Sequence Database

A database with 899757 machine generated integer and decimal sequences.

Displaying result 0-99 of total 33829. [0] [1] [2] [3] [4] ... [338]

Sequence 42rfwqvyrnhlj

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, more...

integer, strictly-monotonic, +, A001477

a(n)=n
n≥0
1 operation
Variable
a(n)=1+a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=n%50
n≥0
3 operations
Divisibility
a(n)=(2-1)*n
n≥0
5 operations
Arithmetic
a(n)=n^(2-1)
n≥0
5 operations
Power
a(n)=C(n, a(n-1))
a(0)=0
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=n-λ(n²)
λ(n)=Liouville's function
n≥1
5 operations
Prime

Sequence kjsr2d50fhgek

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, more...

integer, periodic-2, non-monotonic, +, A000035

a(n)=1-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=n%2
n≥0
3 operations
Divisibility
a(n)=a(n-2)^a(n-1)
a(0)=0
a(1)=1
n≥0
3 operations
Power
a(n)=cf(Δ(n²))
Δ(a)=differences of a
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Arithmetic
a(n)=floor(cos(a(n-1)))
a(0)=0
n≥0
3 operations
Trigonometric
a(n)=a(n-1)!-a(n-1)
a(0)=0
n≥0
4 operations
Combinatoric
a(n)=p(n+a(n-1))*a(n-2)/p(n)
a(0)=0
a(1)=1
p(n)=nth prime
n≥0
9 operations
Prime

Sequence hexbe3joutxph

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, more...

integer, periodic-3, non-monotonic, +, A010872

a(n)=n%3
n≥0
3 operations
Divisibility
a(n)=a(n-3)^a(n-1)
a(0)=0
a(1)=1
a(2)=2
n≥0
3 operations
Power
a(n)=3-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
5 operations
Recursive
a(n)=a(n-1)!*a(n-3)
a(0)=0
a(1)=1
a(2)=2
n≥0
4 operations
Combinatoric

Sequence xzwufrv2ulxsb

0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, more...

integer, periodic-4, non-monotonic, +, A010873

a(n)=n%4
n≥0
3 operations
Divisibility
a(n)=n%(2^(1+1))
n≥0
7 operations
Power

Sequence wc4dze2lgugln

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, more...

integer, periodic-5, non-monotonic, +, A010874

a(n)=n%5
n≥0
3 operations
Divisibility
a(n)=(n^5)%5
n≥0
5 operations
Power
a(n)=C(n, a(n-1))%5
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence hpkpfwnsrx1xj

0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, more...

integer, periodic-6, non-monotonic, +, A010875

a(n)=n%6
n≥0
3 operations
Divisibility
a(n)=(n^3)%6
n≥0
5 operations
Power

Sequence hndp5xz3nflih

0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, more...

integer, periodic-7, non-monotonic, +, A010876

a(n)=n%7
n≥0
3 operations
Divisibility
a(n)=C(n, a(n-1))%7
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence e3ngkhvt0ohzo

0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, more...

integer, periodic-8, non-monotonic, +, A010877

a(n)=n%8
n≥0
3 operations
Divisibility
a(n)=n%(2^3)
n≥0
5 operations
Power

Sequence bobqhvchzwr5f

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, more...

integer, periodic-9, non-monotonic, +, A010878

a(n)=n%9
n≥0
3 operations
Divisibility

Sequence 0ffj3bsoyijrb

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, more...

integer, periodic-10, non-monotonic, +, A010879

a(n)=n%10
n≥0
3 operations
Divisibility
a(n)=(n^5)%10
n≥0
5 operations
Power

Sequence vr44w3a4s222

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, more...

integer, periodic-11, non-monotonic, +, A010880

a(n)=n%11
n≥0
3 operations
Divisibility

Sequence f4cpcyrrzlh5b

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, more...

integer, periodic-12, non-monotonic, +, A010881

a(n)=n%12
n≥0
3 operations
Divisibility

Sequence allqh0wpi5vbg

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, more...

integer, periodic-13, non-monotonic, +

a(n)=n%13
n≥0
3 operations
Divisibility

Sequence ybug045fvqujk

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, more...

integer, periodic-14, non-monotonic, +, A070696

a(n)=n%14
n≥0
3 operations
Divisibility

Sequence tzqtqw3o42orc

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, more...

