Sequence Database

A database with 1693109 machine generated integer and decimal sequences.

Displaying result 0-99 of total 108271. [0] [1] [2] [3] [4] ... [1082]

Sequence brsi1x4psomni

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, more...

integer, non-monotonic, +, A001222

a(n)=Ω(n)
Ω(n)=max distinct factors of n
n≥1
2 operations
Prime
a(n)=log(sqrt(exp(Ω(n²))))
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=Ω(n*p(n))-1
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence 0bratltk3sv0l

0, -1, -1, -2, -1, -2, -1, -3, -2, -2, -1, -3, -1, -2, -2, -4, -1, -3, -1, -3, -2, -2, -1, -4, -2, -2, -3, -3, -1, -3, -1, -5, -2, -2, -2, -4, -1, -2, -2, -4, -1, -3, -1, -3, -3, -2, -1, -5, -2, -3, more...

integer, non-monotonic, -

a(n)=-Ω(n)
Ω(n)=max distinct factors of n
n≥1
3 operations
Prime
a(n)=log(1/exp(Ω(n)))
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime
a(n)=1-Ω(n*p(n))
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence pcqptbg2jhszo

-10, -9, -9, -8, -9, -8, -9, -7, -8, -8, -9, -7, -9, -8, -8, -6, -9, -7, -9, -7, -8, -8, -9, -6, -8, -8, -7, -7, -9, -7, -9, -5, -8, -8, -8, -6, -9, -8, -8, -6, -9, -7, -9, -7, -7, -8, -9, -5, -8, -7, more...

integer, non-monotonic, -

a(n)=Ω(n)-10
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence p5hqaw2ido5be

-9, -8, -8, -7, -8, -7, -8, -6, -7, -7, -8, -6, -8, -7, -7, -5, -8, -6, -8, -6, -7, -7, -8, -5, -7, -7, -6, -6, -8, -6, -8, -4, -7, -7, -7, -5, -8, -7, -7, -5, -8, -6, -8, -6, -6, -7, -8, -4, -7, -6, more...

integer, non-monotonic, -

a(n)=Ω(n)-9
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence gm40cwxlqddqn

-8, -7, -7, -6, -7, -6, -7, -5, -6, -6, -7, -5, -7, -6, -6, -4, -7, -5, -7, -5, -6, -6, -7, -4, -6, -6, -5, -5, -7, -5, -7, -3, -6, -6, -6, -4, -7, -6, -6, -4, -7, -5, -7, -5, -5, -6, -7, -3, -6, -5, more...

integer, non-monotonic, -

a(n)=Ω(n)-8
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=xor(-8, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
5 operations
Prime
a(n)=or(-8, Ω(n))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
n≥1
5 operations
Prime

Sequence myapzb0oso1xj

-7, -6, -6, -5, -6, -5, -6, -4, -5, -5, -6, -4, -6, -5, -5, -3, -6, -4, -6, -4, -5, -5, -6, -3, -5, -5, -4, -4, -6, -4, -6, -2, -5, -5, -5, -3, -6, -5, -5, -3, -6, -4, -6, -4, -4, -5, -6, -2, -5, -4, more...

integer, non-monotonic, -

a(n)=Ω(n)-7
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence wsvuaqixzckfh

-6, -5, -5, -4, -5, -4, -5, -3, -4, -4, -5, -3, -5, -4, -4, -2, -5, -3, -5, -3, -4, -4, -5, -2, -4, -4, -3, -3, -5, -3, -5, -1, -4, -4, -4, -2, -5, -4, -4, -2, -5, -3, -5, -3, -3, -4, -5, -1, -4, -3, more...

integer, non-monotonic, -

a(n)=Ω(n)-6
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence hwrlyxzb3pb2n

-5, -4, -4, -3, -4, -3, -4, -2, -3, -3, -4, -2, -4, -3, -3, -1, -4, -2, -4, -2, -3, -3, -4, -1, -3, -3, -2, -2, -4, -2, -4, 0, -3, -3, -3, -1, -4, -3, -3, -1, -4, -2, -4, -2, -2, -3, -4, 0, -3, -2, more...

integer, non-monotonic, -

a(n)=Ω(n)-5
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence fqwfjxkkyxedf

-4, -3, -3, -2, -3, -2, -3, -1, -2, -2, -3, -1, -3, -2, -2, 0, -3, -1, -3, -1, -2, -2, -3, 0, -2, -2, -1, -1, -3, -1, -3, 1, -2, -2, -2, 0, -3, -2, -2, 0, -3, -1, -3, -1, -1, -2, -3, 1, -2, -1, more...

integer, non-monotonic, +-

a(n)=Ω(n)-4
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence hjs2iwhfygy2d

-3, -2, -2, -1, -2, -1, -2, 0, -1, -1, -2, 0, -2, -1, -1, 1, -2, 0, -2, 0, -1, -1, -2, 1, -1, -1, 0, 0, -2, 0, -2, 2, -1, -1, -1, 1, -2, -1, -1, 1, -2, 0, -2, 0, 0, -1, -2, 2, -1, 0, more...

