Sequence Database

A database with 497817 machine generated integer and decimal sequences.

Displaying the first 100 results.

Sequence ub3tktmvdthvj

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-constant, non-monotonic, +0, A001222

a(n)=Ω(n)
Ω(n)=max factorization terms
n≥1
2 operations
Prime

Sequence prf3m20mhvu2m

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, monotonic, +0, A000007

a(n)=floor(cos(sin(n)))
n≥0
4 operations
N
nSOf
a(n)=floor(sin(a(n-1)))
a(0)=1
n≥0
3 operations
Recursive
rSf
a(n)=μ(n*n)
μ(n)=Möbius function
n≥1
4 operations
Prime
nn*μ
a(n)=Ω(a(n-1))
a(0)=1
Ω(n)=max factorization terms
n≥0
2 operations
PrimeRecursive

Sequence ugfhjibzkmnhg

2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, monotonic, +0, A033322

a(n)=floor(2/n)
n≥1
4 operations
N
2n/f
a(n)=a(n-1)!-1
a(0)=2
n≥0
4 operations
Recursive
r!1-
a(n)=Ω(a(n-1))
a(0)=2
Ω(n)=max factorization terms
n≥0
2 operations
PrimeRecursive

Sequence vxxvaleofb2dn

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-constant, non-monotonic, -0

a(n)=-Ω(n)
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩ~

Sequence jfh4cz5bd3uvl

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0, 1.0986122887, 0, 1.6094379124, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 1.0986122887, 1.0986122887, 0.6931471806, 0, 1.6094379124, 0.6931471806, 1.0986122887, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(Ω(n))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
3 operations
Prime
nΩΛ

Sequence avarweu42domk

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩΩ

Sequence c4fjjypuxjuik

0, 0, 0.6931471806, 0, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0, 1.0986122887, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0, 1.3862943611, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 0, 1.0986122887, 0, 1.6094379124, 0.6931471806, 0.6931471806, 0.6931471806, 1.3862943611, 0, 0.6931471806, 0.6931471806, 1.3862943611, 0, 1.0986122887, 0, 1.0986122887, 1.0986122887, 0.6931471806, 0, 1.6094379124, 0.6931471806, 1.0986122887, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(Ω(n))
Ω(n)=max factorization terms
n≥2
3 operations
Prime
nΩl

Sequence kqhawrntvxs0k

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 2, 2, 4, 3, 3, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(ϕ(n))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nϕΩ

Sequence 4gxvu3zzqpm0b

0, 0.8414709848, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.8414709848, 0.1411200081, 0.9092974268, 0.9092974268, 0.8414709848, 0.1411200081, 0.8414709848, 0.9092974268, 0.9092974268, -0.7568024953, 0.8414709848, 0.1411200081, 0.8414709848, 0.1411200081, 0.9092974268, 0.9092974268, 0.8414709848, -0.7568024953, 0.9092974268, 0.9092974268, 0.1411200081, 0.1411200081, 0.8414709848, 0.1411200081, 0.8414709848, -0.9589242747, 0.9092974268, 0.9092974268, 0.9092974268, -0.7568024953, 0.8414709848, 0.9092974268, 0.9092974268, -0.7568024953, 0.8414709848, 0.1411200081, 0.8414709848, 0.1411200081, 0.1411200081, 0.9092974268, 0.8414709848, -0.9589242747, 0.9092974268, 0.1411200081, more...

decimal, non-constant, non-monotonic, +-0

a(n)=sin(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩS

Sequence wvf2svirtnqsi

0, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 0, 1, -1, 1, -1, -1, -1, 1, 0, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 0, 1, -1, -1, 0, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(Ω(n))
Ω(n)=max factorization terms
μ(n)=Möbius function
n≥1
3 operations
Prime
nΩμ

Sequence egb3cuxm3oa2g

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=ϕ(Ω(n))
Ω(n)=max factorization terms
ϕ(n)=Euler's totient function
n≥1
3 operations
Prime
nΩϕ

Sequence fb1agpv3bbaum

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, more...

integer, non-constant, non-monotonic, +0, A058061

a(n)=Ω(τ(n))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nτΩ

Sequence avfkmj0gbmwhd

0, 1, 1, 1.4142135624, 1, 1.4142135624, 1, 1.7320508076, 1.4142135624, 1.4142135624, 1, 1.7320508076, 1, 1.4142135624, 1.4142135624, 2, 1, 1.7320508076, 1, 1.7320508076, 1.4142135624, 1.4142135624, 1, 2, 1.4142135624, 1.4142135624, 1.7320508076, 1.7320508076, 1, 1.7320508076, 1, 2.2360679775, 1.4142135624, 1.4142135624, 1.4142135624, 2, 1, 1.4142135624, 1.4142135624, 2, 1, 1.7320508076, 1, 1.7320508076, 1.7320508076, 1.4142135624, 1, 2.2360679775, 1.4142135624, 1.7320508076, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩQ

Sequence pc0bxdqamjwyb

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, more...

integer, non-constant, non-monotonic, +0, A036430

a(n)=τ(Ω(n))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
3 operations
Prime
nΩτ

Sequence fmrn2meolryoi

0, 1.5574077247, 1.5574077247, -2.1850398633, 1.5574077247, -2.1850398633, 1.5574077247, -0.1425465431, -2.1850398633, -2.1850398633, 1.5574077247, -0.1425465431, 1.5574077247, -2.1850398633, -2.1850398633, 1.1578212823, 1.5574077247, -0.1425465431, 1.5574077247, -0.1425465431, -2.1850398633, -2.1850398633, 1.5574077247, 1.1578212823, -2.1850398633, -2.1850398633, -0.1425465431, -0.1425465431, 1.5574077247, -0.1425465431, 1.5574077247, -3.3805150062, -2.1850398633, -2.1850398633, -2.1850398633, 1.1578212823, 1.5574077247, -2.1850398633, -2.1850398633, 1.1578212823, 1.5574077247, -0.1425465431, 1.5574077247, -0.1425465431, -0.1425465431, -2.1850398633, 1.5574077247, -3.3805150062, -2.1850398633, -0.1425465431, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩW

Sequence svdyrojpmrhvm

1, 0.5403023059, 0.5403023059, -0.4161468365, 0.5403023059, -0.4161468365, 0.5403023059, -0.9899924966, -0.4161468365, -0.4161468365, 0.5403023059, -0.9899924966, 0.5403023059, -0.4161468365, -0.4161468365, -0.6536436209, 0.5403023059, -0.9899924966, 0.5403023059, -0.9899924966, -0.4161468365, -0.4161468365, 0.5403023059, -0.6536436209, -0.4161468365, -0.4161468365, -0.9899924966, -0.9899924966, 0.5403023059, -0.9899924966, 0.5403023059, 0.2836621855, -0.4161468365, -0.4161468365, -0.4161468365, -0.6536436209, 0.5403023059, -0.4161468365, -0.4161468365, -0.6536436209, 0.5403023059, -0.9899924966, 0.5403023059, -0.9899924966, -0.9899924966, -0.4161468365, 0.5403023059, 0.2836621855, -0.4161468365, -0.9899924966, more...

decimal, non-constant, non-monotonic, +-

a(n)=cos(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩO

Sequence umf14qffwfjrm

1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, more...

integer, non-constant, non-monotonic, +-

a(n)=λ(Ω(n))
Ω(n)=max factorization terms
λ(n)=Liouville's function
n≥1
3 operations
Prime
nΩλ
a(n)=λ(Ω(n+abs(a(n-1))))
a(0)=1
Ω(n)=max factorization terms
λ(n)=Liouville's function
n≥0
6 operations
PrimeRecursive
nr|+Ωλ

Sequence pquhrnihjyfnc

1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 6, 1, 2, 2, 24, 1, 6, 1, 6, 2, 2, 1, 24, 2, 2, 6, 6, 1, 6, 1, 120, 2, 2, 2, 24, 1, 2, 2, 24, 1, 6, 1, 6, 6, 2, 1, 120, 2, 6, more...

integer, non-constant, non-monotonic, +, A130675

a(n)=Ω(n)!
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩ!

Sequence jk34xgyff3kon

1, 2.7182818285, 2.7182818285, 7.3890560989, 2.7182818285, 7.3890560989, 2.7182818285, 20.0855369232, 7.3890560989, 7.3890560989, 2.7182818285, 20.0855369232, 2.7182818285, 7.3890560989, 7.3890560989, 54.5981500331, 2.7182818285, 20.0855369232, 2.7182818285, 20.0855369232, 7.3890560989, 7.3890560989, 2.7182818285, 54.5981500331, 7.3890560989, 7.3890560989, 20.0855369232, 20.0855369232, 2.7182818285, 20.0855369232, 2.7182818285, 148.4131591026, 7.3890560989, 7.3890560989, 7.3890560989, 54.5981500331, 2.7182818285, 7.3890560989, 7.3890560989, 54.5981500331, 2.7182818285, 20.0855369232, 2.7182818285, 20.0855369232, 20.0855369232, 7.3890560989, 2.7182818285, 148.4131591026, 7.3890560989, 20.0855369232, more...

decimal, non-constant, non-monotonic, +

a(n)=exp(Ω(n))
Ω(n)=max factorization terms
n≥1
3 operations
Prime
nΩe

Sequence xgf1n3aoayq1

2, 3, 3, 5, 3, 5, 3, 7, 5, 5, 3, 7, 3, 5, 5, 11, 3, 7, 3, 7, 5, 5, 3, 11, 5, 5, 7, 7, 3, 7, 3, 13, 5, 5, 5, 11, 3, 5, 5, 11, 3, 7, 3, 7, 7, 5, 3, 13, 5, 7, more...

integer, non-constant, non-monotonic, +

a(n)=p(Ω(n))
Ω(n)=max factorization terms
p(n)=nth prime
n≥1
3 operations
Prime
nΩp
a(n)=p(Ω(n-μ(a(n-1))))
a(0)=2
μ(n)=Möbius function
Ω(n)=max factorization terms
p(n)=nth prime
n≥0
6 operations
PrimeRecursive
nrμ-Ωp

Sequence 1hpvnmk2mtt1n

-10, -9, -9, -8, -9, -8, -9, -7, -8, -8, -9, -7, -9, -8, -8, -6, -9, -7, -9, -7, -8, -8, -9, -6, -8, -8, -7, -7, -9, -7, -9, -5, -8, -8, -8, -6, -9, -8, -8, -6, -9, -7, -9, -7, -7, -8, -9, -5, -8, -7, more...

integer, non-constant, non-monotonic, -

a(n)=Ω(n)-10
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ10-

Sequence 3j5b2lqvnco5j

-9, -8, -8, -7, -8, -7, -8, -6, -7, -7, -8, -6, -8, -7, -7, -5, -8, -6, -8, -6, -7, -7, -8, -5, -7, -7, -6, -6, -8, -6, -8, -4, -7, -7, -7, -5, -8, -7, -7, -5, -8, -6, -8, -6, -6, -7, -8, -4, -7, -6, more...

integer, non-constant, non-monotonic, -

a(n)=Ω(n)-9
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ9-

Sequence 254gx5wm4adbe

-8, -7, -7, -6, -7, -6, -7, -5, -6, -6, -7, -5, -7, -6, -6, -4, -7, -5, -7, -5, -6, -6, -7, -4, -6, -6, -5, -5, -7, -5, -7, -3, -6, -6, -6, -4, -7, -6, -6, -4, -7, -5, -7, -5, -5, -6, -7, -3, -6, -5, more...

integer, non-constant, non-monotonic, -

a(n)=Ω(n)-8
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ8-

Sequence sdtg4josr2ozb

-7, -6, -6, -5, -6, -5, -6, -4, -5, -5, -6, -4, -6, -5, -5, -3, -6, -4, -6, -4, -5, -5, -6, -3, -5, -5, -4, -4, -6, -4, -6, -2, -5, -5, -5, -3, -6, -5, -5, -3, -6, -4, -6, -4, -4, -5, -6, -2, -5, -4, more...

integer, non-constant, non-monotonic, -

a(n)=Ω(n)-7
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ7-

Sequence 303lfmvwozndf

-6, -5, -5, -4, -5, -4, -5, -3, -4, -4, -5, -3, -5, -4, -4, -2, -5, -3, -5, -3, -4, -4, -5, -2, -4, -4, -3, -3, -5, -3, -5, -1, -4, -4, -4, -2, -5, -4, -4, -2, -5, -3, -5, -3, -3, -4, -5, -1, -4, -3, more...