integer, periodic-15, non-monotonic, +, A167463

a(n)=n%15
n≥0
3 operations
Divisibility

Sequence 3p5jusr4gjf2h

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, more...

integer, periodic-16, non-monotonic, +, A130909

a(n)=n%16
n≥0
3 operations
Divisibility
a(n)=n%(2^4)
n≥0
5 operations
Power

Sequence 5a0mm3vfkesak

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, more...

integer, periodic-17, non-monotonic, +

a(n)=n%17
n≥0
3 operations
Divisibility

Sequence euup3lmkyk2ig

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, more...

integer, periodic-18, non-monotonic, +

a(n)=n%18
n≥0
3 operations
Divisibility

Sequence 2gwqbkgqi0mhh

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, more...

integer, periodic-19, non-monotonic, +

a(n)=n%19
n≥0
3 operations
Divisibility

Sequence ususjsyf2hpue

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, more...

integer, periodic-20, non-monotonic, +

a(n)=n%20
n≥0
3 operations
Divisibility

Sequence m2b5i3mel2bei

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 0, 1, 2, 3, 4, 5, 6, 7, more...

integer, periodic-21, non-monotonic, +, A167129

a(n)=n%21
n≥0
3 operations
Divisibility

Sequence hew4dq40e2bnm

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 0, 1, 2, 3, 4, 5, more...

integer, periodic-22, non-monotonic, +

a(n)=n%22
n≥0
3 operations
Divisibility

Sequence gauh5wpztaxpm

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 0, 1, 2, 3, more...

integer, periodic-23, non-monotonic, +

a(n)=n%23
n≥0
3 operations
Divisibility

Sequence 0rqpvqqzvrhgh

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0, 1, more...

integer, periodic-24, non-monotonic, +, A036218

a(n)=n%24
n≥0
3 operations
Divisibility

Sequence metln5214xdec

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, more...

integer, periodic-25, non-monotonic, +

a(n)=n%25
n≥0
3 operations
Divisibility

Sequence yytff2y4vuixg

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, more...

integer, non-monotonic, +

a(n)=n%26
n≥0
3 operations
Divisibility

Sequence 4spjrorviwvzk

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, more...

integer, non-monotonic, +

a(n)=n%27
n≥0
3 operations
Divisibility
a(n)=n%(3^3)
n≥0
5 operations
Power

Sequence mgt0va0inuryo

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, more...

integer, non-monotonic, +

a(n)=n%28
n≥0
3 operations
Divisibility

Sequence xduehm5fyf4sd

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, more...

integer, non-monotonic, +

a(n)=n%29
n≥0
3 operations
Divisibility

Sequence rr00ewseuqjcc

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, more...

integer, non-monotonic, +

a(n)=n%30
n≥0
3 operations
Divisibility

Sequence avfhsgijkvp5c

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, more...

integer, non-monotonic, +

a(n)=n%31
n≥0
3 operations
Divisibility

Sequence xktgx2yorx1l

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, more...

integer, non-monotonic, +

a(n)=n%32
n≥0
3 operations
Divisibility
a(n)=n%(2^5)
n≥0
5 operations
Power

Sequence 4hocccgs2ivne

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, more...

integer, non-monotonic, +

a(n)=n%33
n≥0
3 operations
Divisibility

Sequence go1jwceialc1k

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, more...

integer, non-monotonic, +

a(n)=n%34
n≥0
3 operations
Divisibility

Sequence acdtt5ybqjaco

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, more...

integer, non-monotonic, +

a(n)=n%35
n≥0
3 operations
Divisibility

Sequence 5eereuxks2wzp

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, more...

integer, non-monotonic, +

a(n)=n%36
n≥0
3 operations
Divisibility

Sequence aptxamnthwxah

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, more...

integer, non-monotonic, +

a(n)=n%37
n≥0
3 operations
Divisibility

Sequence d1exxg4haxmph

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, more...

integer, non-monotonic, +

a(n)=n%38
n≥0
3 operations
Divisibility

Sequence qd3bdmlovngfk

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, more...

integer, non-monotonic, +

a(n)=n%39
n≥0
3 operations
Divisibility

Sequence hlultccenc1ub

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, more...