integer, non-monotonic, +-

a(n)=Ω(n)-3
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence xxq5ae2fklczk

-2, -1, -1, 0, -1, 0, -1, 1, 0, 0, -1, 1, -1, 0, 0, 2, -1, 1, -1, 1, 0, 0, -1, 2, 0, 0, 1, 1, -1, 1, -1, 3, 0, 0, 0, 2, -1, 0, 0, 2, -1, 1, -1, 1, 1, 0, -1, 3, 0, 1, more...

integer, non-monotonic, +-

a(n)=Ω(n)-2
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence okti132jckbpf

-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 2, 2, 0, 2, 0, 4, 1, 1, 1, 3, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 4, 1, 2, more...

integer, non-monotonic, +-

a(n)=Ω(n)-1
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=Ω(n*p(n))-2
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence e1un04hyf3h2

0, 0.1, 0.1, 0.2, 0.1, 0.2, 0.1, 0.3, 0.2, 0.2, 0.1, 0.3, 0.1, 0.2, 0.2, 0.4, 0.1, 0.3, 0.1, 0.3, 0.2, 0.2, 0.1, 0.4, 0.2, more...

decimal, non-monotonic, +

a(n)=Ω(n)/10
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence wyleycoxkvsoe

0, 0.1111111111111111, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.3333333333333333, 0.2222222222222222, 0.2222222222222222, 0.1111111111111111, 0.3333333333333333, 0.1111111111111111, 0.2222222222222222, 0.2222222222222222, 0.4444444444444444, 0.1111111111111111, 0.3333333333333333, 0.1111111111111111, 0.3333333333333333, 0.2222222222222222, 0.2222222222222222, 0.1111111111111111, 0.4444444444444444, 0.2222222222222222, more...

decimal, non-monotonic, +

a(n)=Ω(n)/9
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence gwbbsie33v4wh

0, 0.125, 0.125, 0.25, 0.125, 0.25, 0.125, 0.375, 0.25, 0.25, 0.125, 0.375, 0.125, 0.25, 0.25, 0.5, 0.125, 0.375, 0.125, 0.375, 0.25, 0.25, 0.125, 0.5, 0.25, more...

decimal, non-monotonic, +

a(n)=Ω(n)/8
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence dpqma235ss5ym

0, 0.14285714285714285, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.2857142857142857, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.14285714285714285, 0.2857142857142857, 0.2857142857142857, 0.5714285714285714, 0.14285714285714285, 0.42857142857142855, 0.14285714285714285, 0.42857142857142855, 0.2857142857142857, 0.2857142857142857, 0.14285714285714285, 0.5714285714285714, 0.2857142857142857, more...

decimal, non-monotonic, +

a(n)=Ω(n)/7
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence 4ozta45cwymfn

0, 0.16666666666666666, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.3333333333333333, 0.16666666666666666, 0.5, 0.3333333333333333, 0.3333333333333333, 0.16666666666666666, 0.5, 0.16666666666666666, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.16666666666666666, 0.5, 0.16666666666666666, 0.5, 0.3333333333333333, 0.3333333333333333, 0.16666666666666666, 0.6666666666666666, 0.3333333333333333, more...

decimal, non-monotonic, +

a(n)=Ω(n)/6
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence oohwb2pgxma4i

0, 0.2, 0.2, 0.4, 0.2, 0.4, 0.2, 0.6, 0.4, 0.4, 0.2, 0.6, 0.2, 0.4, 0.4, 0.8, 0.2, 0.6, 0.2, 0.6, 0.4, 0.4, 0.2, 0.8, 0.4, more...

decimal, non-monotonic, +

a(n)=Ω(n)/5
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence sgtx4mdqegumg

0, 0.25, 0.25, 0.5, 0.25, 0.5, 0.25, 0.75, 0.5, 0.5, 0.25, 0.75, 0.25, 0.5, 0.5, 1, 0.25, 0.75, 0.25, 0.75, 0.5, 0.5, 0.25, 1, 0.5, more...

decimal, non-monotonic, +

a(n)=Ω(n)/4
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence kpxukpuqn3mrm

0, 0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 0.6666666666666666, 0.3333333333333333, 1, 0.6666666666666666, 0.6666666666666666, 0.3333333333333333, 1, 0.3333333333333333, 0.6666666666666666, 0.6666666666666666, 1.3333333333333333, 0.3333333333333333, 1, 0.3333333333333333, 1, 0.6666666666666666, 0.6666666666666666, 0.3333333333333333, 1.3333333333333333, 0.6666666666666666, more...

decimal, non-monotonic, +

a(n)=Ω(n)/3
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence dwgwzw2bugbyj

0, 0.5, 0.5, 1, 0.5, 1, 0.5, 1.5, 1, 1, 0.5, 1.5, 0.5, 1, 1, 2, 0.5, 1.5, 0.5, 1.5, 1, 1, 0.5, 2, 1, more...

decimal, non-monotonic, +

a(n)=Ω(n)/2
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence vngy4bujazhkc