integer, non-constant, non-monotonic, -

a(n)=Ω(n)-6
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ6-

Sequence xbre55evjn2so

-5, -4, -4, -3, -4, -3, -4, -2, -3, -3, -4, -2, -4, -3, -3, -1, -4, -2, -4, -2, -3, -3, -4, -1, -3, -3, -2, -2, -4, -2, -4, 0, -3, -3, -3, -1, -4, -3, -3, -1, -4, -2, -4, -2, -2, -3, -4, 0, -3, -2, more...

integer, non-constant, non-monotonic, -0

a(n)=Ω(n)-5
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ5-

Sequence 2hdnlbjcs5zwh

-4, -3, -3, -2, -3, -2, -3, -1, -2, -2, -3, -1, -3, -2, -2, 0, -3, -1, -3, -1, -2, -2, -3, 0, -2, -2, -1, -1, -3, -1, -3, 1, -2, -2, -2, 0, -3, -2, -2, 0, -3, -1, -3, -1, -1, -2, -3, 1, -2, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=Ω(n)-4
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ4-

Sequence jgjdfistg02wb

-3.1415926536, -2.1415926536, -2.1415926536, -1.1415926536, -2.1415926536, -1.1415926536, -2.1415926536, -0.1415926536, -1.1415926536, -1.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, -1.1415926536, -1.1415926536, 0.8584073464, -2.1415926536, -0.1415926536, -2.1415926536, -0.1415926536, -1.1415926536, -1.1415926536, -2.1415926536, 0.8584073464, -1.1415926536, -1.1415926536, -0.1415926536, -0.1415926536, -2.1415926536, -0.1415926536, -2.1415926536, 1.8584073464, -1.1415926536, -1.1415926536, -1.1415926536, 0.8584073464, -2.1415926536, -1.1415926536, -1.1415926536, 0.8584073464, -2.1415926536, -0.1415926536, -2.1415926536, -0.1415926536, -0.1415926536, -1.1415926536, -2.1415926536, 1.8584073464, -1.1415926536, -0.1415926536, more...

decimal, non-constant, non-monotonic, +-

a(n)=Ω(n)-π
Ω(n)=max factorization terms
Pi (3.141...)
n≥1
4 operations
Prime
nΩπ-

Sequence ryw2mxeap43le

-3, -2, -2, -1, -2, -1, -2, 0, -1, -1, -2, 0, -2, -1, -1, 1, -2, 0, -2, 0, -1, -1, -2, 1, -1, -1, 0, 0, -2, 0, -2, 2, -1, -1, -1, 1, -2, -1, -1, 1, -2, 0, -2, 0, 0, -1, -2, 2, -1, 0, more...

integer, non-constant, non-monotonic, +-0

a(n)=Ω(n)-3
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ3-

Sequence fgfyravjqgkpi

-2.1850398633, -0.1425465431, -0.1425465431, -3.3805150062, -0.1425465431, -3.3805150062, -0.1425465431, 0.8714479827, -3.3805150062, -3.3805150062, -0.1425465431, 0.8714479827, -0.1425465431, -3.3805150062, -3.3805150062, -225.9508464542, -0.1425465431, 0.8714479827, -0.1425465431, 0.8714479827, -3.3805150062, -3.3805150062, -0.1425465431, -225.9508464542, -3.3805150062, -3.3805150062, 0.8714479827, 0.8714479827, -0.1425465431, 0.8714479827, -0.1425465431, 0.4630211329, -3.3805150062, -3.3805150062, -3.3805150062, -225.9508464542, -0.1425465431, -3.3805150062, -3.3805150062, -225.9508464542, -0.1425465431, 0.8714479827, -0.1425465431, 0.8714479827, 0.8714479827, -3.3805150062, -0.1425465431, 0.4630211329, -3.3805150062, 0.8714479827, more...

decimal, non-constant, non-monotonic, +-

a(n)=tan(p(Ω(n)))
Ω(n)=max factorization terms
p(n)=nth prime
n≥1
4 operations
Prime
nΩpW

Sequence inwqddjjgw2ye

-2, -3, -3, -5, -3, -5, -3, -7, -5, -5, -3, -7, -3, -5, -5, -11, -3, -7, -3, -7, -5, -5, -3, -11, -5, -5, -7, -7, -3, -7, -3, -13, -5, -5, -5, -11, -3, -5, -5, -11, -3, -7, -3, -7, -7, -5, -3, -13, -5, -7, more...

integer, non-constant, non-monotonic, -

a(n)=-p(Ω(n))
Ω(n)=max factorization terms
p(n)=nth prime
n≥1
4 operations
Prime
nΩp~

Sequence oue11ko3lgzdf

-2, -1, -1, 0, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 2, -1, 1, -1, 1, 0, 0, -1, 2, 0, 0, 1, 1, -1, 1, -1, 3, 0, 0, 0, 2, -1, 0, 0, 2, -1, 1, -1, 1, 1, 0, -1, 3, 0, 1, more...

integer, non-constant, non-monotonic, +-0

a(n)=Ω(n)-2
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ2-

Sequence z00cqs4yuat3g

-1, -2.7182818285, -2.7182818285, -7.3890560989, -2.7182818285, -7.3890560989, -2.7182818285, -20.0855369232, -7.3890560989, -7.3890560989, -2.7182818285, -20.0855369232, -2.7182818285, -7.3890560989, -7.3890560989, -54.5981500331, -2.7182818285, -20.0855369232, -2.7182818285, -20.0855369232, -7.3890560989, -7.3890560989, -2.7182818285, -54.5981500331, -7.3890560989, -7.3890560989, -20.0855369232, -20.0855369232, -2.7182818285, -20.0855369232, -2.7182818285, -148.4131591026, -7.3890560989, -7.3890560989, -7.3890560989, -54.5981500331, -2.7182818285, -7.3890560989, -7.3890560989, -54.5981500331, -2.7182818285, -20.0855369232, -2.7182818285, -20.0855369232, -20.0855369232, -7.3890560989, -2.7182818285, -148.4131591026, -7.3890560989, -20.0855369232, more...

decimal, non-constant, non-monotonic, -

a(n)=-exp(Ω(n))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩe~

Sequence sck2ifpk2ptqe

-1, -1, -2, -2, -4, -4, -6, -5, -7, -8, -10, -9, -12, -12, -13, -12, -16, -15, -18, -17, -19, -20, -22, -20, -23, -24, -24, -25, -28, -27, -30, -27, -31, -32, -33, -32, -36, -36, -37, -36, -40, -39, -42, -41, -42, -44, -46, -43, -47, -47, more...

