -47, more...

integer, non-monotonic, -

a(n)=Ω(n)-n
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence go5sshdtohkzm

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, more...

integer, non-monotonic, +

a(n)=and(4, Ω(n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence qysnjwzccipwo

0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, more...

integer, non-monotonic, +

a(n)=and(2, Ω(n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence ygaxohvjecxfk

0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 4, 0, 2, 0, 2, 2, 2, 0, 4, 2, 2, 2, 2, 0, 2, 0, 4, 2, 2, 2, 4, 0, 2, 2, 4, 0, 2, 0, 2, 2, 2, 0, 4, 2, 2, more...

integer, non-monotonic, +

a(n)=and(6, Ω(n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=2*floor(Ω(n)/2)
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime

Sequence r1ovvz4xc3muk

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(1, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence t2vg0b34afmkc

0, 0.5, 0.3333333333333333, 0.5, 0.2, 0.3333333333333333, 0.14285714285714285, 0.375, 0.2222222222222222, 0.2, 0.09090909090909091, 0.25, 0.07692307692307693, 0.14285714285714285, 0.13333333333333333, 0.25, 0.058823529411764705, 0.16666666666666666, 0.05263157894736842, 0.15, 0.09523809523809523, 0.09090909090909091, 0.043478260869565216, 0.16666666666666666, 0.08, more...

decimal, non-monotonic, +

a(n)=Ω(n)/n
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence w1fzkpilnxcvi

0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, more...

integer, non-monotonic, +, A066829

a(n)=and(1, Ω(n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=Ω(n)%2
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=stern(1-λ(n))
λ(n)=Liouville's function
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime
a(n)=sqrt(and(9, Ω(n)))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=ω(2-λ(n))
λ(n)=Liouville's function
ω(n)=number of distinct prime divisors of n
n≥1
5 operations
Prime

Sequence wuo34kkgnk4wc

0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 4, 1, 1, 1, 1, 0, 0, 1, 4, 0, 0, 1, 1, 1, 1, 1, 5, 0, 0, 0, 4, 1, 0, 0, 4, 1, 1, 1, 1, 1, 0, 1, 5, 0, 1, more...

integer, non-monotonic, +

a(n)=and(5, Ω(n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence 4yrl0lcfdjhqg

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 0, 2, 2, 3, 3, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 0, 1, 3, 1, 3, 3, 2, 1, 1, 2, 3, more...

integer, non-monotonic, +

a(n)=and(3, Ω(n))
Ω(n)=number of prime divisors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=Ω(n)%4
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime

Sequence l4d2tgo15qn4n

0, 2, 3, 8, 5, 12, 7, 24, 18, 20, 11, 36, 13, 28, 30, 64, 17, 54, 19, 60, 42, 44, 23, 96, 50, 52, 81, 84, 29, 90, 31, 160, 66, 68, 70, 144, 37, 76, 78, 160, 41, 126, 43, 132, 135, 92, 47, 240, 98, 150, more...

integer, non-monotonic, +, A066959

a(n)=n*Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=n%σ(n)*Ω(n)
σ(n)=divisor sum of n
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n*Ω(lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n*Ω(lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n*Ω(n%p(n)²)
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
8 operations
Prime

Sequence 2r0i3t2fucipf

1, 0, 0, 3, 0, 3, 0, 2, 3, 3, 0, 2, 0, 3, 3, 5, 0, 2, 0, 2, 3, 3, 0, 5, 3, 3, 2, 2, 0, 2, 0, 4, 3, 3, 3, 5, 0, 3, 3, 5, 0, 2, 0, 2, 2, 3, 0, 4, 3, 2, more...

integer, non-monotonic, +

a(n)=xor(1, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=Ω(n)+λ(n)
Ω(n)=number of prime divisors of n
λ(n)=Liouville's function
n≥1
5 operations
Prime

Sequence lzgjy4fga0l3d

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(3, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence bv3ix32arn3mi