0, 3, 3, 6, 3, 6, 3, 9, 6, 6, 3, 9, 3, 6, 6, 12, 3, 9, 3, 9, 6, 6, 3, 12, 6, 6, 9, 9, 3, 9, 3, 15, 6, 6, 6, 12, 3, 6, 6, 12, 3, 9, 3, 9, 9, 6, 3, 15, 6, 9, more...

integer, non-monotonic, +

a(n)=3*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=τ(gpf(n)²)*Ω(n)
gpf(n)=greatest prime factor of n
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence qkqkxlpcikyim

0, 4, 4, 8, 4, 8, 4, 12, 8, 8, 4, 12, 4, 8, 8, 16, 4, 12, 4, 12, 8, 8, 4, 16, 8, 8, 12, 12, 4, 12, 4, 20, 8, 8, 8, 16, 4, 8, 8, 16, 4, 12, 4, 12, 12, 8, 4, 20, 8, 12, more...

integer, non-monotonic, +

a(n)=4*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=log(exp(Ω(n²))²)
Ω(n)=max distinct factors of n
n≥1
6 operations
Prime

Sequence odnixcvkwpcoj

0, 5, 5, 10, 5, 10, 5, 15, 10, 10, 5, 15, 5, 10, 10, 20, 5, 15, 5, 15, 10, 10, 5, 20, 10, 10, 15, 15, 5, 15, 5, 25, 10, 10, 10, 20, 5, 10, 10, 20, 5, 15, 5, 15, 15, 10, 5, 25, 10, 15, more...

integer, non-monotonic, +

a(n)=5*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence bayltpsct3yse

0, 6, 6, 12, 6, 12, 6, 18, 12, 12, 6, 18, 6, 12, 12, 24, 6, 18, 6, 18, 12, 12, 6, 24, 12, 12, 18, 18, 6, 18, 6, 30, 12, 12, 12, 24, 6, 12, 12, 24, 6, 18, 6, 18, 18, 12, 6, 30, 12, 18, more...

integer, non-monotonic, +

a(n)=6*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence m1drxlbr22blm

0, 7, 7, 14, 7, 14, 7, 21, 14, 14, 7, 21, 7, 14, 14, 28, 7, 21, 7, 21, 14, 14, 7, 28, 14, 14, 21, 21, 7, 21, 7, 35, 14, 14, 14, 28, 7, 14, 14, 28, 7, 21, 7, 21, 21, 14, 7, 35, 14, 21, more...

integer, non-monotonic, +

a(n)=7*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=lcm(Ω(n), 7)
Ω(n)=max distinct factors of n
lcm(a,b)=least common multiple
n≥1
4 operations
Prime

Sequence 1wski2pitf25i

0, 8, 8, 16, 8, 16, 8, 24, 16, 16, 8, 24, 8, 16, 16, 32, 8, 24, 8, 24, 16, 16, 8, 32, 16, 16, 24, 24, 8, 24, 8, 40, 16, 16, 16, 32, 8, 16, 16, 32, 8, 24, 8, 24, 24, 16, 8, 40, 16, 24, more...

integer, non-monotonic, +

a(n)=8*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence zus0yhh0zunao

0, 9, 9, 18, 9, 18, 9, 27, 18, 18, 9, 27, 9, 18, 18, 36, 9, 27, 9, 27, 18, 18, 9, 36, 18, 18, 27, 27, 9, 27, 9, 45, 18, 18, 18, 36, 9, 18, 18, 36, 9, 27, 9, 27, 27, 18, 9, 45, 18, 27, more...

integer, non-monotonic, +

a(n)=9*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence ldknihaddklgk

0, 10, 10, 20, 10, 20, 10, 30, 20, 20, 10, 30, 10, 20, 20, 40, 10, 30, 10, 30, 20, 20, 10, 40, 20, 20, 30, 30, 10, 30, 10, 50, 20, 20, 20, 40, 10, 20, 20, 40, 10, 30, 10, 30, 30, 20, 10, 50, 20, 30, more...

integer, non-monotonic, +

a(n)=10*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence engb35imf1nuf

1, 0, 0, -1, 0, -1, 0, -2, -1, -1, 0, -2, 0, -1, -1, -3, 0, -2, 0, -2, -1, -1, 0, -3, -1, -1, -2, -2, 0, -2, 0, -4, -1, -1, -1, -3, 0, -1, -1, -3, 0, -2, 0, -2, -2, -1, 0, -4, -1, -2, more...

integer, non-monotonic, +-

a(n)=1-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=2-Ω(n*p(n))
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence oi02ka4lvrjrm

1, 1, 0.5, 1, 0.5, 1, 0.3333333333333333, 0.5, 0.5, 1, 0.3333333333333333, 1, 0.5, 0.5, 0.25, 1, 0.3333333333333333, 1, 0.3333333333333333, 0.5, 0.5, 1, 0.25, 0.5, 0.5, more...

decimal, non-monotonic, +

a(n)=1/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence 4ysslaysyy1ep

1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, more...