integer, non-constant, non-monotonic, -

a(n)=Ω(n)-n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩn-

Sequence 130v2snacrqak

-1, -1, -1, -2, -1, -2, -1, -6, -2, -2, -1, -6, -1, -2, -2, -24, -1, -6, -1, -6, -2, -2, -1, -24, -2, -2, -6, -6, -1, -6, -1, -120, -2, -2, -2, -24, -1, -2, -2, -24, -1, -6, -1, -6, -6, -2, -1, -120, -2, -6, more...

integer, non-constant, non-monotonic, -

a(n)=-Ω(n)!
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ!~

Sequence jg5hpelcmfh3m

-1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, more...

integer, non-constant, non-monotonic, +-

a(n)=-λ(Ω(n))
Ω(n)=max factorization terms
λ(n)=Liouville's function
n≥1
4 operations
Prime
nΩλ~

Sequence jchtteixjk2b

-1, -0.5403023059, -0.5403023059, 0.4161468365, -0.5403023059, 0.4161468365, -0.5403023059, 0.9899924966, 0.4161468365, 0.4161468365, -0.5403023059, 0.9899924966, -0.5403023059, 0.4161468365, 0.4161468365, 0.6536436209, -0.5403023059, 0.9899924966, -0.5403023059, 0.9899924966, 0.4161468365, 0.4161468365, -0.5403023059, 0.6536436209, 0.4161468365, 0.4161468365, 0.9899924966, 0.9899924966, -0.5403023059, 0.9899924966, -0.5403023059, -0.2836621855, 0.4161468365, 0.4161468365, 0.4161468365, 0.6536436209, -0.5403023059, 0.4161468365, 0.4161468365, 0.6536436209, -0.5403023059, 0.9899924966, -0.5403023059, 0.9899924966, 0.9899924966, 0.4161468365, -0.5403023059, -0.2836621855, 0.4161468365, 0.9899924966, more...

decimal, non-constant, non-monotonic, +-

a(n)=-cos(Ω(n))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩO~

Sequence zvnenefvwlq1f

-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 2, 2, 0, 2, 0, 4, 1, 1, 1, 3, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 4, 1, 2, more...

integer, non-constant, non-monotonic, +-0

a(n)=Ω(n)-1
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ1-

Sequence pl2wryjukhzdg

-0.4161468365, -0.9899924966, -0.9899924966, 0.2836621855, -0.9899924966, 0.2836621855, -0.9899924966, 0.7539022543, 0.2836621855, 0.2836621855, -0.9899924966, 0.7539022543, -0.9899924966, 0.2836621855, 0.2836621855, 0.004425698, -0.9899924966, 0.7539022543, -0.9899924966, 0.7539022543, 0.2836621855, 0.2836621855, -0.9899924966, 0.004425698, 0.2836621855, 0.2836621855, 0.7539022543, 0.7539022543, -0.9899924966, 0.7539022543, -0.9899924966, 0.9074467815, 0.2836621855, 0.2836621855, 0.2836621855, 0.004425698, -0.9899924966, 0.2836621855, 0.2836621855, 0.004425698, -0.9899924966, 0.7539022543, -0.9899924966, 0.7539022543, 0.7539022543, 0.2836621855, -0.9899924966, 0.9074467815, 0.2836621855, 0.7539022543, more...

decimal, non-constant, non-monotonic, +-

a(n)=cos(p(Ω(n)))
Ω(n)=max factorization terms
p(n)=nth prime
n≥1
4 operations
Prime
nΩpO

Sequence ynveddbllziwc

0, -1.5574077247, -1.5574077247, 2.1850398633, -1.5574077247, 2.1850398633, -1.5574077247, 0.1425465431, 2.1850398633, 2.1850398633, -1.5574077247, 0.1425465431, -1.5574077247, 2.1850398633, 2.1850398633, -1.1578212823, -1.5574077247, 0.1425465431, -1.5574077247, 0.1425465431, 2.1850398633, 2.1850398633, -1.5574077247, -1.1578212823, 2.1850398633, 2.1850398633, 0.1425465431, 0.1425465431, -1.5574077247, 0.1425465431, -1.5574077247, 3.3805150062, 2.1850398633, 2.1850398633, 2.1850398633, -1.1578212823, -1.5574077247, 2.1850398633, 2.1850398633, -1.1578212823, -1.5574077247, 0.1425465431, -1.5574077247, 0.1425465431, 0.1425465431, 2.1850398633, -1.5574077247, 3.3805150062, 2.1850398633, 0.1425465431, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(-Ω(n))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ~W

Sequence p25ckaa1lwmul

0, -1, -1, -2, -1, -2, -1, -2, -2, -2, -1, -2, -1, -2, -2, -3, -1, -2, -1, -2, -2, -2, -1, -3, -2, -2, -2, -2, -1, -2, -1, -2, -2, -2, -2, -3, -1, -2, -2, -3, -1, -2, -1, -2, -2, -2, -1, -2, -2, -2, more...

integer, non-constant, non-monotonic, -0

a(n)=-τ(Ω(n))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nΩτ~

Sequence briybmi1iliog

0, -1, -1, -1.4142135624, -1, -1.4142135624, -1, -1.7320508076, -1.4142135624, -1.4142135624, -1, -1.7320508076, -1, -1.4142135624, -1.4142135624, -2, -1, -1.7320508076, -1, -1.7320508076, -1.4142135624, -1.4142135624, -1, -2, -1.4142135624, -1.4142135624, -1.7320508076, -1.7320508076, -1, -1.7320508076, -1, -2.2360679775, -1.4142135624, -1.4142135624, -1.4142135624, -2, -1, -1.4142135624, -1.4142135624, -2, -1, -1.7320508076, -1, -1.7320508076, -1.7320508076, -1.4142135624, -1, -2.2360679775, -1.4142135624, -1.7320508076, more...

decimal, non-constant, non-monotonic, -0

a(n)=-sqrt(Ω(n))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩQ~

Sequence ufvzs2rvu2dcn

0, -1, -1, -1, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -2, -1, -1, -2, -1, -2, -2, -2, -1, -3, -1, -2, -2, -2, -1, -3, -1, -2, -2, -2, -2, -2, -1, -2, -2, -3, -1, -3, -1, -2, -2, -2, -1, -2, -1, -2, more...