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=Ω(or(5, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence edmb1igg0zusc

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(7, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime
a(n)=ω(or(7, n))
or(a,b)=bitwise or
ω(n)=number of distinct prime divisors of n
n≥0
4 operations
Prime
a(n)=log2(τ(or(7, n)))
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥0
5 operations
Prime
a(n)=pt(τ(or(7, n)))
or(a,b)=bitwise or
τ(n)=number of divisors of n
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime
a(n)=P(ω(or(7, n)))
or(a,b)=bitwise or
ω(n)=number of distinct prime divisors of n
P(n)=partition numbers
n≥0
5 operations
Prime

Sequence mvxaqie5qgtqe

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 2, 1, 3, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(2, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence lj3xjol2hq4yi

1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 2, 2, 4, 3, 2, 1, 3, 1, 3, 2, 5, 2, 2, 1, 4, 2, 2, 1, 4, 1, 3, 3, 3, 1, 2, 2, 5, 2, 3, more...

integer, non-monotonic, +

a(n)=Ω(xor(1, n))
xor(a,b)=bitwise exclusive or
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence t5m3nekri5xxc

1, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 1, 5, 3, 3, 3, 3, 1, 3, 1, 5, 3, 3, 3, 5, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 1, 5, 3, 3, more...

integer, non-monotonic, +

a(n)=or(1, Ω(n))
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=gpf(σ(Ω(n)!))
Ω(n)=number of prime divisors of n
σ(n)=divisor sum of n
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime

Sequence nxoiomjmdvlvb

1, 1, 2, 2, 4, 4, 6, 5, 7, 8, 10, 9, 12, 12, 13, 12, 16, 15, 18, 17, 19, 20, 22, 20, 23, 24, 24, 25, 28, 27, 30, 27, 31, 32, 33, 32, 36, 36, 37, 36, 40, 39, 42, 41, 42, 44, 46, 43, 47, 47, more...

integer, non-monotonic, +, A069345

a(n)=n-Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=n-Ω(lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n-Ω(lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n-Ω(n%-p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
8 operations
Prime
a(n)=n-Ω(gcd(n, φ(n²)))
ϕ(n)=number of relative primes (Euler's totient)
gcd(a,b)=greatest common divisor
Ω(n)=number of prime divisors of n
n≥1
8 operations
Prime

Sequence y0atmieps4pvd

1, 3, 4, 6, 6, 8, 8, 11, 11, 12, 12, 15, 14, 16, 17, 20, 18, 21, 20, 23, 23, 24, 24, 28, 27, 28, 30, 31, 30, 33, 32, 37, 35, 36, 37, 40, 38, 40, 41, 44, 42, 45, 44, 47, 48, 48, 48, 53, 51, 53, more...

integer, non-monotonic, +, A064800

a(n)=n+Ω(n)
Ω(n)=number of prime divisors of n
n≥1
4 operations
Prime
a(n)=n+Ω(lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n+Ω(lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥1
7 operations
Prime
a(n)=n+Ω(n%-p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥1
8 operations
Prime
a(n)=n+Ω(gcd(n, φ(n²)))
ϕ(n)=number of relative primes (Euler's totient)
gcd(a,b)=greatest common divisor
Ω(n)=number of prime divisors of n
n≥1
8 operations
Prime

Sequence tavhzxtfqomrd

2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(6, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence p3bn4qledesyd

2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 4, 1, 2, 2, 4, 1, 2, 2, 3, 3, 2, 1, 3, 3, 2, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=Ω(or(4, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence ojozudohne1tc

2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 3, 1, 3, 1, 2, 3, 2, 3, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=Ω(or(10, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence n3uirisqb42ii

2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(9, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence xtrwpqe0lqsfo

2, 3, 2, 5, 3, 7, 2.6666666666666665, 4.5, 5, 11, 4, 13, 7, 7.5, 4, 17, 6, 19, 6.666666666666667, 10.5, 11, 23, 6, 12.5, 13, more...