integer, non-monotonic, +

a(n)=Ω(2+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime
a(n)=exp(abs(log(Ω(n))))
Ω(n)=max distinct factors of n
n≥2
5 operations
Prime
a(n)=stern(P(σ(Ω(n))))
Ω(n)=max distinct factors of n
σ(n)=divisor sum of n
P(n)=partition numbers
stern(n)=Stern-Brocot sequence
n≥2
5 operations
Prime
a(n)=floor(sqrt(p(Ω(n²))))
Ω(n)=max distinct factors of n
p(n)=nth prime
n≥2
6 operations
Prime
a(n)=τ(2^(Ω(n)-1))
Ω(n)=max distinct factors of n
τ(n)=number of divisors of n
n≥2
7 operations
Prime

Sequence sogfvbvbzvjie

1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, more...

integer, non-monotonic, +

a(n)=Ω(3+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence xkzsjx0q3niyf

1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, more...

integer, non-monotonic, +

a(n)=Ω(5+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence hyu12y2iaqbro

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, more...

integer, non-monotonic, +, A073093

a(n)=1+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=τ(2^Ω(n))
Ω(n)=max distinct factors of n
τ(n)=number of divisors of n
n≥1
5 operations
Prime

Sequence 4acfetdefoacn

1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, more...

integer, non-monotonic, +

a(n)=Ω(7+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence cm5zgg1gdecf

2, 1, 1, 0, 1, 0, 1, -1, 0, 0, 1, -1, 1, 0, 0, -2, 1, -1, 1, -1, 0, 0, 1, -2, 0, 0, -1, -1, 1, -1, 1, -3, 0, 0, 0, -2, 1, 0, 0, -2, 1, -1, 1, -1, -1, 0, 1, -3, 0, -1, more...

integer, non-monotonic, +-

a(n)=2-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence fzdl4kv4whl4f

2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, more...

integer, non-monotonic, +

a(n)=Ω(4+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence maukaacqftm4f

2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, more...

integer, non-monotonic, +

a(n)=Ω(10+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence ykoqxrwwbp44

2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(6+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence ktv3pcjr5a5g

2, 2, 1, 2, 1, 2, 0.6666666666666666, 1, 1, 2, 0.6666666666666666, 2, 1, 1, 0.5, 2, 0.6666666666666666, 2, 0.6666666666666666, 1, 1, 2, 0.5, 1, 1, more...

decimal, non-monotonic, +

a(n)=2/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime
a(n)=Ω(p(n)²)/Ω(n)
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥2
7 operations
Prime
a(n)=Ω(gpf(n)²)/Ω(n)
gpf(n)=greatest prime factor of n
Ω(n)=max distinct factors of n
n≥2
7 operations
Prime

Sequence k15vlh1n4qhpl

2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(9+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence takohz040sjxk

2, 3, 3, 4, 3, 4, 3, 5, 4, 4, 3, 5, 3, 4, 4, 6, 3, 5, 3, 5, 4, 4, 3, 6, 4, 4, 5, 5, 3, 5, 3, 7, 4, 4, 4, 6, 3, 4, 4, 6, 3, 5, 3, 5, 5, 4, 3, 7, 4, 5, more...

integer, non-monotonic, +, A305716

a(n)=2+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=1+Ω(n*p(n))
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime
a(n)=τ(2^(1+Ω(n)))
Ω(n)=max distinct factors of n
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence 32ymzufgfk2lk

3, 2, 2, 1, 2, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, -1, 2, 0, 2, 0, 1, 1, 2, -1, 1, 1, 0, 0, 2, 0, 2, -2, 1, 1, 1, -1, 2, 1, 1, -1, 2, 0, 2, 0, 0, 1, 2, -2, 1, 0, more...

integer, non-monotonic, +-

a(n)=3-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence shwhsgx4hzdnc

3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(8+n)
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence yefqq433z2yyp

3, 3, 1.5, 3, 1.5, 3, 1, 1.5, 1.5, 3, 1, 3, 1.5, 1.5, 0.75, 3, 1, 3, 1, 1.5, 1.5, 3, 0.75, 1.5, 1.5, more...

decimal, non-monotonic, +

a(n)=3/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime
a(n)=τ(p(n)²)/Ω(n)
p(n)=nth prime
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥2
7 operations
Prime
a(n)=τ(gpf(n)²)/Ω(n)
gpf(n)=greatest prime factor of n
τ(n)=number of divisors of n
Ω(n)=max distinct factors of n
n≥2
7 operations
Prime

Sequence am1xdkqbcwarc

3, 4, 4, 5, 4, 5, 4, 6, 5, 5, 4, 6, 4, 5, 5, 7, 4, 6, 4, 6, 5, 5, 4, 7, 5, 5, 6, 6, 4, 6, 4, 8, 5, 5, 5, 7, 4, 5, 5, 7, 4, 6, 4, 6, 6, 5, 4, 8, 5, 6, more...

integer, non-monotonic, +

a(n)=3+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=2+Ω(n*p(n))
p(n)=nth prime
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime
a(n)=τ(2^(2+Ω(n)))
Ω(n)=max distinct factors of n
τ(n)=number of divisors of n
n≥1
7 operations
Prime