integer, non-constant, non-monotonic, -0

a(n)=-Ω(τ(n))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nτΩ~

Sequence haxmjfjemljqi

0, -1, -1, -1, -1, -1, -1, -2, -1, -1, -1, -2, -1, -1, -1, -2, -1, -2, -1, -2, -1, -1, -1, -2, -1, -1, -2, -2, -1, -2, -1, -4, -1, -1, -1, -2, -1, -1, -1, -2, -1, -2, -1, -2, -2, -1, -1, -4, -1, -2, more...

integer, non-constant, non-monotonic, -0

a(n)=-ϕ(Ω(n))
Ω(n)=max factorization terms
ϕ(n)=Euler's totient function
n≥1
4 operations
Prime
nΩϕ~

Sequence cog3mb2jbqozd

0, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 1, 1, -1, 0, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, -1, 1, 1, 0, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, more...

integer, non-constant, non-monotonic, +-0

a(n)=-μ(Ω(n))
Ω(n)=max factorization terms
μ(n)=Möbius function
n≥1
4 operations
Prime
nΩμ~

Sequence ydf1yfzuhab4o

0, -0.8414709848, -0.8414709848, -0.9092974268, -0.8414709848, -0.9092974268, -0.8414709848, -0.1411200081, -0.9092974268, -0.9092974268, -0.8414709848, -0.1411200081, -0.8414709848, -0.9092974268, -0.9092974268, 0.7568024953, -0.8414709848, -0.1411200081, -0.8414709848, -0.1411200081, -0.9092974268, -0.9092974268, -0.8414709848, 0.7568024953, -0.9092974268, -0.9092974268, -0.1411200081, -0.1411200081, -0.8414709848, -0.1411200081, -0.8414709848, 0.9589242747, -0.9092974268, -0.9092974268, -0.9092974268, 0.7568024953, -0.8414709848, -0.9092974268, -0.9092974268, 0.7568024953, -0.8414709848, -0.1411200081, -0.8414709848, -0.1411200081, -0.1411200081, -0.9092974268, -0.8414709848, 0.9589242747, -0.9092974268, -0.1411200081, more...

decimal, non-constant, non-monotonic, +-0

a(n)=sin(-Ω(n))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ~S

Sequence ui0fgorw4dm5g

0, 0, -1, -2, -4, -5, -7, -8, -11, -13, -15, -16, -19, -20, -22, -24, -28, -29, -32, -33, -36, -38, -40, -41, -45, -47, -49, -52, -55, -56, -59, -60, -65, -67, -69, -71, -75, -76, -78, -80, -84, -85, -88, -89, -92, -95, -97, -98, -103, -105, more...

integer, non-constant, monotonic, -0

a(n)=a(n-1)-Ω(n)
a(0)=0
Ω(n)=max factorization terms
n≥0
4 operations
PrimeRecursive
rnΩ-

Sequence qckxsgjjsseio

0, 0, -1, -1, -2, -1, -2, -2, -2, -2, -2, -2, -3, -2, -3, -3, -4, -2, -3, -3, -3, -2, -2, -3, -3, -3, -3, -3, -3, -3, -3, -4, -3, -4, -4, -3, -4, -3, -4, -4, -4, -3, -3, -3, -4, -2, -2, -4, -3, -3, more...

integer, non-constant, non-monotonic, -0

a(n)=-Ω(ϕ(n))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕΩ~

Sequence xhzfwpuhf23dd

0, 0, -0.6931471806, 0, -0.6931471806, 0, -1.0986122887, -0.6931471806, -0.6931471806, 0, -1.0986122887, 0, -0.6931471806, -0.6931471806, -1.3862943611, 0, -1.0986122887, 0, -1.0986122887, -0.6931471806, -0.6931471806, 0, -1.3862943611, -0.6931471806, -0.6931471806, -1.0986122887, -1.0986122887, 0, -1.0986122887, 0, -1.6094379124, -0.6931471806, -0.6931471806, -0.6931471806, -1.3862943611, 0, -0.6931471806, -0.6931471806, -1.3862943611, 0, -1.0986122887, 0, -1.0986122887, -1.0986122887, -0.6931471806, 0, -1.6094379124, -0.6931471806, -1.0986122887, -0.6931471806, more...

decimal, non-constant, non-monotonic, -0

a(n)=-ln(Ω(n))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩl~

Sequence a5mthjfgesldk

0, 0, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -2, 0, -1, 0, -1, -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, 0, -1, 0, -1, -1, -1, 0, -1, -1, -1, more...

integer, non-constant, non-monotonic, -0

a(n)=-Ω(Ω(n))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩΩ~

Sequence uemjwrpgufqwk

0, 0, 0, -0.6931471806, 0, -0.6931471806, 0, -1.0986122887, -0.6931471806, -0.6931471806, 0, -1.0986122887, 0, -0.6931471806, -0.6931471806, -0.6931471806, 0, -1.0986122887, 0, -1.0986122887, -0.6931471806, -0.6931471806, 0, -0.6931471806, -0.6931471806, -0.6931471806, -1.0986122887, -1.0986122887, 0, -1.0986122887, 0, -1.6094379124, -0.6931471806, -0.6931471806, -0.6931471806, -0.6931471806, 0, -0.6931471806, -0.6931471806, -0.6931471806, 0, -1.0986122887, 0, -1.0986122887, -1.0986122887, -0.6931471806, 0, -1.6094379124, -0.6931471806, -1.0986122887, more...

decimal, non-constant, non-monotonic, -0

a(n)=-Λ(Ω(n))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛ~

Sequence e0muszptsc4ep

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, more...

integer, non-constant, non-monotonic, -0, A061126

a(n)=floor(sin(Ω(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩSf

Sequence 2fbmuv3a5kt3i

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, more...

integer, non-constant, non-monotonic, +0, A061126

a(n)=Ω(Ω(Ω(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩΩΩ

Sequence khpjeukdvd2dj

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(Λ(Ω(n)))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛf

Sequence stx3x3t4vuuzn

0, 0, 0, 0, 0, 0, 0.6931471806, 0, 0, 0, 0.6931471806, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 1.3862943611, 0, 0, 0, 0.6931471806, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0, 0, 1.3862943611, 0, 0.6931471806, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(ϕ(Ω(n)))
Ω(n)=max factorization terms
ϕ(n)=Euler's totient function
n≥2
4 operations
Prime
nΩϕl

Sequence mo5w2qny2gdjc

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, more...

integer, non-constant, periodic, non-monotonic, +0

a(n)=Ω(gcd(n, 7))
gcd(a,b)=greatest common divisor
Ω(n)=max factorization terms
n≥1
4 operations
Prime
n7gΩ

Sequence 5cc14iv44c0bd

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=floor(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlf

Sequence mksdk3a5zybpb

0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 3, 1, 2, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=n%Ω(n)
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nnΩ%

Sequence 5ur4ag2kmkefm

0, 0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nτΩΛ

Sequence qvufwbyowbeqf

0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 1.0986122887, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(Ω(τ(n)))
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nτΩl

Sequence 1ezgv2c4g551f

0, 0, 0, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 1.0986122887, 0.6931471806, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 1.0986122887, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nϕΩΛ

Sequence hng1fctrx4zxe

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, more...

integer, non-constant, periodic, non-monotonic, +0

a(n)=Ω(gcd(n, 5))
gcd(a,b)=greatest common divisor
Ω(n)=max factorization terms
n≥1
4 operations
Prime
n5gΩ

Sequence b1pscbn5no0bn

0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(round(Λ(n)))
Λ(n)=Von Mangoldt's function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΛRΩ

Sequence x20lwqkdwazpl

0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕΩΩ

Sequence xrdkxuiogghcl

0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 2, 2, 3, 3, 3, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(ϕ(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕϕΩ

Sequence 03ucjynpgqe4e

0, 0, 0, 0.6389612763, 0, 0.6389612763, 0, 0.8905770417, 0.6389612763, 0.6389612763, 0, 0.8905770417, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0, 0.8905770417, 0, 0.8905770417, 0.6389612763, 0.6389612763, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0.8905770417, 0.8905770417, 0, 0.8905770417, 0, 0.9992535068, 0.6389612763, 0.6389612763, 0.6389612763, 0.6389612763, 0, 0.6389612763, 0.6389612763, 0.6389612763, 0, 0.8905770417, 0, 0.8905770417, 0.8905770417, 0.6389612763, 0, 0.9992535068, 0.6389612763, 0.8905770417, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(Λ(Ω(n)))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛS

Sequence 1jydzc000ynek

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0, 0, 0, 0.6931471806, 0.6931471806, 0, 0, 0, 0, 0, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0, 0, 0, 0, 0, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0, 0.6931471806, 0.6931471806, 0, 0, 0, 0, 0, 0, 0.6931471806, 0, 0, 0.6931471806, 0, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(Ω(n)!)
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩ!Λ

Sequence o4p0cpwsm0xlk

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=Λ(τ(Ω(n)))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩτΛ

Sequence ccq35a5w1fptc

0, 0, 0, 0.6931471806, 0, 0.6931471806, 0, 1.7917594692, 0.6931471806, 0.6931471806, 0, 1.7917594692, 0, 0.6931471806, 0.6931471806, 3.1780538303, 0, 1.7917594692, 0, 1.7917594692, 0.6931471806, 0.6931471806, 0, 3.1780538303, 0.6931471806, 0.6931471806, 1.7917594692, 1.7917594692, 0, 1.7917594692, 0, 4.7874917428, 0.6931471806, 0.6931471806, 0.6931471806, 3.1780538303, 0, 0.6931471806, 0.6931471806, 3.1780538303, 0, 1.7917594692, 0, 1.7917594692, 1.7917594692, 0.6931471806, 0, 4.7874917428, 0.6931471806, 1.7917594692, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(Ω(n)!)
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ!l

Sequence bdyd43ujrzilp

0, 0, 0, 0.8306408779, 0, 0.8306408779, 0, 1.9580333261, 0.8306408779, 0.8306408779, 0, 1.9580333261, 0, 0.8306408779, 0.8306408779, 0.8306408779, 0, 1.9580333261, 0, 1.9580333261, 0.8306408779, 0.8306408779, 0, 0.8306408779, 0.8306408779, 0.8306408779, 1.9580333261, 1.9580333261, 0, 1.9580333261, 0, -25.8659734032, 0.8306408779, 0.8306408779, 0.8306408779, 0.8306408779, 0, 0.8306408779, 0.8306408779, 0.8306408779, 0, 1.9580333261, 0, 1.9580333261, 1.9580333261, 0.8306408779, 0, -25.8659734032, 0.8306408779, 1.9580333261, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(Λ(Ω(n)))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛW

Sequence r3thmredvqptn

0, 0, 0, 0.8325546112, 0, 0.8325546112, 0, 1.048147074, 0.8325546112, 0.8325546112, 0, 1.048147074, 0, 0.8325546112, 0.8325546112, 0.8325546112, 0, 1.048147074, 0, 1.048147074, 0.8325546112, 0.8325546112, 0, 0.8325546112, 0.8325546112, 0.8325546112, 1.048147074, 1.048147074, 0, 1.048147074, 0, 1.2686362412, 0.8325546112, 0.8325546112, 0.8325546112, 0.8325546112, 0, 0.8325546112, 0.8325546112, 0.8325546112, 0, 1.048147074, 0, 1.048147074, 1.048147074, 0.8325546112, 0, 1.2686362412, 0.8325546112, 1.048147074, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(Λ(Ω(n)))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛQ

Sequence bf5maxycx05di

0, 0, 0, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0.8414709848, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0.8414709848, 0.9092974268, 0, 0.8414709848, 0, 0.8414709848, 0.8414709848, 0.8414709848, 0, 0.9092974268, 0.8414709848, 0.8414709848, 0.8414709848, 0.8414709848, 0, 0.8414709848, 0, 0.8414709848, 0.8414709848, 0.8414709848, 0.8414709848, 0.9092974268, 0, 0.8414709848, 0.8414709848, 0.9092974268, 0, 0.8414709848, 0, 0.8414709848, 0.8414709848, 0.8414709848, 0, 0.8414709848, 0.8414709848, 0.8414709848, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(Ω(Ω(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩΩS

Sequence ruak1y3pmaqlp

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, -1, 0, 1, 0, 1, 1, 1, 0, -1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, -1, 0, 1, 1, -1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(Ω(Ω(n)))
Ω(n)=max factorization terms
μ(n)=Möbius function
n≥1
4 operations
Prime
nΩΩμ

Sequence 4knkjbmmff4oi

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1.4142135624, 0, 1, 0, 1, 1, 1, 0, 1.4142135624, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.4142135624, 0, 1, 1, 1.4142135624, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(Ω(Ω(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩΩQ

Sequence ohz4b3omzj2vh

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(ϕ(τ(n)))
τ(n)=number of divisors of n
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nτϕΩ

Sequence 0iiyow23pc5je

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 1, 1, 1, 2, 2, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=ceil(Λ(Ω(n)))
Ω(n)=max factorization terms
Λ(n)=Von Mangoldt's function
n≥1
4 operations
Prime
nΩΛT

Sequence comqleyrhjehp

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 4, 1, 1, 2, 2, 0, 2, 0, 5, 1, 1, 1, 4, 0, 1, 1, 4, 0, 2, 0, 2, 2, 1, 0, 5, 1, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(Ω(n)!)
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩ!Ω

Sequence f0ncw20galbwh

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(floor(sqrt(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nQfΩ

Sequence gho1i3j2j0dwh

0, 0, 0, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 1.5574077247, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 1.5574077247, -2.1850398633, 0, 1.5574077247, 0, 1.5574077247, 1.5574077247, 1.5574077247, 0, -2.1850398633, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, 0, 1.5574077247, 0, 1.5574077247, 1.5574077247, 1.5574077247, 1.5574077247, -2.1850398633, 0, 1.5574077247, 1.5574077247, -2.1850398633, 0, 1.5574077247, 0, 1.5574077247, 1.5574077247, 1.5574077247, 0, 1.5574077247, 1.5574077247, 1.5574077247, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(Ω(Ω(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nΩΩW

Sequence c3heeoruxpblp

0, 0, 0.3465735903, 0, 0.3465735903, 0, 0.5493061443, 0.3465735903, 0.3465735903, 0, 0.5493061443, 0, 0.3465735903, 0.3465735903, 0.6931471806, 0, 0.5493061443, 0, 0.5493061443, 0.3465735903, 0.3465735903, 0, 0.6931471806, 0.3465735903, 0.3465735903, 0.5493061443, 0.5493061443, 0, 0.5493061443, 0, 0.8047189562, 0.3465735903, 0.3465735903, 0.3465735903, 0.6931471806, 0, 0.3465735903, 0.3465735903, 0.6931471806, 0, 0.5493061443, 0, 0.5493061443, 0.5493061443, 0.3465735903, 0, 0.8047189562, 0.3465735903, 0.5493061443, 0.3465735903, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(sqrt(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩQl

Sequence svpxtgd3w0lab

0, 0, 0.6389612763, 0, 0.6389612763, 0, 0.8905770417, 0.6389612763, 0.6389612763, 0, 0.8905770417, 0, 0.6389612763, 0.6389612763, 0.9830277404, 0, 0.8905770417, 0, 0.8905770417, 0.6389612763, 0.6389612763, 0, 0.9830277404, 0.6389612763, 0.6389612763, 0.8905770417, 0.8905770417, 0, 0.8905770417, 0, 0.9992535068, 0.6389612763, 0.6389612763, 0.6389612763, 0.9830277404, 0, 0.6389612763, 0.6389612763, 0.9830277404, 0, 0.8905770417, 0, 0.8905770417, 0.8905770417, 0.6389612763, 0, 0.9992535068, 0.6389612763, 0.8905770417, 0.6389612763, more...

decimal, non-constant, non-monotonic, +0

a(n)=sin(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlS

Sequence voev0bwgdwqpf

0, 0, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 1.0986122887, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0.6931471806, 1.0986122887, 0, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0, 0.6931471806, 0.6931471806, 0.6931471806, 0.6931471806, more...

decimal, non-constant, non-monotonic, +0

a(n)=ln(τ(Ω(n)))
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥2
4 operations
Prime
nΩτl

Sequence fzq5mdur30tgo

0, 0, 0.8306408779, 0, 0.8306408779, 0, 1.9580333261, 0.8306408779, 0.8306408779, 0, 1.9580333261, 0, 0.8306408779, 0.8306408779, 5.3583557768, 0, 1.9580333261, 0, 1.9580333261, 0.8306408779, 0.8306408779, 0, 5.3583557768, 0.8306408779, 0.8306408779, 1.9580333261, 1.9580333261, 0, 1.9580333261, 0, -25.8659734032, 0.8306408779, 0.8306408779, 0.8306408779, 5.3583557768, 0, 0.8306408779, 0.8306408779, 5.3583557768, 0, 1.9580333261, 0, 1.9580333261, 1.9580333261, 0.8306408779, 0, -25.8659734032, 0.8306408779, 1.9580333261, 0.8306408779, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlW

Sequence ocjwgmfkea5jj

0, 0, 0.8325546112, 0, 0.8325546112, 0, 1.048147074, 0.8325546112, 0.8325546112, 0, 1.048147074, 0, 0.8325546112, 0.8325546112, 1.1774100225, 0, 1.048147074, 0, 1.048147074, 0.8325546112, 0.8325546112, 0, 1.1774100225, 0.8325546112, 0.8325546112, 1.048147074, 1.048147074, 0, 1.048147074, 0, 1.2686362412, 0.8325546112, 0.8325546112, 0.8325546112, 1.1774100225, 0, 0.8325546112, 0.8325546112, 1.1774100225, 0, 1.048147074, 0, 1.048147074, 1.048147074, 0.8325546112, 0, 1.2686362412, 0.8325546112, 1.048147074, 0.8325546112, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlQ

Sequence 5h3iyy0ondiyb

0, 0, 0.8414709848, 0.8414709848, 0.9092974268, 0.8414709848, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.9092974268, 0.1411200081, 0.9092974268, 0.1411200081, 0.1411200081, -0.7568024953, 0.9092974268, 0.1411200081, 0.1411200081, 0.1411200081, 0.9092974268, 0.9092974268, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, 0.1411200081, -0.7568024953, 0.1411200081, -0.7568024953, -0.7568024953, 0.1411200081, -0.7568024953, 0.1411200081, -0.7568024953, -0.7568024953, -0.7568024953, 0.1411200081, 0.1411200081, 0.1411200081, -0.7568024953, 0.9092974268, 0.9092974268, -0.7568024953, 0.1411200081, 0.1411200081, more...