integer, non-monotonic, +

a(n)=n%40
n≥0
3 operations
Divisibility
a(n)=n%∏(ϕ(a(n-1)))
a(0)=5
ϕ(n)=number of relative primes (Euler's totient)
∏(a)=partial products of a
n≥0
5 operations
Prime

Sequence m2iyjatkmvsip

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 0, 1, 2, 3, 4, 5, 6, 7, 8, more...

integer, non-monotonic, +

a(n)=n%41
n≥0
3 operations
Divisibility

Sequence nhjwulizgzbhi

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 0, 1, 2, 3, 4, 5, 6, 7, more...

integer, non-monotonic, +

a(n)=n%42
n≥0
3 operations
Divisibility

Sequence rtxibzefmt3xc

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 0, 1, 2, 3, 4, 5, 6, more...

integer, non-monotonic, +

a(n)=n%43
n≥0
3 operations
Divisibility

Sequence vwfblr3fxtiec

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 0, 1, 2, 3, 4, 5, more...

integer, non-monotonic, +

a(n)=n%44
n≥0
3 operations
Divisibility

Sequence g0rceaalyry3e

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 0, 1, 2, 3, 4, more...

integer, non-monotonic, +

a(n)=n%45
n≥0
3 operations
Divisibility

Sequence faizf0am1abjj

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 0, 1, 2, 3, more...

integer, non-monotonic, +

a(n)=n%46
n≥0
3 operations
Divisibility

Sequence mqggt2pqcrwqg

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 0, 1, 2, more...

integer, non-monotonic, +

a(n)=n%47
n≥0
3 operations
Divisibility

Sequence ioponza0wcz1f

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 0, 1, more...

integer, non-monotonic, +

a(n)=n%48
n≥0
3 operations
Divisibility

Sequence prllx2wn3llhp

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 0, more...

integer, non-monotonic, +

a(n)=n%49
n≥0
3 operations
Divisibility

Sequence qgdcvovgywgbn

0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, more...

integer, periodic-3, non-monotonic, +, A011655

a(n)=n²%3
n≥0
4 operations
Divisibility
a(n)=(a(n-1)-a(n-2))²
a(0)=0
a(1)=1
n≥0
4 operations
Recursive
a(n)=a(n-3)^a(n-1)
a(0)=0
a(1)=1
a(2)=1
n≥0
3 operations
Power
a(n)=cf(comp(3*n))
comp(a)=complement function of a (in range)
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Arithmetic
a(n)=a(n-1)!*a(n-3)
a(0)=0
a(1)=1
a(2)=1
n≥0
4 operations
Combinatoric
a(n)=a(n-3)^cos(a(n-1))
a(0)=0
a(1)=1
a(2)=1
n≥0
4 operations
Trigonometric

Sequence crkq0ywqsdvne

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, more...

integer, periodic-10, non-monotonic, -

a(n)=-n%10
n≥0
4 operations
Divisibility

Sequence 143x1inshbsqj

0, -1, -2, -3, -4, -5, -6, -7, -8, 0, -1, -2, -3, -4, -5, -6, -7, -8, 0, -1, -2, -3, -4, -5, -6, -7, -8, 0, -1, -2, -3, -4, -5, -6, -7, -8, 0, -1, -2, -3, -4, -5, -6, -7, -8, 0, -1, -2, -3, -4, more...

integer, periodic-9, non-monotonic, -

a(n)=-n%9
n≥0
4 operations
Divisibility

Sequence nse31rn3wtbap

0, -1, -2, -3, -4, -5, -6, -7, 0, -1, -2, -3, -4, -5, -6, -7, 0, -1, -2, -3, -4, -5, -6, -7, 0, -1, -2, -3, -4, -5, -6, -7, 0, -1, -2, -3, -4, -5, -6, -7, 0, -1, -2, -3, -4, -5, -6, -7, 0, -1, more...

integer, periodic-8, non-monotonic, -

a(n)=-n%8
n≥0
4 operations
Divisibility

Sequence 5yfbjmt3i2sug

0, -1, -2, -3, -4, -5, -6, 0, -1, -2, -3, -4, -5, -6, 0, -1, -2, -3, -4, -5, -6, 0, -1, -2, -3, -4, -5, -6, 0, -1, -2, -3, -4, -5, -6, 0, -1, -2, -3, -4, -5, -6, 0, -1, -2, -3, -4, -5, -6, 0, more...