Sequence 1xbbsgrgb2bc

4, 3, 3, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 2, 2, 0, 3, 1, 3, 1, 2, 2, 3, 0, 2, 2, 1, 1, 3, 1, 3, -1, 2, 2, 2, 0, 3, 2, 2, 0, 3, 1, 3, 1, 1, 2, 3, -1, 2, 1, more...

integer, non-monotonic, +-

a(n)=4-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence crerpuouz5eie

4, 4, 2, 4, 2, 4, 1.3333333333333333, 2, 2, 4, 1.3333333333333333, 4, 2, 2, 1, 4, 1.3333333333333333, 4, 1.3333333333333333, 2, 2, 4, 1, 2, 2, more...

decimal, non-monotonic, +

a(n)=4/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence xexy421skfbjn

4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 5, 6, 6, 8, 5, 7, 5, 7, 6, 6, 5, 8, 6, 6, 7, 7, 5, 7, 5, 9, 6, 6, 6, 8, 5, 6, 6, 8, 5, 7, 5, 7, 7, 6, 5, 9, 6, 7, more...

integer, non-monotonic, +

a(n)=4+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence r3d0k4dbvgejn

5, 4, 4, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 3, 3, 1, 4, 2, 4, 2, 3, 3, 4, 1, 3, 3, 2, 2, 4, 2, 4, 0, 3, 3, 3, 1, 4, 3, 3, 1, 4, 2, 4, 2, 2, 3, 4, 0, 3, 2, more...

integer, non-monotonic, +

a(n)=5-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence l535wnuhfqj1h

5, 5, 2.5, 5, 2.5, 5, 1.6666666666666667, 2.5, 2.5, 5, 1.6666666666666667, 5, 2.5, 2.5, 1.25, 5, 1.6666666666666667, 5, 1.6666666666666667, 2.5, 2.5, 5, 1.25, 2.5, 2.5, more...

decimal, non-monotonic, +

a(n)=5/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence dhaivwazdxbmp

5, 6, 6, 7, 6, 7, 6, 8, 7, 7, 6, 8, 6, 7, 7, 9, 6, 8, 6, 8, 7, 7, 6, 9, 7, 7, 8, 8, 6, 8, 6, 10, 7, 7, 7, 9, 6, 7, 7, 9, 6, 8, 6, 8, 8, 7, 6, 10, 7, 8, more...

integer, non-monotonic, +

a(n)=5+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence 1griizp2fbe2e

6, 5, 5, 4, 5, 4, 5, 3, 4, 4, 5, 3, 5, 4, 4, 2, 5, 3, 5, 3, 4, 4, 5, 2, 4, 4, 3, 3, 5, 3, 5, 1, 4, 4, 4, 2, 5, 4, 4, 2, 5, 3, 5, 3, 3, 4, 5, 1, 4, 3, more...

integer, non-monotonic, +

a(n)=6-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence evj5odey3gafm

6, 6, 3, 6, 3, 6, 2, 3, 3, 6, 2, 6, 3, 3, 1.5, 6, 2, 6, 2, 3, 3, 6, 1.5, 3, 3, more...

decimal, non-monotonic, +

a(n)=6/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence ptnpepwqyyhdf

6, 7, 7, 8, 7, 8, 7, 9, 8, 8, 7, 9, 7, 8, 8, 10, 7, 9, 7, 9, 8, 8, 7, 10, 8, 8, 9, 9, 7, 9, 7, 11, 8, 8, 8, 10, 7, 8, 8, 10, 7, 9, 7, 9, 9, 8, 7, 11, 8, 9, more...

integer, non-monotonic, +

a(n)=6+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence c1vmnnwdjijkd

7, 6, 6, 5, 6, 5, 6, 4, 5, 5, 6, 4, 6, 5, 5, 3, 6, 4, 6, 4, 5, 5, 6, 3, 5, 5, 4, 4, 6, 4, 6, 2, 5, 5, 5, 3, 6, 5, 5, 3, 6, 4, 6, 4, 4, 5, 6, 2, 5, 4, more...

integer, non-monotonic, +

a(n)=7-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=xor(7, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence 4ocpazwhk3fbp

7, 7, 3.5, 7, 3.5, 7, 2.3333333333333335, 3.5, 3.5, 7, 2.3333333333333335, 7, 3.5, 3.5, 1.75, 7, 2.3333333333333335, 7, 2.3333333333333335, 3.5, 3.5, 7, 1.75, 3.5, 3.5, more...

decimal, non-monotonic, +

a(n)=7/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence btmqxw5pirxjf

7, 8, 8, 9, 8, 9, 8, 10, 9, 9, 8, 10, 8, 9, 9, 11, 8, 10, 8, 10, 9, 9, 8, 11, 9, 9, 10, 10, 8, 10, 8, 12, 9, 9, 9, 11, 8, 9, 9, 11, 8, 10, 8, 10, 10, 9, 8, 12, 9, 10, more...