decimal, non-constant, non-monotonic, +-0

a(n)=sin(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕΩS

Sequence fz03vupewgv2k

0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, more...

integer, non-constant, periodic, non-monotonic, +0

a(n)=Ω(gcd(n, 9))
gcd(a,b)=greatest common divisor
Ω(n)=max factorization terms
n≥1
4 operations
Prime
n9gΩ

Sequence hfvorbeda0pnp

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=round(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlR

Sequence rv3gei4sylqbd

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 2, 2, 0, 2, 0, 2, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=ceil(ln(Ω(n)))
Ω(n)=max factorization terms
n≥2
4 operations
Prime
nΩlT

Sequence rh0jotu5w1vef

0, 0, 1, 0, 2, -1, 3, -2, 5, -3, 5, -4, 7, -6, 8, -6, 10, -9, 12, -11, 14, -12, 14, -13, 17, -15, 17, -14, 17, -16, 19, -18, 23, -21, 23, -21, 25, -24, 26, -24, 28, -27, 30, -29, 32, -29, 31, -30, 35, -33, more...

integer, non-constant, non-monotonic, +-0

a(n)=Ω(n)-a(n-1)
a(0)=0
Ω(n)=max factorization terms
n≥0
4 operations
PrimeRecursive
nΩr-

Sequence 2rpfc11uen41m

0, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 1, 0, 1, 0, 2, 1, 0, 3, 0, 3, 1, 0, 1, 0, 2, 1, 0, 3, 0, 3, 0, 5, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 3, 1, 0, 1, 0, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(gcd(n, a(n-1)))
a(0)=0
gcd(a,b)=greatest common divisor
Ω(n)=max factorization terms
n≥0
4 operations
PrimeRecursive
nrgΩ

Sequence mxmj30h0adkse

0, 0, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, 0, 0, -1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, -1, 0, -1, -1, more...

integer, non-constant, non-monotonic, +-0

a(n)=μ(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
μ(n)=Möbius function
n≥1
4 operations
Prime
nϕΩμ

Sequence w213jnzcqa3hm

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(round(sqrt(n)))
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nQRΩ

Sequence 3mrutkxmdzhxf

0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 3, 2, 3, 2, 2, 1, 3, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(τ(ϕ(n)))
ϕ(n)=Euler's totient function
τ(n)=number of divisors of n
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕτΩ

Sequence fjjld4jkwanld

0, 0, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 2, 4, 2, 3, 3, 1, 2, 2, 1, 2, 2, 2, 3, 3, 3, 1, 5, 1, 2, 2, 2, 4, 2, 2, 2, 4, 2, 3, 3, 1, 2, 2, 1, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(n-a(n-1))
a(0)=0
Ω(n)=max factorization terms
n≥0
4 operations
PrimeRecursive
nr-Ω

Sequence qlbhzt14qqgyj

0, 0, 1, 1, 1.4142135624, 1, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.4142135624, 1.7320508076, 1.4142135624, 1.7320508076, 1.7320508076, 2, 1.4142135624, 1.7320508076, 1.7320508076, 1.7320508076, 1.4142135624, 1.4142135624, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 1.7320508076, 2, 1.7320508076, 2, 2, 1.7320508076, 2, 1.7320508076, 2, 2, 2, 1.7320508076, 1.7320508076, 1.7320508076, 2, 1.4142135624, 1.4142135624, 2, 1.7320508076, 1.7320508076, more...

decimal, non-constant, non-monotonic, +0

a(n)=sqrt(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕΩQ

Sequence rvlt1kzmthkud

0, 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(n-1)
Ω(n)=max factorization terms
n≥1
4 operations
Prime
n1-Ω

Sequence 2zummjwq1a1eg

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, more...

integer, non-constant, non-monotonic, +0

a(n)=τ(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
τ(n)=number of divisors of n
n≥1
4 operations
Prime
nϕΩτ

Sequence bdvjsptmbwt0k

0, 0, 1, 2, 2, 1, 1, 3, 1, 2, 3, 2, 2, 2, 4, 1, 1, 3, 2, 2, 2, 1, 1, 4, 3, 3, 1, 3, 1, 3, 2, 2, 2, 2, 4, 2, 2, 2, 4, 1, 1, 3, 3, 2, 2, 1, 1, 5, 1, 3, more...

integer, non-constant, non-monotonic, +0

a(n)=Ω(n+a(n-1))
a(0)=0
Ω(n)=max factorization terms
n≥0
4 operations
PrimeRecursive
nr+Ω

Sequence z4bfsgjntmngo

0, 0, 1, 2, 4, 5, 7, 8, 11, 13, 15, 16, 19, 20, 22, 24, 28, 29, 32, 33, 36, 38, 40, 41, 45, 47, 49, 52, 55, 56, 59, 60, 65, 67, 69, 71, 75, 76, 78, 80, 84, 85, 88, 89, 92, 95, 97, 98, 103, 105, more...

integer, non-constant, monotonic, +0, A022559

a(n)=Ω(n)+a(n-1)
a(0)=0
Ω(n)=max factorization terms
n≥0
4 operations
PrimeRecursive
nΩr+

Sequence gwfdhrtuztuyn

0, 0, 1.5574077247, 1.5574077247, -2.1850398633, 1.5574077247, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -2.1850398633, -0.1425465431, -2.1850398633, -0.1425465431, -0.1425465431, 1.1578212823, -2.1850398633, -0.1425465431, -0.1425465431, -0.1425465431, -2.1850398633, -2.1850398633, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, -0.1425465431, 1.1578212823, -0.1425465431, 1.1578212823, 1.1578212823, -0.1425465431, 1.1578212823, -0.1425465431, 1.1578212823, 1.1578212823, 1.1578212823, -0.1425465431, -0.1425465431, -0.1425465431, 1.1578212823, -2.1850398633, -2.1850398633, 1.1578212823, -0.1425465431, -0.1425465431, more...

decimal, non-constant, non-monotonic, +-0

a(n)=tan(Ω(ϕ(n)))
ϕ(n)=Euler's totient function
Ω(n)=max factorization terms
n≥1
4 operations
Prime
nϕΩW