Sequence Database

A database with 1956199 machine generated integer and decimal sequences.

Found 12 matches.

Sequence hwca0hh1eg2yn

1, 3, 6, 9, 13, 17, 21, 26, 33, 40, 48, 56, 64, 73, 85, 95, 107, 121, 134, 151, 170, 190, 210, 232, 257, 284, 314, 343, 377, 412, 450, 491, 537, 582, 635, 694, 750, 806, 868, 929, 994, 1063, 1138, 1221, 1309, 1389, 1475, 1576, 1675, 1777, more...

integer, strictly-monotonic, +

a(n)=∑[stern(a(n-1))+a(n-3)]
a(0)=1
a(1)=2
a(2)=3
stern(n)=Stern-Brocot sequence
∑(a)=partial sums of a
n≥0
5 operations
Recursive

Sequence ob0sic2velvfo

5, 6, 8, 11, 13, 17, 21, 26, 32, 39, 48, 57, 68, 81, 97, 114, 134, 156, 182, 210, 243, 281, 321, 369, 423, 480, 548, 619, 699, 789, 892, 1003, 1127, 1268, 1409, 1581, 1761, 1966, 2179, 2431, 2705, 2992, 3305, 3665, 4050, 4478, 4924, 5426, more...

integer, strictly-monotonic, +

a(n)=2+Δ[composite(a(n-1))]
a(0)=3
composite(n)=nth composite number
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence 3abi1yh1rgrid

6, 8, 11, 13, 17, 21, 26, 32, 39, 48, 57, 68, 81, 97, 113, 134, 156, 182, 210, 243, 281, 321, 369, 423, 479, 548, 619, 699, 788, 892, 1002, 1127, 1267, 1409, 1581, 1760, 1964, 2178, 2431, 2703, 2991, 3304, 3664, 4047, 4478, 4922, 5423, more...

integer, strictly-monotonic, +

a(n)=2+Δ[composite(a(n-1))]
a(0)=5
composite(n)=nth composite number
Δ(a)=differences of a
n≥0
5 operations
Prime

Sequence cqfz24akm2m2j

0, 1, 2, 4, 7, 8, 12, 17, 21, 26, 34, 43, 48, 57, 64, 71, 75, 82, 101, 113, 123, 128, 136, 155, 165, 184, 207, 212, 246, 265, 282, 317, 333, 360, 403, 422, 466, 509, 517, 532, 577, 600, 661, 710, 766, 783, 792, 847, 860, 926, more...

integer, strictly-monotonic, +

a(n)=stern(1+a(n-1))+a(n-1)
a(0)=0
stern(n)=Stern-Brocot sequence
n≥0
6 operations
Recursive

Sequence soep2c5v5v5vn

1, 1, 1, 2, 3, 4, 6, 8, 11, 14, 17, 21, 26, 32, 39, 46, 55, 65, 76, 88, 102, 118, 136, 156, 177, 201, 228, 257, 289, 325, 363, 405, 451, 501, 555, 614, 678, 746, 821, 901, 987, 1080, 1180, 1286, 1401, 1524, 1655, 1795, 1945, 2104, more...

integer, monotonic, +

a(n)=floor(n^log(sqrt(n)))
n≥1
6 operations
Power

Sequence 512tpqdq4aprj

1, 1, 2, 6, 8, 11, 17, 21, 26, 34, 40, 47, 57, 65, 74, 86, 96, 107, 121, 133, 146, 162, 176, 191, 209, 225, 242, 262, 280, 299, 321, 341, 362, 386, 408, 431, 457, 481, 506, 534, 560, 587, 617, 645, 674, 706, 736, 767, 801, 833, more...

integer, monotonic, +

a(n)=n²-a(n-1)-a(n-2)
a(0)=1
a(1)=1
n≥0
6 operations
Recursive

Sequence nfaiyndbhelpj

1, 2, 4, 7, 8, 12, 17, 21, 26, 34, 43, 48, 57, 64, 71, 75, 82, 101, 113, 123, 128, 136, 155, 165, 184, 207, 212, 246, 265, 282, 317, 333, 360, 403, 422, 466, 509, 517, 532, 577, 600, 661, 710, 766, 783, 792, 847, 860, 926, 964, more...

integer, strictly-monotonic, +

a(n)=stern(1+a(n-1))+a(n-1)
a(0)=1
stern(n)=Stern-Brocot sequence
n≥0
6 operations
Recursive

Sequence a40rsiakq4j4p

1, 2, 5, 6, 11, 11, 12, 14, 17, 21, 26, 32, 39, 47, 56, 66, 77, 89, 102, 116, 131, 147, 164, 182, 201, 221, 242, 264, 287, 311, 336, 362, 389, 417, 446, 476, 507, 539, 572, 606, 641, 677, 714, 752, 791, 831, 872, 914, 957, 1001, more...

integer, monotonic, +

a(n)=∑[C(2+a(n-2), a(n-1))]
a(0)=1
a(1)=1
C(n,k)=binomial coefficient
∑(a)=partial sums of a
n≥0
6 operations
Combinatoric

Sequence oijb3lhggqndd

2, 4, 7, 8, 12, 17, 21, 26, 34, 43, 48, 57, 64, 71, 75, 82, 101, 113, 123, 128, 136, 155, 165, 184, 207, 212, 246, 265, 282, 317, 333, 360, 403, 422, 466, 509, 517, 532, 577, 600, 661, 710, 766, 783, 792, 847, 860, 926, 964, 1011, more...

integer, strictly-monotonic, +

a(n)=stern(1+a(n-1))+a(n-1)
a(0)=2
stern(n)=Stern-Brocot sequence
n≥0
6 operations
Recursive

Sequence 203l2sqwtvmah

2, 3.5, 5.666666666666667, 8.5, 12, 16.166666666666664, 21, 26.5, 32.66666666666667, 39.5, 47, 55.166666666666664, 64, 73.5, 83.66666666666667, 94.5, 106, 118.16666666666667, 131, 144.5, 158.66666666666666, 173.5, 189, 205.16666666666666, 222, more...

decimal, strictly-monotonic, +

a(n)=1+∑[n²]/n
∑(a)=partial sums of a
n≥1
7 operations
Power

Sequence ulz2f0eraukic

2, 3.5, 5.666666666666667, 8.5, 12, 16.166666666666668, 21, 26.5, 32.666666666666664, 39.5, 47, 55.166666666666664, 64, 73.5, 83.66666666666667, 94.5, 106, 118.16666666666667, 131, 144.5, 158.66666666666666, 173.5, 189, 205.16666666666666, 222, more...

decimal, strictly-monotonic, +

a(n)=∑[1+n²]/n
∑(a)=partial sums of a
n≥1
7 operations
Power

Sequence ds2fikzf3aioo

0, 1, 0, 3, 6, 7, 12, 17, 20, 27, 34, 39, 48, 57, 64, 75, 86, 95, 108, 121, 132, 147, 162, 175, 192, 209, 224, 243, 262, 279, 300, 321, 340, 363, 386, 407, 432, 457, 480, 507, 534, 559, 588, 617, 644, 675, 706, 735, 768, 801, more...

integer, non-monotonic, +

a(n)=(1-n)²-a(n-1)-a(n-2)
a(0)=0
a(1)=1
n≥0
8 operations
Recursive