integer, non-monotonic, +

a(n)=7+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence 3vs4rm2pyap2l

8, 7, 7, 6, 7, 6, 7, 5, 6, 6, 7, 5, 7, 6, 6, 4, 7, 5, 7, 5, 6, 6, 7, 4, 6, 6, 5, 5, 7, 5, 7, 3, 6, 6, 6, 4, 7, 6, 6, 4, 7, 5, 7, 5, 5, 6, 7, 3, 6, 5, more...

integer, non-monotonic, +

a(n)=8-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence 5feu1fovo2nhg

8, 8, 4, 8, 4, 8, 2.6666666666666665, 4, 4, 8, 2.6666666666666665, 8, 4, 4, 2, 8, 2.6666666666666665, 8, 2.6666666666666665, 4, 4, 8, 2, 4, 4, more...

decimal, non-monotonic, +

a(n)=8/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence 1vmcrjjqdeieh

8, 9, 9, 10, 9, 10, 9, 11, 10, 10, 9, 11, 9, 10, 10, 12, 9, 11, 9, 11, 10, 10, 9, 12, 10, 10, 11, 11, 9, 11, 9, 13, 10, 10, 10, 12, 9, 10, 10, 12, 9, 11, 9, 11, 11, 10, 9, 13, 10, 11, more...

integer, non-monotonic, +

a(n)=8+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=xor(8, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=or(8, Ω(n))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence yv23yqafnuoqg

9, 8, 8, 7, 8, 7, 8, 6, 7, 7, 8, 6, 8, 7, 7, 5, 8, 6, 8, 6, 7, 7, 8, 5, 7, 7, 6, 6, 8, 6, 8, 4, 7, 7, 7, 5, 8, 7, 7, 5, 8, 6, 8, 6, 6, 7, 8, 4, 7, 6, more...

integer, non-monotonic, +

a(n)=9-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence wxttt0nvl3e3e

9, 9, 4.5, 9, 4.5, 9, 3, 4.5, 4.5, 9, 3, 9, 4.5, 4.5, 2.25, 9, 3, 9, 3, 4.5, 4.5, 9, 2.25, 4.5, 4.5, more...

decimal, non-monotonic, +

a(n)=9/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence 5bpcafh13pspi

9, 10, 10, 11, 10, 11, 10, 12, 11, 11, 10, 12, 10, 11, 11, 13, 10, 12, 10, 12, 11, 11, 10, 13, 11, 11, 12, 12, 10, 12, 10, 14, 11, 11, 11, 13, 10, 11, 11, 13, 10, 12, 10, 12, 12, 11, 10, 14, 11, 12, more...

integer, non-monotonic, +

a(n)=9+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence h3w3qlwqiprg

10, 9, 9, 8, 9, 8, 9, 7, 8, 8, 9, 7, 9, 8, 8, 6, 9, 7, 9, 7, 8, 8, 9, 6, 8, 8, 7, 7, 9, 7, 9, 5, 8, 8, 8, 6, 9, 8, 8, 6, 9, 7, 9, 7, 7, 8, 9, 5, 8, 7, more...

integer, non-monotonic, +

a(n)=10-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence wkvjffqde5mch

10, 10, 5, 10, 5, 10, 3.3333333333333335, 5, 5, 10, 3.3333333333333335, 10, 5, 5, 2.5, 10, 3.3333333333333335, 10, 3.3333333333333335, 5, 5, 10, 2.5, 5, 5, more...

decimal, non-monotonic, +

a(n)=10/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence ztmnabx5v5yzf

10, 11, 11, 12, 11, 12, 11, 13, 12, 12, 11, 13, 11, 12, 12, 14, 11, 13, 11, 13, 12, 12, 11, 14, 12, 12, 13, 13, 11, 13, 11, 15, 12, 12, 12, 14, 11, 12, 12, 14, 11, 13, 11, 13, 13, 12, 11, 15, 12, 13, more...

integer, non-monotonic, +

a(n)=10+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence 2zap2xrzxskl

-1, -1, -2, -2, -4, -4, -6, -5, -7, -8, -10, -9, -12, -12, -13, -12, -16, -15, -18, -17, -19, -20, -22, -20, -23, -24, -24, -25, -28, -27, -30, -27, -31, -32, -33, -32, -36, -36, -37, -36, -40, -39, -42, -41, -42, -44, -46, -43, -47, -47, more...

integer, non-monotonic, -

a(n)=Ω(n)-n
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence go5sshdtohkzm

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, more...

integer, non-monotonic, +

a(n)=and(4, Ω(n))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence qysnjwzccipwo

0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, more...

integer, non-monotonic, +

a(n)=and(2, Ω(n))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence ygaxohvjecxfk

0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 4, 0, 2, 0, 2, 2, 2, 0, 4, 2, 2, 2, 2, 0, 2, 0, 4, 2, 2, 2, 4, 0, 2, 2, 4, 0, 2, 0, 2, 2, 2, 0, 4, 2, 2, more...