integer, periodic-7, non-monotonic, -

a(n)=-n%7
n≥0
4 operations
Divisibility

Sequence qcdwhke3zjokp

0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, -2, -3, -4, -5, 0, -1, more...

integer, periodic-6, non-monotonic, -

a(n)=-n%6
n≥0
4 operations
Divisibility

Sequence lxhk0k4l1ewoo

0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, 0, -1, -2, -3, -4, more...

integer, periodic-5, non-monotonic, -

a(n)=-n%5
n≥0
4 operations
Divisibility

Sequence a2ahi5pmhacgl

0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, -2, -3, 0, -1, more...

integer, periodic-4, non-monotonic, -

a(n)=-n%4
n≥0
4 operations
Divisibility

Sequence 4oafitaxoswxc

0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, -2, 0, -1, more...

integer, periodic-3, non-monotonic, -

a(n)=-n%3
n≥0
4 operations
Divisibility
a(n)=a(n-1)-Δ(a(n-3))
a(0)=0
a(1)=1
a(2)=2
Δ(a)=differences of a
n≥0
4 operations
Recursive
a(n)=a(n-1)^(2+a(n-1))-1
a(0)=0
n≥0
7 operations
Power

Sequence h4uzxyiek2ulp

0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, more...

integer, periodic-2, non-monotonic, -

a(n)=-1-a(n-1)
a(0)=0
n≥0
4 operations
Recursive
a(n)=-n%2
n≥0
4 operations
Divisibility
a(n)=a(n-1)^4-1
a(0)=0
n≥0
5 operations
Power
a(n)=-cf(Δ(n²))
Δ(a)=differences of a
cf(a)=characteristic function of a (in range)
n≥0
5 operations
Arithmetic
a(n)=ceil(-cos(a(n-1)))
a(0)=0
n≥0
4 operations
Trigonometric
a(n)=gcd(n, 2)!-2
gcd(a,b)=greatest common divisor
n≥0
6 operations
Combinatoric

Sequence br0yvzytgjhnp

0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, 4, 0, 1, more...

integer, periodic-3, non-monotonic, +

a(n)=5-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
5 operations
Recursive
a(n)=(n%3)²
n≥0
4 operations
Divisibility
a(n)=(4^a(n-1))%8
a(0)=0
n≥0
5 operations
Power
a(n)=C(10, a(n-1))%6
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence anekkppw54pnb

0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, more...

integer, periodic-9, non-monotonic, +, A070433

a(n)=n²%9
n≥0
4 operations
Divisibility

Sequence aao0v03vkb0en

0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, more...

integer, periodic-4, non-monotonic, +, A070432

a(n)=n²%8
n≥0
4 operations
Divisibility
a(n)=2-(a(n-2)-2)^a(n-1)
a(0)=0
a(1)=1
n≥0
7 operations
Power

Sequence wnhuatoiwj1dm

0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, more...

integer, periodic-7, non-monotonic, +, A053879

a(n)=n²%7
n≥0
4 operations
Divisibility

Sequence 5iy14dbuxynup

0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, more...

integer, periodic-6, non-monotonic, +, A070431

a(n)=n²%6
n≥0
4 operations
Divisibility
a(n)=(n^4)%6
n≥0
5 operations
Power

Sequence unug1c0i212hb

0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, more...

integer, periodic-5, non-monotonic, +, A070430

a(n)=n²%5
n≥0
4 operations
Divisibility
a(n)=(n^6)%5
n≥0
5 operations
Power

Sequence nep31a45awofn

0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, 4, 9, 0, 1, more...

integer, periodic-4, non-monotonic, +

a(n)=(n%4)²
n≥0
4 operations
Divisibility

Sequence 4tzvohrckhbpi

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, more...

integer, periodic-10, non-monotonic, +, A008959

a(n)=n²%10
n≥0
4 operations
Divisibility
a(n)=(n^6)%10
n≥0
5 operations
Power

Sequence qkeumzpb4c1c

0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, more...

integer, periodic-5, non-monotonic, +

a(n)=(n%5)²
n≥0
4 operations
Divisibility

Sequence 1rcfzcc0tmswb

0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 0, 1, more...

integer, periodic-6, non-monotonic, +

a(n)=(n%6)²
n≥0
4 operations
Divisibility

Sequence egrp1y55c0pkb

0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 0, more...