decimal, non-monotonic, +

a(n)=n/Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime

Sequence neen1zgh1elqk

2, 3, 3, 0, 3, 0, 3, 1, 0, 0, 3, 1, 3, 0, 0, 6, 3, 1, 3, 1, 0, 0, 3, 6, 0, 0, 1, 1, 3, 1, 3, 7, 0, 0, 0, 6, 3, 0, 0, 6, 3, 1, 3, 1, 1, 0, 3, 7, 0, 1, more...

integer, non-monotonic, +

a(n)=xor(2, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence f0iyc54y5coff

2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 6, 3, 3, 3, 3, 2, 2, 3, 6, 2, 2, 3, 3, 3, 3, 3, 7, 2, 2, 2, 6, 3, 2, 2, 6, 3, 3, 3, 3, 3, 2, 3, 7, 2, 3, more...

integer, non-monotonic, +

a(n)=or(2, Ω(n))
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence 2qfzcjfjlaask

3, 2, 2, 1, 2, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 7, 2, 0, 2, 0, 1, 1, 2, 7, 1, 1, 0, 0, 2, 0, 2, 6, 1, 1, 1, 7, 2, 1, 1, 7, 2, 0, 2, 0, 0, 1, 2, 6, 1, 0, more...

integer, non-monotonic, +

a(n)=xor(3, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence fqyjpvatu1gno

3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 4, 2, 2, 3, 3, 1, 3, 1, 4, 2, 2, 3, 3, 1, 3, 1, 4, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(8, n))
or(a,b)=bitwise or
Ω(n)=number of prime divisors of n
n≥0
4 operations
Prime

Sequence 1yxztofdkkdub

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 7, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, more...

integer, non-monotonic, +

a(n)=or(3, Ω(n))
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence 42ipc3dvixtni

3, 4, 6, 6, 8, 8, 11, 11, 12, 12, 15, 14, 16, 17, 20, 18, 21, 20, 23, 23, 24, 24, 28, 27, 28, 30, 31, 30, 33, 32, 37, 35, 36, 37, 40, 38, 40, 41, 44, 42, 45, 44, 47, 48, 48, 48, 53, 51, 53, 53, more...

integer, non-monotonic, +, A263842 (weak, multiple)

a(n)=n+Ω(n)
Ω(n)=number of prime divisors of n
n≥2
4 operations
Prime
a(n)=n+Ω(n%σ(n))
σ(n)=divisor sum of n
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime
a(n)=n+Ω(lcm(n, rad(n)))
rad(n)=square free kernel of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime
a(n)=n+Ω(lcm(n, gpf(n)))
gpf(n)=greatest prime factor of n
lcm(a,b)=least common multiple
Ω(n)=number of prime divisors of n
n≥2
7 operations
Prime
a(n)=n+Ω(n%-p(n))
p(n)=nth prime
Ω(n)=number of prime divisors of n
n≥2
8 operations
Prime

Sequence f3olujet3agak

4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 5, 6, 6, 0, 5, 7, 5, 7, 6, 6, 5, 0, 6, 6, 7, 7, 5, 7, 5, 1, 6, 6, 6, 0, 5, 6, 6, 0, 5, 7, 5, 7, 7, 6, 5, 1, 6, 7, more...

integer, non-monotonic, +

a(n)=xor(4, Ω(n))
Ω(n)=number of prime divisors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence gcrlkeedrco2

4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 5, 6, 6, 4, 5, 7, 5, 7, 6, 6, 5, 4, 6, 6, 7, 7, 5, 7, 5, 5, 6, 6, 6, 4, 5, 6, 6, 4, 5, 7, 5, 7, 7, 6, 5, 5, 6, 7, more...

integer, non-monotonic, +

a(n)=or(4, Ω(n))
Ω(n)=number of prime divisors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

[0] [1] [2] [3] [4] ... [1221]