integer, non-monotonic, +

a(n)=and(6, Ω(n))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=2*floor(Ω(n)/2)
Ω(n)=max distinct factors of n
n≥1
7 operations
Prime

Sequence r1ovvz4xc3muk

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(1, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence t2vg0b34afmkc

0, 0.5, 0.3333333333333333, 0.5, 0.2, 0.3333333333333333, 0.14285714285714285, 0.375, 0.2222222222222222, 0.2, 0.09090909090909091, 0.25, 0.07692307692307693, 0.14285714285714285, 0.13333333333333333, 0.25, 0.058823529411764705, 0.16666666666666666, 0.05263157894736842, 0.15, 0.09523809523809523, 0.09090909090909091, 0.043478260869565216, 0.16666666666666666, 0.08, more...

decimal, non-monotonic, +

a(n)=Ω(n)/n
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence w1fzkpilnxcvi

0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, more...

integer, non-monotonic, +, A066829

a(n)=and(1, Ω(n))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=Ω(n)%2
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime
a(n)=stern(1-λ(n))
λ(n)=Liouville's function
stern(n)=Stern-Brocot sequence
n≥1
5 operations
Prime
a(n)=sqrt(and(9, Ω(n)))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
5 operations
Prime
a(n)=μ(5-λ(n))
λ(n)=Liouville's function
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence wuo34kkgnk4wc

0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 4, 1, 1, 1, 1, 0, 0, 1, 4, 0, 0, 1, 1, 1, 1, 1, 5, 0, 0, 0, 4, 1, 0, 0, 4, 1, 1, 1, 1, 1, 0, 1, 5, 0, 1, more...

integer, non-monotonic, +

a(n)=and(5, Ω(n))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime

Sequence 4yrl0lcfdjhqg

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 0, 2, 2, 3, 3, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 0, 1, 3, 1, 3, 3, 2, 1, 1, 2, 3, more...

integer, non-monotonic, +

a(n)=and(3, Ω(n))
Ω(n)=max distinct factors of n
and(a,b)=bitwise and
n≥1
4 operations
Prime
a(n)=Ω(n)%4
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence l4d2tgo15qn4n

0, 2, 3, 8, 5, 12, 7, 24, 18, 20, 11, 36, 13, 28, 30, 64, 17, 54, 19, 60, 42, 44, 23, 96, 50, 52, 81, 84, 29, 90, 31, 160, 66, 68, 70, 144, 37, 76, 78, 160, 41, 126, 43, 132, 135, 92, 47, 240, 98, 150, more...

integer, non-monotonic, +, A066959

a(n)=n*Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence 2r0i3t2fucipf

1, 0, 0, 3, 0, 3, 0, 2, 3, 3, 0, 2, 0, 3, 3, 5, 0, 2, 0, 2, 3, 3, 0, 5, 3, 3, 2, 2, 0, 2, 0, 4, 3, 3, 3, 5, 0, 3, 3, 5, 0, 2, 0, 2, 2, 3, 0, 4, 3, 2, more...

integer, non-monotonic, +

a(n)=xor(1, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime
a(n)=Ω(n)+λ(n)
Ω(n)=max distinct factors of n
λ(n)=Liouville's function
n≥1
5 operations
Prime

Sequence lzgjy4fga0l3d

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(3, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence bv3ix32arn3mi

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, more...

integer, non-monotonic, +

a(n)=Ω(or(5, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence edmb1igg0zusc

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(7, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime
a(n)=log2(τ(or(7, n)))
or(a,b)=bitwise or
τ(n)=number of divisors of n
n≥0
5 operations
Prime
a(n)=pt(τ(or(7, n)))
or(a,b)=bitwise or
τ(n)=number of divisors of n
pt(n)=Pascals triangle by rows
n≥0
5 operations
Prime
a(n)=φ(τ(or(7, n)))
or(a,b)=bitwise or
τ(n)=number of divisors of n
ϕ(n)=number of relative primes (Euler's totient)
n≥0
5 operations
Prime

Sequence mvxaqie5qgtqe

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 2, 1, 3, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(2, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence lj3xjol2hq4yi

1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 2, 2, 4, 3, 2, 1, 3, 1, 3, 2, 5, 2, 2, 1, 4, 2, 2, 1, 4, 1, 3, 3, 3, 1, 2, 2, 5, 2, 3, more...

integer, non-monotonic, +

a(n)=Ω(xor(1, n))
xor(a,b)=bitwise exclusive or
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence t5m3nekri5xxc

1, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 1, 5, 3, 3, 3, 3, 1, 3, 1, 5, 3, 3, 3, 5, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 1, 5, 3, 3, more...

integer, non-monotonic, +

a(n)=or(1, Ω(n))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime
a(n)=gpf(σ(Ω(n)!))
Ω(n)=max distinct factors of n
σ(n)=divisor sum of n
gpf(n)=greatest prime factor of n
n≥1
5 operations
Prime