integer, periodic-7, non-monotonic, +

a(n)=(n%7)²
n≥0
4 operations
Divisibility

Sequence 2oqpywu4khbsd

0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, more...

integer, periodic-8, non-monotonic, +

a(n)=(n%8)²
n≥0
4 operations
Divisibility

Sequence crvwbuvtjprbi

0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, more...

integer, periodic-9, non-monotonic, +

a(n)=(n%9)²
n≥0
4 operations
Divisibility

Sequence kjid5cgfixrvp

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, more...

integer, periodic-10, non-monotonic, +

a(n)=(n%10)²
n≥0
4 operations
Divisibility

Sequence mcltxlysasucf

0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, more...

integer, periodic-2, non-monotonic, +, A010673

a(n)=2-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=2*n%2
n≥0
5 operations
Divisibility
a(n)=sqrt(4-a(n-1)²)
a(0)=0
n≥0
5 operations
Power
a(n)=cos(a(n-1))*a(n-2)
a(0)=0
a(1)=2
n≥0
4 operations
Trigonometric
a(n)=a(n-1)!*a(n-2)
a(0)=0
a(1)=2
n≥0
4 operations
Combinatoric

Sequence kvdw1hkdog0wp

0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, more...

integer, periodic-2, non-monotonic, +, A010674

a(n)=3-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=3*n%2
n≥0
5 operations
Divisibility
a(n)=sqrt(9-a(n-1)²)
a(0)=0
n≥0
5 operations
Power
a(n)=floor(3/a(n-1)!)
a(0)=0
n≥0
5 operations
Combinatoric
a(n)=round(exp(cos(a(n-1))))
a(0)=0
n≥0
4 operations
Trigonometric

Sequence b2j3gvh1p2log

0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, 3.1415926536, 0, more...

decimal, periodic-2, non-monotonic, +

a(n)=π-a(n-1)
a(0)=0
π=3.141...
n≥0
3 operations
Recursive
a(n)=π*n%2
π=3.141...
n≥0
5 operations
Divisibility

Sequence bidkhyrabbg2h

0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, more...

integer, periodic-2, non-monotonic, +, A010675

a(n)=4-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=4*n%2
n≥0
5 operations
Divisibility
a(n)=(2-sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Power
a(n)=floor(4/a(n-1)!)
a(0)=0
n≥0
5 operations
Combinatoric

Sequence k4ynpyjcjhsvn

0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, more...

integer, periodic-2, non-monotonic, +, A010676

a(n)=5-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=5*n%2
n≥0
5 operations
Divisibility
a(n)=floor(5/exp(a(n-1)))
a(0)=0
n≥0
5 operations
Power
a(n)=floor(5/a(n-1)!)
a(0)=0
n≥0
5 operations
Combinatoric

Sequence vg22drjoeagap

0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, more...

integer, periodic-2, non-monotonic, +, A010677

a(n)=6-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=6*n%2
n≥0
5 operations
Divisibility
a(n)=floor(6/exp(a(n-1)))
a(0)=0
n≥0
5 operations
Power
a(n)=floor(6/a(n-1)!)
a(0)=0
n≥0
5 operations
Combinatoric

Sequence 42nk3ygncr4pi

0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, more...

integer, periodic-2, non-monotonic, +, A010678

a(n)=7-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=7*n%2
n≥0
5 operations
Divisibility
a(n)=floor(exp(2-a(n-1)))
a(0)=0
n≥0
5 operations
Power
a(n)=floor(7/a(n-1)!)
a(0)=0
n≥0
5 operations
Combinatoric

Sequence mehxmczlq2bmj

0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, more...

integer, periodic-2, non-monotonic, +, A010679

a(n)=8-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=8*n%2
n≥0
5 operations
Divisibility
a(n)=2^3-a(n-1)
a(0)=0
n≥0
5 operations
Power
a(n)=9-C(9, a(n-1))
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence kkcqyq1dn2umh

0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, more...

integer, periodic-2, non-monotonic, +, A010680

a(n)=9-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=9*n%2
n≥0
5 operations
Divisibility
a(n)=(3-sqrt(a(n-1)))²
a(0)=0
n≥0
5 operations
Power
a(n)=10-C(10, a(n-1))
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence 0o5cer15gcegg