Sequence nxoiomjmdvlvb

1, 1, 2, 2, 4, 4, 6, 5, 7, 8, 10, 9, 12, 12, 13, 12, 16, 15, 18, 17, 19, 20, 22, 20, 23, 24, 24, 25, 28, 27, 30, 27, 31, 32, 33, 32, 36, 36, 37, 36, 40, 39, 42, 41, 42, 44, 46, 43, 47, 47, more...

integer, non-monotonic, +, A069345

a(n)=n-Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence y0atmieps4pvd

1, 3, 4, 6, 6, 8, 8, 11, 11, 12, 12, 15, 14, 16, 17, 20, 18, 21, 20, 23, 23, 24, 24, 28, 27, 28, 30, 31, 30, 33, 32, 37, 35, 36, 37, 40, 38, 40, 41, 44, 42, 45, 44, 47, 48, 48, 48, 53, 51, 53, more...

integer, non-monotonic, +, A064800

a(n)=n+Ω(n)
Ω(n)=max distinct factors of n
n≥1
4 operations
Prime

Sequence tavhzxtfqomrd

2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(6, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence p3bn4qledesyd

2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 4, 1, 2, 2, 4, 1, 2, 2, 3, 3, 2, 1, 3, 3, 2, 1, 3, 1, more...

integer, non-monotonic, +

a(n)=Ω(or(4, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence ojozudohne1tc

2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 3, 1, 3, 1, 2, 3, 2, 3, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=Ω(or(10, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence n3uirisqb42ii

2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(9, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence xtrwpqe0lqsfo

2, 3, 2, 5, 3, 7, 2.6666666666666665, 4.5, 5, 11, 4, 13, 7, 7.5, 4, 17, 6, 19, 6.666666666666667, 10.5, 11, 23, 6, 12.5, 13, more...

decimal, non-monotonic, +

a(n)=n/Ω(n)
Ω(n)=max distinct factors of n
n≥2
4 operations
Prime

Sequence neen1zgh1elqk

2, 3, 3, 0, 3, 0, 3, 1, 0, 0, 3, 1, 3, 0, 0, 6, 3, 1, 3, 1, 0, 0, 3, 6, 0, 0, 1, 1, 3, 1, 3, 7, 0, 0, 0, 6, 3, 0, 0, 6, 3, 1, 3, 1, 1, 0, 3, 7, 0, 1, more...

integer, non-monotonic, +

a(n)=xor(2, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence f0iyc54y5coff

2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 6, 3, 3, 3, 3, 2, 2, 3, 6, 2, 2, 3, 3, 3, 3, 3, 7, 2, 2, 2, 6, 3, 2, 2, 6, 3, 3, 3, 3, 3, 2, 3, 7, 2, 3, more...

integer, non-monotonic, +

a(n)=or(2, Ω(n))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence 2qfzcjfjlaask

3, 2, 2, 1, 2, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 7, 2, 0, 2, 0, 1, 1, 2, 7, 1, 1, 0, 0, 2, 0, 2, 6, 1, 1, 1, 7, 2, 1, 1, 7, 2, 0, 2, 0, 0, 1, 2, 6, 1, 0, more...

integer, non-monotonic, +

a(n)=xor(3, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence fqyjpvatu1gno

3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 4, 2, 2, 3, 3, 1, 3, 1, 4, 2, 2, 3, 3, 1, 3, 1, 4, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, more...

integer, non-monotonic, +

a(n)=Ω(or(8, n))
or(a,b)=bitwise or
Ω(n)=max distinct factors of n
n≥0
4 operations
Prime

Sequence 1yxztofdkkdub

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 7, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, more...

integer, non-monotonic, +

a(n)=or(3, Ω(n))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence f3olujet3agak

4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 5, 6, 6, 0, 5, 7, 5, 7, 6, 6, 5, 0, 6, 6, 7, 7, 5, 7, 5, 1, 6, 6, 6, 0, 5, 6, 6, 0, 5, 7, 5, 7, 7, 6, 5, 1, 6, 7, more...

integer, non-monotonic, +

a(n)=xor(4, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

Sequence gcrlkeedrco2

4, 5, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 5, 6, 6, 4, 5, 7, 5, 7, 6, 6, 5, 4, 6, 6, 7, 7, 5, 7, 5, 5, 6, 6, 6, 4, 5, 6, 6, 4, 5, 7, 5, 7, 7, 6, 5, 5, 6, 7, more...

integer, non-monotonic, +

a(n)=or(4, Ω(n))
Ω(n)=max distinct factors of n
or(a,b)=bitwise or
n≥1
4 operations
Prime

Sequence xss0hj34ser3p

5, 4, 4, 7, 4, 7, 4, 6, 7, 7, 4, 6, 4, 7, 7, 1, 4, 6, 4, 6, 7, 7, 4, 1, 7, 7, 6, 6, 4, 6, 4, 0, 7, 7, 7, 1, 4, 7, 7, 1, 4, 6, 4, 6, 6, 7, 4, 0, 7, 6, more...

integer, non-monotonic, +

a(n)=xor(5, Ω(n))
Ω(n)=max distinct factors of n
xor(a,b)=bitwise exclusive or
n≥1
4 operations
Prime

[0] [1] [2] [3] [4] ... [1082]