0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, more...

integer, periodic-2, non-monotonic, +, A010681

a(n)=10-a(n-1)
a(0)=0
n≥0
3 operations
Recursive
a(n)=10*n%2
n≥0
5 operations
Divisibility
a(n)=floor(10/exp(a(n-1)))
a(0)=0
n≥0
5 operations
Power
a(n)=floor(10/a(n-1)!)
a(0)=0
n≥0
5 operations
Combinatoric

Sequence x1pra0juni4q

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, more...

integer, periodic-2, non-monotonic, +, A059841

a(n)=1-a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=cf(2*n)
cf(a)=characteristic function of a (in range)
n≥0
4 operations
Arithmetic
a(n)=1-n%2
n≥0
5 operations
Divisibility
a(n)=a(n-2)^a(n-1)
a(0)=1
a(1)=0
n≥0
3 operations
Power
a(n)=floor(cos(a(n-1)))
a(0)=1
n≥0
3 operations
Trigonometric
a(n)=a(n-1)!-a(n-1)
a(0)=1
n≥0
4 operations
Combinatoric
a(n)=p(n+a(n-1))*a(n-2)/p(n)
a(0)=1
a(1)=0
p(n)=nth prime
n≥0
9 operations
Prime

Sequence aijn4k3ofexuf

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, more...

integer, periodic-2, non-monotonic, +, A000034

a(n)=2/a(n-1)
a(0)=1
n≥0
3 operations
Recursive
a(n)=1+n%2
n≥0
5 operations
Divisibility
a(n)=a(n-2)^a(n-1)
a(0)=1
a(1)=2
n≥0
3 operations
Power
a(n)=C(a(n-2), a(n-1))
a(0)=1
a(1)=2
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=round(tan(a(n-1)²))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence 24w2vmvil15lg

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, more...

integer, periodic-3, non-monotonic, +, A010882

a(n)=1+n%3
n≥0
5 operations
Divisibility
a(n)=6-a(n-1)-a(n-2)
a(0)=1
a(1)=2
n≥0
5 operations
Recursive
a(n)=C(a(n-3), a(n-1))
a(0)=1
a(1)=2
a(2)=3
C(n,k)=binomial coefficient
n≥0
3 operations
Combinatoric
a(n)=gcd(6^a(n-1), a(n-3))
a(0)=1
a(1)=2
a(2)=3
gcd(a,b)=greatest common divisor
n≥0
5 operations
Power
a(n)=ceil(abs(tan(a(n-1))))
a(0)=1
n≥0
4 operations
Trigonometric

Sequence ezh0d0ot0tcpf

2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, more...

integer, periodic-2, non-monotonic, +, A010693

a(n)=5-a(n-1)
a(0)=2
n≥0
3 operations
Recursive
a(n)=2+n%2
n≥0
5 operations
Divisibility
a(n)=(a(n-1)^3)%5
a(0)=2
n≥0
5 operations
Power
a(n)=C(a(n-1), 3)*a(n-2)
a(0)=2
a(1)=3
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=ceil(exp(sin(a(n-1))))
a(0)=2
n≥0
4 operations
Trigonometric

Sequence w5w4wqn0ynpfe

3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, more...

integer, periodic-2, non-monotonic, +, A010702

a(n)=7-a(n-1)
a(0)=3
n≥0
3 operations
Recursive
a(n)=3+n%2
n≥0
5 operations
Divisibility
a(n)=ceil(exp(4/a(n-1)))
a(0)=3
n≥0
5 operations
Power

Sequence wjek3p05j52jl

4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, more...

integer, periodic-2, non-monotonic, +, A010710

a(n)=9-a(n-1)
a(0)=4
n≥0
3 operations
Recursive
a(n)=4+n%2
n≥0
5 operations
Divisibility
a(n)=ceil(exp(6/a(n-1)))
a(0)=4
n≥0
5 operations
Power

Sequence dvceuw5faz2sn

5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, more...

integer, periodic-2, non-monotonic, +, A010717

a(n)=11-a(n-1)
a(0)=5
n≥0
3 operations
Recursive
a(n)=5+n%2
n≥0
5 operations
Divisibility
a(n)=round(9/log(a(n-1)))
a(0)=5
n≥0
5 operations
Power
a(n)=round(log(C(10, a(n-1))))
a(0)=5
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric

Sequence o4tozn2bh3efl

0, 1, 1, 2, 1, 0, 2, 0, 1, 1, 0, 2, 2, 2, 0, 1, 1, 2, 1, 1, 0, 2, 2, 1, 2, 1, 2, 2, 0, 1, 1, 2, 1, 0, 2, 0, 1, 2, 1, 1, 0, 2, 2, 1, 2, 0, 1, 0, 2, 0, more...

integer, non-monotonic, +, A071412

a(n)=stern(n)%3
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence mv4bh1cbjkc0m

0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 3, 1, 2, 1, 3, 0, 1, 1, 0, 3, 3, 0, 1, 3, 2, 3, 1, 0, 3, 3, 0, 1, 1, 2, 1, 1, 0, 3, 3, 2, 3, 3, 0, 1, 1, 0, 3, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=stern(n)%4
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence dsynbaismes3n

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 0, 2, 0, 3, 4, 1, 0, 4, 2, 3, 3, 0, 2, 2, 2, 0, 3, 3, 2, 4, 0, 1, 1, 0, 4, 4, 1, 2, 0, 3, 1, 3, 3, 0, 2, 2, 4, 2, 4, more...

integer, non-monotonic, +

a(n)=stern(n)%5
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence lsevanricaobm

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 0, 3, 1, 5, 0, 2, 0, 5, 1, 3, 0, 4, 5, 1, 6, 5, 2, 4, 4, 0, 3, 3, 4, 1, 6, 5, 5, 0, 2, 2, 2, more...

integer, non-monotonic, +

a(n)=stern(n)%7
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence g5xzqphstemde

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 1, 3, 2, 5, 1, 2, 1, 5, 2, 3, 1, 4, 5, 1, 0, 5, 3, 4, 5, 1, 4, 3, 5, 2, 1, 5, 0, 1, 3, 2, 3, more...

integer, non-monotonic, +

a(n)=stern(n)%6
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence sihyj1sggjtim

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 0, 5, 7, 2, 7, 5, 0, 3, 7, 4, 5, 1, 6, 5, 1, 4, 3, 7, 2, 3, 3, 0, 5, 5, 4, 7, 1, 2, 1, more...

integer, non-monotonic, +

a(n)=stern(n)%8
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence xjocgqhjisiyn

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 0, 4, 2, 7, 1, 3, 2, 8, 4, 5, 3, 7, 0, 2, 0, more...

integer, non-monotonic, +

a(n)=stern(n)%9
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence ci4cghwvwqk4l

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 1, 7, 0, 3, 1, 8, 3, 5, 2, 7, 9, 2, 9, more...

integer, non-monotonic, +

a(n)=stern(n)%10
stern(n)=Stern-Brocot sequence
n≥0
4 operations
Divisibility

Sequence pgzkgjh1puvik

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, more...

integer, strictly-monotonic, +, A087156

a(n)=n%n²
n≥1
4 operations
Divisibility
a(n)=n-floor(1/n)
n≥1
6 operations
Arithmetic
a(n)=∑(2-stern(a(n-1)))
a(0)=0
stern(n)=Stern-Brocot sequence
∑(a)=partial sums of a
n≥0
5 operations
Recursive
a(n)=n%(n^3)
n≥1
5 operations
Power
a(n)=n+C(n, a(n-1))
a(0)=0
C(n,k)=binomial coefficient
n≥0
5 operations
Combinatoric
a(n)=n-μ(n²)
μ(n)=Möbius function
n≥1
5 operations
Prime

Sequence wohxgcfc5rlnm

1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, more...

integer, periodic-3, non-monotonic, +-, A057078

a(n)=1-n%3
n≥0
5 operations
Divisibility
a(n)=-a(n-1)-a(n-2)
a(0)=1
a(1)=0
n≥0
4 operations
Recursive
a(n)=Δ(a(n-3)^a(n-1))
a(0)=0
a(1)=1
a(2)=1
Δ(a)=differences of a
n≥0
4 operations
Power
a(n)=Δ(a(n-1)!*a(n-3))
a(0)=0
a(1)=1
a(2)=1
Δ(a)=differences of a
n≥0
5 operations
Combinatoric

[0] [1] [2] [3] [4] ... [338]